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Abstract: The noise statistics of real-world camera images are challenging for any denoising algorithm.
Here, I describe a modified version of a bionic algorithm that improves the quality of real-word
noisy camera images from a publicly available image dataset. In the first step, an adaptive local
averaging filter was executed for each pixel to remove moderate sensor noise while preserving fine
image details and object contours. In the second step, image sharpness was enhanced by means of
an unsharp mask filter to generate output images that are close to ground-truth images (multiple
averages of static camera images). The performance of this denoising algorithm was compared with
five popular denoising methods: bm3d, wavelet, non-local means (NL-means), total variation (TV)
denoising and bilateral filter. Results show that the two-step filter had a performance that was similar
to NL-means and TV filