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Abstract: Connectionist temporal classification (CTC) is a favored decoder in scene text recognition
(STR) for its simplicity and efficiency. However, most CTC-based methods utilize one-dimensional
(1D) vector sequences, usually derived from a recurrent neural network (RNN) encoder. This results in
the absence of explainable 2D spatial relationship between the predicted characters and corresponding
image regions, essential for model explainability. On the other hand, 2D attention-based methods
enhance recognition accuracy and offer character location information via cross-attention mechanisms,
linking predictions to image regions. However, these methods are more computationally intensive,
compared with the 1D CTC-based methods. To achieve both low latency and model explainability
via character localization using a 1D CTC decoder, we propose a marginalization-based method that
processes 2D feature maps and predicts a sequence of 2D joint probability distributions over the
height and class dimensions. Based on the proposed method, we newly introduce an association
map that aids in character localization and model prediction explanation. This map parallels the role
of a cross-attention map, as seen in computationally-intensive attention-based architectures. With
the proposed method, we consider a ViT-CTC STR architecture that uses a 1D CTC decoder and a
pretrained vision Transformer (ViT) as a 2D feature extractor. Our ViT-CTC models were trained
on synthetic data and fine-tuned on real labeled sets. These models outperform the recent state-of-
the-art (SOTA) CTC-based methods on benchmarks in terms of recognition accuracy. Compared
with the baseline Transformer-decoder-based models, our ViT-CTC models offer a speed boost up
to 12 times regardless of the backbone, with a maximum 3.1% reduction in total word recognition
accuracy. In addition, both qualitative and quantitative assessments of character locations estimated
from the association map align closely with those from the cross-attention map and ground-truth
character-level bounding boxes.

Keywords: vision Transformer; connectionist temporal classification; scene text recognition; character
localization; model explainability

1. Introduction

Scene text recognition (STR) identifies text in natural scenes and remains a vibrant
research field due to challenging imaging conditions [1,2]. Current deep learning meth-
ods for STR typically comprise a visual feature extractor, a sequence modeler, and a
decoder. The choice of decoder significantly impacts model recognition performance,
latency, and explainability, given the same feature extractor and sequence modeler de-
sign. State-of-the-art (SOTA) methods categorize by their decoding of visual features
into characters using connectionist temporal classification (CTC) and attention-based and
Transformer decoders [3–5].

A 2D attention-based or Transformer decoder, using 2D feature maps, excels in recog-
nition accuracy and character localization through a cross-attention mechanism. Unlike
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Transformer-based object detectors, such as DETR [6] and V-DETR [7], which directly
output object bounding boxes, a Transformer-based text recognizer outputs only characters.
These characters can be localized via the decoder’s cross-attention map. With enough
inductive biases, including locality, the Transformer decoder attends only to the locations
of the objects of interest [7]. Thus, the Transformer decoder generates a cross-attention
map, linking predicted characters to relevant image regions. This location information
yields benefits like model explainability [8–12] and text rectification [13]. Figure 1(2) ex-
emplifies the overlaid cross-attention maps (summed across predicted characters) from
a Transformer decoder, illustrating alignment between character positions and attention
weights. However, it should be noted that the attention-based decoder has high latency
due to an intricate attention mechanism [3,14].

(a) london (b) denver (c) day (d) festive (e) sale (f) premier (g) online

(1) Inputs

(2) Cross-attention

maps

(3) Association maps

Figure 1. The cross-attention vs. the association maps. The first row consists of text images. The sec-
ond and third rows consist of the cross-attention and association maps, respectively, that associate
each predicted character with image regions. The last row consists of text transcriptions. The cross-
attention map is obtained from a Transformer decoder, while the association map is obtained from a
ViT-CTC model. Best viewed in color.

Conversely, the CTC decoder offers superior latency efficiency but often sacrifices
recognition accuracy compared with the attention-based decoder [3,4,14]. The CTC decoder
demands a 1D class probability distribution sequence input, prompting the common use
of a 1D feature extractor in existing CTC-based methods [14–18]. However, this approach
hampers the ability to establish explainable 2D spatial relationship between the predicted
characters and relevant image regions. The 2D-CTC [19] method emerged to handle 2D
feature maps, extending the 1D CTC algorithm to process the height dimension. However,
using 2D-CTC involves a trade-off, resulting in higher inference latency and training costs,
particularly with larger 2D feature maps.

For explainable character localization using a 1D CTC decoder, we introduce a ViT-
CTC STR architecture that enables a 1D CTC decoder with a pretrained vision Transformer
(ViT) to act as a 2D feature extractor. To incorporate the 2D feature extractor, we propose a
novel marginalization-based technique that predicts 2D joint probability distributions over
the height and class dimensions. By marginalizing the height dimension, we obtain a 1D
class probability distribution sequence suited for a 1D CTC decoder.

Our proposed method also generates an association map, serving for character local-
ization and model prediction explanation. This map resembles the role of a cross-attention
map in the attention-based architectures but with significantly lower computational de-
mand. Qualitative comparisons between the overlaid cross-attention and association maps
are depicted in Figure 1(2),(3), respectively, showcasing alignment. Moreover, unlike 2D-
CTC [19], our method maintains consistent inference latency and training cost, regardless
of 2D feature map size. To quantitatively measure the alignment between character posi-
tions from the association map and the ground-truth character locations, we propose an
alignment evaluation metric (AEM).
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Our contributions can be summarized as follows:

1. We introduce a novel marginalization-based method for enabling a 2D feature ex-
tractor to be compatible with a 1D CTC decoder. This method yields an association
map that links predicted characters to relevant image regions, enabling character
localization and improving prediction explainability.

2. We derive an alignment evaluation metric (AEM) that measures the alignment be-
tween character positions from the association map and the ground-truth character
locations. This metric can also be used for the cross-attention map.

3. Using our method, we experimented with the ViT-CTC architecture with various
pretrained ViT backbones and a 1D CTC decoder. Our ViT-CTC models outperform
the recent SOTA methods on public benchmark datasets.

4. Compared with a Transformer-decoder-based model, a ViT-CTC model offers a re-
markable speed boost, surpassing the former by up to 12 times, regardless of the ViT
backbone used. This speed gain comes with a maximum reduction in total word
recognition accuracy of 3.1%. Hence, the ViT-CTC model is particularly attractive for
low-latency, resource-constrained environments.

1.1. Related Work

In this section, we provide a brief review of common decoders in mainstream scene
text recognition (STR) architectures. In addition, we also describe the recent advances
of vision Transformer (ViT) architectures and their adoptions in STR, followed by model
explanation through visualizations.

1.1.1. Scene Text Recognition

Scene text recognition is a variant of unsegmented sequence labeling tasks in which a
2D input stream of pixels is labeled with a sequence of characters. Other similar perceptual
tasks include speech and gesture recognition [20].

Graves et al. [20] introduced the CTC algorithm, which maps a recurrent neural net-
work (RNN) output sequence of a speech signal to a character sequence. CTC incorporates
a blank token (ε) to handle multiple input-to-output alignments. Instead of predicting a
probability of a single alignment, CTC estimates a total probability by marginalizing over
all possible alignments.

CTC gained popularity in text recognition, leading to numerous CTC-based STR
methods [14–18]. These methods typically employ a common pipeline encompassing
optional rectification, a 1D convolutional feature extractor, a recurrent sequence modeler,
and a 1D CTC decoder. While most CTC-based methods were initially designed for
the Latin script, Gunna et al. [21] and Hu et al. [4] extended the CTC-based recognition
pipeline to different Indian and Vietnamese scripts, respectively. However, a 1D CTC-
based approach (using a 1D feature extractor) is unable to establish explainable 2D spatial
relationships between predicted characters and relevant image areas.

To tackle this, 2D-CTC [19], an extension of the 1D CTC algorithm with the height
dimension, handles 2D feature maps. However, it leads to increased inference latency and
training cost, particularly based on the height of feature maps. Moreover, there is a lack of
standardized, optimized 2D-CTC implementations in prevalent deep learning frameworks.

In contrast to a 1D CTC decoder, an attention-based decoder accommodates both 1D
and 2D feature extractors. One-dimensional attention-based methods [4,14,22,23] substitute
a CTC decoder with an attention-based one to enhance recognition performance by captur-
ing character dependencies. Recognizing limitations in accurately predicting characters
within complex and curved text, 2D attention-based methods [9,24] emerged.

As Transformer networks [10] gained prominence, the Transformer decoder became the
standard attention-based decoder, leading to Transformer-decoder-based methods [25,26].
Via cross-attention mechanisms, the attention-based decoder produces a cross-attention
map, associating each predicted character with relevant input image regions. The cross-
attention map is widely used for visual explanations of model predictions [8–12]. Despite
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its superior performance, Baek et al. [14] showed that an attention-based decoder, using the
same feature extractor, yields about three times higher latency than a CTC-based decoder.

1.1.2. Vision Transformer

Transformers [10] have established themselves in natural language processing (NLP).
Vision Transformers (ViT) [27] extend this architecture to vision tasks by dividing images
into patches and projecting them as tokens, similar to words in NLP. The ViT’s training de-
mands are computationally efficient, but it lacks inductive biases. Addressing this, effective
ViT models require substantial training data (priors). Data-efficient image Transform-
ers [28–30] were introduced to alleviate data demands, achieving competitive outcomes
against convolutional networks. ViT swiftly integrated into existing STR setups as a 2D
feature extractor and sequence modeler. ViT-based STR methods [1,5,31] were subsequently
proposed, displaying SOTA performance, particularly when trained on real labeled data.

1.1.3. Visual Model Explanations

To help users understand model failure and discover biases in training data, trans-
parent models are necessary [32]. Nevertheless, deep neural networks (DNNs) behave
as black boxes, making them difficult to understand. According to Junkang and Joe [32],
an explanation map is a map that highlights relevant regions that contribute to a model’s
decision. The explanation can be obtained by using class activation mapping (CAM)-
based or attention-based methods. Gradient-weighted class activation mapping (Grad-
CAM) [33] is an example of CAM-based methods. Grad-CAM computes the gradients of
a given class to produce a low-resolution localization map that highlights relevant image
regions. Xu et al. [8] utilized an attention mechanism and visualized the attention map to
show human intuition-like alignments between a model-generated caption and relevant
image regions.

2. Materials and Methods
2.1. Proposed Method

In our study, ViT-CTC models leverage pretrained vision Transformers and a 1D CTC
decoder. This allows our models to draw on extensive visual pretraining and exploit 2D
spatial feature relationships via self-attention layers, all while retaining the low latency of a
1D CTC decoder. The introduced marginalization-based method also facilitates character
localization and model prediction explanations through a novel association map that is
absent in the existing 1D CTC-based methods.

In this section, we present the details of our proposed marginalization-based method
in 2D class probability space. We begin by providing a concise overview of the 1D CTC
algorithm and its assumptions in Section 2.1.1, followed by the detailed derivations of
the proposed method in Section 2.1.2. We formulate the association map that relates each
model prediction to relevant image regions in Section 2.1.3. Lastly, we derive an alignment
evaluation metric (AEM) that measures the alignment between character locations esti-
mated using the association and cross-attention maps and ground-truth character locations
in Section 2.1.4.

2.1.1. Connectionist Temporal Classification (CTC)

CTC assigns a total probability of an output sequence (Y) given an input sequence
(X) [20,34,35]. Instead of assigning a probability to the most likely alignment, CTC estimates
a total probability by summing over all possible alignments between an input and output
sequence. CTC introduces a blank or no-label token (ε) to allow the alignments and the
input to have the same length. For any alignment, repeated characters are merged and blank
tokens are removed to produce a final output sequence. For example, A1 = (ε, c, ε, a, ε, t)
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and A2 = (c, c, ε, a, ε, t) are two of the possible and valid alignments for the same word, cat.
Mathematically, the total probability assigned by CTC is given by [20,34,35]

p(Y |X) = ∑
A∈SX,Y

W ′

∏
t=1

pt(at|X), (1)

where p(Y |X) is a total probability of an (X, Y) pair. A = (a1, . . . , aW ′) is an alignment and
SX,Y = (A1, . . . , An) is a set of possible and valid alignments between X and Y . pt(at|X) is
a conditional probability on X at a prediction frame, t. Thus, at each timestep t, a learning
algorithm must produce a valid probability distribution (i.e., 1D vector) over characters.
In the context of text recognition, the width dimension is treated as time while the height
dimension is often collapsed by convolution and pooling layers.

Since SX,Y can be large, naive implementation is computationally inefficient. This is
mitigated by dynamic programming by merging two alignments with the same output
at the same t. Modern deep learning libraries have a built-in, optimized, efficient, low-
level implementation of CTC. During inference, a greedy decoding scheme is used by
selecting the most likely output at each prediction frame independently to obtain the
highest probability alignment, A∗, from which ε and duplicate characters are removed and
merged, respectively [34]. The greedy and parallel decoding nature allows CTC to achieve
low latency that is crucial in low-resource and real-time environments. A∗ is given by

A∗ = argmax
A

T

∏
i=1

pt(at|X). (2)

The CTC algorithm makes the following assumptions [34]:

1. Conditional independence. The predicted characters are conditionally independent,
meaning there are no dependencies between characters.

2. Monotonicity. When handling the subsequent feature vector, the current character
can persist or the subsequent character must be processed.

3. Many to one. There can be multiple feature vectors corresponding to a single output
character. This implies that the length of feature vectors must be greater than or equal
to the length of target characters.

2.1.2. The Proposed Marginalization-Based Method

The concept of the proposed method is to handle 2D feature maps with a 1D CTC
decoder without adding complexity. This is achieved by applying the marginalization rule
in 2D class probability space.

Concretely, as shown in Figure 2, a ViT encoder takes an input image and produces
2D feature maps, represented by F = (F1,1, . . . , FH′ ,W ′), F i,j ∈ RD, where H′, W ′, and D
are the height, width, and embedding dimensions of the feature maps. F is directly fed
to a linear layer to produce unnormalized 2D score distributions, S = (S1,1, . . . , SH′ ,W ′),
Si,j ∈ RC. S is given by

S = LinearLayer(F), (3)

where LinearLayer is a feedforward neural network. Each Si,j is an unnormalized vector
and C is the number of class labels. A softmax normalization is applied to S along both H′

and C dimensions to produce U = (U1,1, . . . , UH′ ,W ′), U i,j ∈ RC. U is given by

U = SoftmaxH′ ,C(S), (4)

where SoftmaxH′ ,C is a softmax operator along the H′ and C dimensions. A cross-section
along W ′ is a valid 2D joint probability distribution over the H′ and C dimensions. A 3D
graphical illustration of U is provided in Figure 3.
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Next, U is marginalized over the H′ dimension to produce a sequence of valid 1D
probability distributions over the C dimension, P = (P1, . . . , PW ′), Pj ∈RC, that is required
by a CTC decoder. Pj is given by

Pj =
H′

∑
h=1

Uh,j, (5)

where each Pj is a normalized class probability distribution vector. In the case of a 1D
feature extractor (i.e., H′ = 1), U is exactly P. The overall text recognition workflow with
the proposed method is shown in Figure 2.

Beyond the CTC algorithm’s assumptions, our proposed method assumes horizontal
or curved textline, excluding vertical orientation.

WEST 

C
TC

 

2D
 Feature

Extractor ...

...

2D Feature Maps
2D Un-normalized

Distributions

2D Joint Distributions
along W'

1D Character
Distributions

Marginalization

...

...

Figure 2. The proposed marginalization-based method: A 2D feature sequence, F = (F1,1, . . . , FH′ ,W ′ ),
is produced by a 2D feature extractor such as a ViT backbone. F is fed to a linear layer to produce
S = (S1,1, . . . , SH′ ,W ′ ) from which a softmax normalization is performed over both H′ and C di-
mensions. Next, the normalized U = (U1,1, . . . , UH′ ,W ′ ) is marginalized over the H′ dimension to
produce P = (P1, . . . , PW ′ ) that is fed to a CTC decoder. D and C are the feature and class dimensions,
respectively.

2.1.3. Association Map (AM)

In the existing CTC-based methods, the height dimension is physically discarded by
feature averaging or pooling layers. The proposed method preserves the height dimension,
making a 2D feature extractor compatible with a CTC decoder.

Thanks to the proposed method, a cross-section along the W ′ dimension of U forms
a valid 2D joint probability distribution over the H′ and C dimensions, as shown in
Figure 3. Based on U, we can derive a novel association map (AM) that enables linking
each predicted character to relevant image regions. This spatial connection serves two
purposes: (1) explaining model predictions and (2) character localization.

The association map functions in the same way as the localization map of Grad-
CAM [33], but without gradients, and the attention map [8], but without an attention mecha-
nism. Concretely, given the most likely alignment, A∗ = (a1, . . . , aW ′),
AM = (AM1,1, . . . , AMH′ ,W ′ ), AMi,j ∈ {0, 1}, is expressed as

AMi,j =

{
1, if U i,j,ind(aj)

≥ α ∧ aj 6= ε

0, otherwise,
(6)
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where j is a prediction timestep or frame. aj is a CTC predicted character at j. Ui,j,ind(aj)

is a probability of character, aj, at timestep, j, and height, i. ind() is a character-to-index
mapping. α is a threshold between zero and one while ε is a blank token required by a
CTC decoder. A high α associates a predicted character, aj, with the high probability image
regions. The resulting character regions are illustrated in Figure 1(3).

(a) Input image 

(b) 2D joint distributions over the height and class dimensions 

Figure 3. 3D graphical illustration of U for an input image. (a) Input image. (b) The computed
U. At W ′ = 1, the bright cells, responding to the character L, have a high probability. Best viewed
in color.

2.1.4. Alignment Evaluation Metric (AEM)

Model predictions are explicable through visualization of the association and cross-
attention maps (Figure 1). We also quantitatively assess alignment between character
positions in these maps and the ground truth character locations. Given the absence
of explicit character coordinate predictions by the association and cross-attention maps,
the intersection-over-union (IoU) metric is unsuitable. Instead, we introduce an alignment
metric suitable for both association and cross-attention maps.

Concretely, given character regions Rk on the association map and GTk as the ground-
truth bounding box (depicted in Figure 4), the alignment evaluation metric (AEM) for a
predicted character, k, is given by

AEMk =

{
1, if Rk ∩GTk 6= 0
0, otherwise.

(7)

The AEM for a given text of length, L, is given by

AEMTEXT =
∑L

k=1 AEMk

L
. (8)

In the case of the cross-attention map, we first sum the cross-attention map over all atten-
tion heads in the case of multi-headed attention mechanism and normalize for each predicted
character, k, to obtain CA = (CA1,1, . . . , CAH′ ,W ′ ) , CAi,j ∈ R|0 ≤ CAi,j ≤ 1. Examples of
the resulting overlaid and normalized cross-attention map are given in Figure 5a. In con-
trast to the association map, the cross-attention map is more diffuse due to the decoder’s
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need to compute continuous attention weights across the entire feature maps. We filter
out regions with low attention weights below the threshold, β. The filtered, binary cross-
attention map in Figure 5b, CAF = (CAF1,1, . . . , CAFH′ ,W ′ ) , CAFi,j ∈ {0, 1}, is given by

CAFi,j =

{
1, if CAi,j ≥ β

0, otherwise.
(9)

where β is between zero and one. A high β associates a predicted character, k, with the high
attention weight regions. With the CAF, AEMk and AEMTEXT are computed, according to
the above equations.

(a) Input image with ground-truth character
bounding boxes

(b) Association map

Figure 4. The estimated character locations, Rk, from the association map. (a) Input image with
ground-truth character bounding boxes, GTk. (b) Estimated character regions. Best viewed in color.

(a) Cross-attention maps (b) Filtered cross-attention maps
Figure 5. The estimated character locations, Rk, for the two predicted characters of the input image in
Figure 4a, from the cross-attention maps. (a) Cross-attention maps. (b) Estimated character regions.
Best viewed in color.

2.2. Datasets
2.2.1. Synthetic Datasets

Training on large-scale synthetic data is a common practice in STR. Four major syn-
thetic datasets are MJSynth (MJ) [36], SynthText (ST) [37], SynthAdd (SA) [9], and Syn-
thTiger [38]. The synthetic training set comprises 8.5M images from 50% of MJSynth, 50% of
SynthText, 100% of SynthAdd, and 10% of SynthTiger. The mixing ratio is around 4:3:1.3:1.
Combining different training sources is to increase diversity of training data. Some samples
from the training datasets are shown in Figure 6a.

2.2.2. Real Datasets

The evaluation datasets include the test sets of street view text (SVT) [39], IIIT5k-Words
(IIIT) [40], ICDAR2013 (IC13) [41], ICDAR2015 (IC15) [42], SVT perspective (SVTP) [43],
and CUTE80 (CT) [44]. Detailed descriptions of these datasets can be referred to [14,45].

COCO-Text (COCO) [46], RCTW [47], Uber-Text [48], ArT [49], LSVT [50], ReCTS [51],
TextOCR [52], and OpenImages V5 [24] are small-scale, real labeled datasets. We used an
aggregated, processed version of COCO-Text, RCTW, Uber-Text, ArT, LSVT, and ReCTS
provided by Baek et al. [45]. For TextOCR and OpenImages V5, we used the processed
versions provided by Yang et al. [5].

The fine-tuning datasets comprise the training sets of SVT, IIIT, IC03, IC13, IC15,
and the real labeled datasets above. The idea of introducing the fine-tuning datasets
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based on real labeled data is to identify whether our ViT-CTC models have any inherent
weaknesses or if there are any blindspots in the training datasets [53]. The fine-tuning
datasets comprise 2.4M labeled images. A few samples from the fine-tuning datasets are
shown in Figure 6b.

(a) Synthetic training samples

(b) Real fine-tuning samples
Figure 6. Sample training and fine-tuning images. (a) Sample images from the training datasets.
(b) Sample images from the fine-tuning datasets.

2.2.3. Synthetic Character-Level Annotation Dataset

Character-level annotations are not available with the existing datasets. Thus, to quan-
titatively evaluate the character locations derived from the association and cross-attention
maps, we use SynthTiger (https://github.com/clovaai/synthtiger, accessed on 1 August 2023)
to synthetically generate a small dataset of 446 scene text images with character-level bound-
ing boxes. A few samples of the generated images with character-level annotations are
given in Figure 7.

Figure 7. Sample text images with character-level annotations.

2.3. Experiment Design

We experimented with different backbones, including three variants of DeiT-III [29]
(DeiT-Small, DeiT-Medium, and DeiT-Base) and a CaiT-Small [30]. The assessment of the
backbone’s complexity impact on recognition performance can be achieved by employing
the DeiT-Small, DeiT-Medium, and DeiT-Base backbones. Furthermore, the inclusion of
CaiT-Small enables us to compare the recognition performance of different ViT architectures.

The details of these four pretrained ViT backbones are shown in Table 1. For an
input image of 224 × 224 pixels, the output feature maps are 14 × 14 × D, and D is
the embedding dimension, which is provided in the same table for each ViT backbone.
For each pretrained ViT backbone, we setup two ViT-CTC models, employing both the
baseline feature averaging method (FA) [5] and the proposed marginalization method (M),
presented in Section 2.1.1. In FA, feature maps are arithmetically averaged along the height
or vertical dimension to produce a 1D feature sequence for a character classifier and a CTC
decoder. As a result, it does not provide character location information.

Similarly, for recognition performance and latency comparison purposes, we also setup
the Transformer-decoder-based models that are also based on the same ViT backbones,
while the specifications of the Transformer decoder are provided in Table 2. It should be

https://github.com/clovaai/synthtiger
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noted that only our ViT-CTC models using the proposed marginalization method and the
Transformer-decoder-based models can offer character locations in addition to recognition.
The estimated character locations are qualitatively and quantitatively evaluated against the
ground-truth locations.

Table 1. Specifications of the pretrained ViT backbones.

ViT Model Params GFLOPs Size Emb. Dim, D Acc@1 (INet-1k)

DeiT-Small [30] 22.2M 4.6 224 × 224 384 81.4
DeiT-Medium [30] 38.8M 8.0 224 × 224 512 83.0
DeiT-Base [30] 86.6M 17.5 224 × 224 768 83.8
CaiT-Small [29] 47.0M 9.4 224 × 224 384 83.5

Table 2. Specifications of the Transformer decoder.

Parameters Value

Hidden/Embedding Dimension Encoder’s Emb. Dim.
Decoder Stacks 3
Attention Heads 8
Dropout 0.1
Feed-forward Dimension Encoder’s Emb. Dim.

In the case of a CTC decoder, the character set comprises 37 characters, encompassing
case-insensitive letters, numbers, and a blank token denoted as ε. On the other hand, for a
Transformer decoder, the character set consists of 39 characters, including case-insensitive
letters, numbers, and three distinct special tokens (PADDING: zero padding; EOS: end of
sentence; SOS: start-of-sentence). The input images were resized to 224 × 224 pixels.

The training strategy comprised two phases: (1) training on the synthetic datasets and
(2) fine-tuning on the real datasets. These two phases of training allow us to identify models’
weaknesses or training datasets’ blindspots during evaluation [53]. The training process
lasted for 50 iterations. During each iteration, 300,000 images were randomly selected, and a
batch of 64 images was used for training without any data augmentation to ensure a fair
comparison with the SOTA methods [4,14]. In addition, because the synthetically generated
training images were already augmented during generation, additional data augmentation,
such as [54,55], may affect the recognition accuracy negatively [45]. The total training is
equivalent to around two epochs on all of the training data. The fine-tuning phase followed
the same settings as before, but it only lasted for 30 iterations, which is approximately
equivalent to three epochs over the entire fine-tuning dataset. The cyclic learning schedules
between 10−4 and 10−5 and between 10−5 and 10−6 were used for the training and fine-
tuning phases, respectively. For all the models, pretrained ViT weights [29,30] were used
with a gradient clip of ten.

3. Results

In this section, we present the experimental outcomes and important analyses. To eval-
uate the performance of our ViT-CTC models using the proposed method (M), we begin by
providing the ablation analyses of the encoder complexities and architectures in Section 3.1,
followed by comparing their accuracy with the baseline and SOTA-based methods that
do not provide character locations in Sections 3.2 and 3.3. In Section 3.4, we compare
with the baseline Transformer-decoder-based models that provide character locations via
the cross-attention map. Lastly, we provide the qualitative and quantitative evaluation of
character location derived from the proposed method and the cross-attention map.

3.1. Ablation Analyses of the Encoder Complexities and Architectures

In this section, we present the ablation analyses concerning ViT-based feature extractor
complexities since the feature extractor is the main component in the proposed method. We
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utilize three variants of DeiT backbones (namely DeiT-S, DeiT-M, and DeiT-B) and explore
different encoder architectures employing a CaiT-S backbone.

Table 3 demonstrates that increasing the complexity of the ViT-based feature extractor,
specifically transitioning from DeiT-S to DeiT-M and DeiT-B, results in higher total word
recognition accuracy for both synthetic and real training data. However, these improve-
ments are accompanied by larger model sizes and heightened computational demands,
as indicated in Table 1. Table 3 also shows that despite having a much smaller model size
and computational demand, the CaiT-S model achieves a comparable total recognition
accuracy with the DeiT-B model for both synthetic and real training data.

Table 3. Word recognition accuracy (%) of the ablation results of the encoder complexities and
architectures with the proposed method (M). FT: fine-tuning on real data. Bold: highest.

(a) Methods trained on synthetic training data (S).

Method IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + M (Ours) 91.4 85.5 91.3 75.3 76.7 82.2 85.3
DeiT-M + M (Ours) 92.5 87.8 92.2 76.6 79.5 81.9 86.6
DeiT-B + M (Ours) 93.0 86.9 92.2 78.6 79.1 84.0 87.3
CaiT-S + M (Ours) 93.5 86.9 91.9 77.6 77.8 85.4 87.2

(b) Methods trained on real labeled training data (R).

Method IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + M + FT (Ours) 94.6 89.2 95.4 81.5 83.1 91.3 89.9
DeiT-M + M + FT (Ours) 95.0 92.3 95.2 83.5 84.0 90.9 90.9
DeiT-B + M + FT (Ours) 95.9 92.6 96.1 84.4 84.3 92.7 91.7
CaiT-S + M + FT (Ours) 96.1 90.6 95.4 84.9 85.4 92.7 91.7

3.2. Recognition Accuracy Comparison with the Baseline Feature Averaging

In this section, we perform a comparison to assess the recognition accuracy of our
ViT-CTC models using both the proposed method (M) and the baseline feature averaging
(FA). Since FA does not yield character localization, the comparison in this section primarily
centers around the recognition accuracy between the two methods.

As indicated in Tables 4a,b, there are minimal distinctions in terms of recognition
accuracy between the two methods, regardless of source of training data (i.e., real and
synthetic). The findings can be distilled into three primary points. Firstly, the proposed
method, offering both model explainability and character location information, does not
lead to any loss of recognition accuracy. Secondly, the utilization of a 2D feature extractor
such as a ViT backbone improves the recognition accuracy of a CTC decoder, whereas the
majority of CTC-based methods depend on a tailored 1D feature extractor. Thirdly, the uti-
lization of real labeled data, albeit limited, results in a substantial recognition performance
improvement compared with relying solely on synthetic training data.

3.3. Recognition Accuracy Comparison with the SOTA CTC-Based Methods

Similar to the preceding section, this section compares the recognition accuracy of
our ViT-CTC models using our proposed method (M) with the SOTA CTC-based methods
lacking character location information. Among the SOTA methods in Table 5, only the
DiG-ViT [5] and GTC [4] models use real labeled data for training. The other models use
solely synthetic data for training. The table suggests that integrating real labeled data
can improve recognition accuracy on benchmark datasets. However, various factors like
backbone architecture, training iterations, and data augmentation also play a significant
role in this improvement. Among these methods, only ViTSTR [1] and DiG-ViT employ
a ViT backbone; the rest rely on convolutional backbones. DiG-ViT employs the feature
averaging technique to convert 2D feature maps to 1D for a CTC decoder. GTC [4] uses an
attention-based decoder to guide a CTC decoder.
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Table 4. Word recognition accuracy (%) comparison between the proposed method (M) and the
baseline feature averaging (FA). FT: fine-tuning on real data. Bold: highest.

(a) Methods trained on synthetic training data (S).

Method IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + FA 91.4 86.4 89.6 74.2 75.8 79.1 84.7
DeiT-M + FA 92.0 87.3 91.4 77.4 78.9 82.2 86.4
DeiT-B + FA 93.1 88.7 92.9 77.3 79.7 85.7 87.4
CaiT-S + FA 94.3 87.2 92.5 79.5 79.4 87.1 88.2

DeiT-S + M (Ours) 91.4 85.5 91.3 75.3 76.7 82.2 85.3
DeiT-M + M (Ours) 92.5 87.8 92.2 76.6 79.5 81.9 86.6
DeiT-B + M (Ours) 93.0 86.9 92.2 78.6 79.1 84.0 87.3
CaiT-S + M (Ours) 93.5 86.9 91.9 77.6 77.8 85.4 87.2

(b) Methods trained on real labeled training data (R).

Method IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + FA + FT 95.0 88.4 94.2 81.6 82.0 88.5 89.6
DeiT-M + FA + FT 95.5 91.2 95.4 83.4 83.4 92.0 91.0
DeiT-B + FA + FT 95.9 92.1 95.9 83.9 84.2 92.7 91.5
CaiT-S + FA + FT 96.0 92.3 95.8 84.5 84.7 93.7 91.7

DeiT-S + M + FT (Ours) 94.6 89.2 95.4 81.5 83.1 91.3 89.9
DeiT-M + M + FT (Ours) 95.0 92.3 95.2 83.5 84.0 90.9 90.9
DeiT-B + M + FT (Ours) 95.9 92.6 96.1 84.4 84.3 92.7 91.7
CaiT-S + M + FT (Ours) 96.1 90.6 95.4 84.9 85.4 92.7 91.7

Table 5. Word recognition accuracy (%) comparison between the proposed method (M) and the SOTA
CTC-based methods. FT: fine-tuning on real data. Size: parameters in millions. M: the proposed
method. Bold: highest.

(a) Methods trained on synthetic training data (S).

Method Size IIIT SVT IC13 IC15 SVTP CUTE Total

CRNN [15] 8.3 82.9 81.6 89.2 69.4 70.0 65.5 78.5
STAR-Net [18] 48.7 87.0 86.9 91.5 76.1 77.5 71.7 83.5
GRCNN [17] 4.6 84.2 83.7 88.8 71.4 73.6 68.1 80.1
Rosetta [16] 44.3 84.3 84.7 89.0 71.2 73.8 69.2 80.3
TRBC [14] 48.7 87.0 86.9 91.5 76.1 77.5 71.7 83.5
ViTSTR-S [1] 21.5 85.6 85.3 90.6 75.3 78.1 71.3 82.5
ViTSTR-B [1] 85.8 86.9 87.2 91.3 76.8 80.0 74.7 84.0

DeiT-S + M (Ours) 21.6 91.4 85.5 91.3 75.3 76.7 82.2 85.3
DeiT-M + M (Ours) 38.9 92.5 87.8 92.2 76.6 79.5 81.9 86.6
DeiT-B + M (Ours) 85.7 93.0 86.9 92.2 78.6 79.1 84.0 87.3
CaiT-S + M (Ours) 46.5 93.5 86.9 91.9 77.6 77.8 85.4 87.2

(b) Methods trained on real labeled training data (R).

Method Size IIIT SVT IC13 IC15 SVTP CUTE Total

GTC [4] - 96.0 91.8 93.2 79.5 85.6 91.3 90.1
DiG-ViT-T (CTC) [5] 20.0 93.3 89.7 92.5 79.1 78.8 83.0 87.7
DiG-ViT-S (CTC) [5] 36.0 95.5 91.8 95.0 84.1 83.9 86.5 91.0
DiG-ViT-B (CTC) [5] 52.0 95.9 92.6 95.3 84.2 85.0 89.2 91.5

DeiT-S + M + FT (Ours) 21.6 94.6 89.2 95.4 81.5 83.1 91.3 89.9
DeiT-M + M + FT (Ours) 38.9 95.0 92.3 95.2 83.5 84.0 90.9 90.9
DeiT-B + M + FT (Ours) 85.7 95.9 92.6 96.1 84.4 84.3 92.7 91.7
CaiT-S + M + FT (Ours) 46.5 96.1 90.6 95.4 84.9 85.4 92.7 91.7

Focusing on the models trained only on synthetic data (S), Table 5a shows that our ViT-
CTC models using the proposed method (M) outperform the SOTA CTC-based methods,
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such as TRBC (TPS-ResNet-BiLSTM-CTC) [14], in recognition accuracy (bold numbers in
the table). This recognition accuracy improvement is attributed to the advanced feature
extraction of pretrained ViT backbones. Meanwhile, when considering methods trained
or fine-tuned on real labeled data (R), Table 5b shows that our ViT-CTC models slightly
outperform the SOTA DiG-ViT models (bold numbers in the table). Thus, regardless of
the training data source, our ViT-CTC models with the proposed method (M) consistently
show superior or comparable performance to the SOTA CTC-based methods.

3.4. Recognition Accuracy and Efficiency Comparison with the Baseline
Transformer-Decoder-Based Models

Earlier sections evaluated our proposed ViT-CTC models’ recognition accuracy against
the CTC-based methods that lack character localization. Now, we jointly compare recogni-
tion accuracy and latency with a Transformer-decoder-based architecture that can associate
predicted characters with relevant image regions.

A CTC decoder is acknowledged for its faster inference but lower recognition accuracy
compared with a Transformer decoder that learns an implicit language model [3–5,14]. This
section quantitatively assesses the trade-off between the two decoders in terms of both
latency and recognition accuracy.

Tables 6a,b compare the recognition accuracy of our ViT-CTC models using our pro-
posed method against Transformer-decoder-based models. Regardless of the training data
source, the Transformer-decoder-based models consistently achieved higher recognition
accuracy on benchmark datasets due to their ability to capture character dependencies
through implicit language modeling that is absent in a CTC decocder.

However, this recognition accuracy advantage was offset by increased latency, as shown
in Figure 8 and Table 7. The inference time of a Transformer decoder is directly tied to the
number of decoded characters, while a CTC decoder maintains a constant inference time.
Quantitatively, the inference speed of a CTC decoder surpasses a Transformer decoder by
up to 12 times, making it more appealing in low-latency and low-resource scenarios.

Table 6. Word recognition accuracy (%) comparison with the baseline Transformer-decoder-based
models. FT: fine-tuning on real data. Size: parameters in millions. Tr. Dec.: Transformer decoder. M:
the proposed method. Bold: highest.

(a) Methods trained on synthetic training data (S).

Method Size IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + Tr. Dec. 26.1 93.7 88.9 92.4 80.0 80.6 86.8 88.3
DeiT-M + Tr. Dec. 46.2 94.1 89.6 92.6 81.5 82.8 83.6 89.0
DeiT-B + Tr. Dec. 103.4 94.8 90.3 92.9 81.0 85.1 87.5 89.6
CaiT-S + Tr. Dec. 50.9 94.9 90.3 94.2 81.3 83.4 89.9 89.9

DeiT-S + M (Ours) 21.6 91.4 85.5 91.3 75.3 76.7 82.2 85.3
DeiT-M + M (Ours) 38.9 92.5 87.8 92.2 76.6 79.5 81.9 86.6
DeiT-B + M (Ours) 85.7 93.0 86.9 92.2 78.6 79.1 84.0 87.3
CaiT-S + M (Ours) 46.5 93.5 86.9 91.9 77.6 77.8 85.4 87.2

(b) Methods trained on real labeled training data (R).

Method Size IIIT SVT IC13 IC15 SVTP CUTE Total

DeiT-S + Tr. Dec. + FT 26.1 96.8 93.0 96.7 86.3 87.8 94.8 93.0
DeiT-M + Tr. Dec. + FT 46.2 97.0 94.0 97.1 86.3 89.3 95.1 93.4
DeiT-B + Tr. Dec. + FT 103.4 98.0 94.6 97.5 86.9 90.5 95.1 94.2
CaiT-S + Tr. Dec. + FT 50.9 97.4 94.9 97.1 86.5 89.5 95.8 93.7

DeiT-S + M + FT (Ours) 21.6 94.6 89.2 95.4 81.5 83.1 91.3 89.9
DeiT-M + M + FT (Ours) 38.9 95.0 92.3 95.2 83.5 84.0 90.9 90.9
DeiT-B + M + FT (Ours) 85.7 95.9 92.6 96.1 84.4 84.3 92.7 91.7
CaiT-S + M + FT (Ours) 46.5 96.1 90.6 95.4 84.9 85.4 92.7 91.7
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Table 7. Maximum inference time comparison. Bold: highest. FA: feature averaging. M: the proposed
method. Tr. Dec.: Transformer decoder.

Method GFLOPs Time (ms)

DeiT-S + Tr. Dec. 4.9 142
DeiT-M + Tr. Dec. 8.5 146
DeiT-B + Tr. Dec. 18.7 183
CaiT-S + Tr. Dec. 9.6 164

DeiT-S + FA 4.6 17
DeiT-M + FA 8.0 17
DeiT-B + FA 17.5 20
CaiT-S + FA 9.4 38

DeiT-S + M (Ours) 4.6 14
DeiT-M + M (Ours) 8.0 14
DeiT-B + M (Ours) 17.5 15
CaiT-S + M (Ours) 9.4 36

Considering both latency and recognition accuracy, Figure 9 summarizes the trade-off
between a CTC decoder and a Transformer decoder using different ViT backbones. With the
same ViT backbone, the CTC decoder outperforms the Transformer decoder significantly
in terms of efficiency, with a speed advantage of up to 12 times. However, this speed gain
is countered by a maximum reduction in overall word recognition accuracy of 3.1%.

(a) DeiT-S (b) DeiT-M

(c) DeiT-B (d) CaiT-S
Figure 8. Inference time comparison between our ViT-CTC models and the Transformer-decoder-
based models on an RTX 2060 GPU. Trendlines are projected to the maximum number of characters
(i.e., 25) [1]. Tr. Dec.: Transformer decoder. CTC-M: CTC decoder with the proposed method. CTC-FA:
CTC decoder with feature averaging. Best viewed in color.
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Figure 9. Maximum inference time vs. recognition accuracy comparisons between the ViT-CTC
models using the proposed method and the Transformer-decoder-based models on an RTX 2060 GPU.
Tr. Dec.: Transformer decoder. Best viewed in color.

3.5. Qualitative Evaluation of Association Map

Until now, we have examined our ViT-CTC models’ recognition performance and
efficiency in comparison to the CTC and Transformer-decoder-based models. This section
shifts focus to the significance of the association map, denoted as AM, which is a key output
of our proposed method. The detailed derivation of the AM can be found in Section 2.1.3.
Utilizing an AM enables the establishment of explainable 2D spatial relationships between
the model’s predictions and relevant image regions. This spatial link is crucial for under-
standing the model’s predictions and localization. The AM generated by our proposed
method corresponds to the cross-attention map formed by the cross-attention module
within the Transformer decoder. This module selectively incorporates relevant features for
adaptive character predictions.

Figure 10 displays the association maps corresponding to different α values for two
examples where text from the top intrudes. Instead of ‘1932’ and ‘COLLEGE’, the ground-
truth words are ‘ATHLETIC’ and ‘LONDON’. The ViT-CTC model accurately predicts
both words. Examination of the association maps reveals the model accurately linking
the correctly predicted characters with the relevant lower regions containing ‘ATHLETIC’
and ‘LONDON’, as opposed to upper regions with ‘1932’ and ‘COLLEGE’. Thus, as-
sociation maps not only explain the model’s predictions but also offer localization for
those predictions.

As α increases, the association maps maintain high probability regions while dis-
carding those below α, as seen in Figure 10d. Compared with the Transformer decoder’s
cross-attention maps in Figure 10e, overall alignments are observed. These alignments
validate the accuracy and reliability of the association maps from our proposed method
that does not reply on a computationally-intensive cross-attention mechanism

(a) Input (b) α = 0.80 (c) α = 0.90 (d) α = 0.99 (e) Cross-attention

Figure 10. Association maps for different values of α. The color bars show image regions, correspond-
ing to predicted characters. Best viewed in color.



J. Imaging 2023, 9, 248 16 of 20

3.6. Quantitative Evaluation of Association Maps

In this section, we quantitatively evaluate our ViT-CTC models’ association map and
the Transformer-decoder-based models’ cross-attention map. Employing Equation (6)
for the association map and Equation (9) for the cross-attention map, we calculate align-
ment evaluation metrics (AEMs) using Equation (8). This was performed using different
threshold values α and β, respectively, on the synthetic dataset with character-level an-
notations, as detailed in Section 2.2.3. To ensure fairness, only image samples correctly
recognized by both our ViT-CTC and the Transformer-decoder-based models were included
in the evaluation.

Figure 11 depicts that the average alignment evaluation metric (AEM) of the cross-
attention map remains stable across different β values, showing good alignment accuracy
with the ground-truth character locations. In contrast, the average AEM of the association
map exhibits slight sensitivity to α, particularly at higher values. For α ≤ 0.95, the average
AEM of the association map remains above 98% accuracy, signifying strong alignment
between the estimated and ground-truth character locations. Thus, the association map
is comparable to the cross-attention map in localizing the predicted characters, while the
former has a significantly lower computational demand.

Figure 12 compares the estimated character locations from the association and cross-
attention maps with the ground-truth bounding boxes in a few highly curved text images.
Both methods’ estimated character locations closely align with the ground-truth positions.

Figure 11. The average AEMs of the association and cross-attention maps as a function of α and β,
respectively. Best viewed in color.

(a) Input (b) Association Map
(c) Cross-

Attention Map
Figure 12. Illustrations of the estimated character locations from the association (α = 0.8) and
cross-attention (β = 0.5) maps vs. the ground-truth character locations. Best viewed in color.
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4. Limitations and Future Work

Since a CTC decoder is many to one, the pretrained ViT backbone must produce 2D
feature maps, the width of which must be greater than or equal to the length of text in an
input image. For a ViT-CTC backbone that takes an input image of 224 × 224 pixels and
returns 14 × 14 feature maps, it can predict at most 14 characters. Moreover, due to its
reliance on left-to-right alignments, a CTC decoder is unable to recognize vertical or highly
oriented text images.

Furthermore, due to the sizable receptive field of 16 × 16 pixels in the pretrained
ViT backbones employed in this research, the character locations they generate exhibit
low resolution.

Thus, future experiments will consider other pretrained ViT or hybrid CNN-Transformer
backbones that output dense feature maps, increasing the number of predicted characters
and enhancing the resolution of the resulting association map. We will also explore two
potential applications of the association maps. Firstly, the association map can guide a
Transformer decoder to counter attention drift in long textline images. Secondly, estimated
character locations can aid text rectification for highly curved text images.

5. Conclusions

In this paper, we propose a marginalization-based method that enables a 2D feature
extractor with a 1D CTC decoder by predicting an output sequence of 2D joint probability
distributions over the height and class dimensions. The height dimension is marginalized
to suit a 1D CTC decoder. In addition, the proposed method yields an association map that
can be used to determine character locations and explain model predictions.

The experimental results show that our ViT-CTC models outperform the recent CTC-
based SOTA methods on the public benchmark datasets in terms of recognition accuracy.
Compared with a Transformer-decoder-based model, a ViT-CTC model has a maximum
reduction in total word recognition accuracy of 3.1%, regardless of the ViT backbone.
However, a ViT-CTC model exhibits a substantial speed improvement, surpassing a
Transformer-decoder-based model by up to 12 times. Both the qualitative and quanti-
tative evaluations of the character locations estimated from the association map closely
correspond with those estimated using the cross-attention map and the ground-truth
character-level bounding boxes.
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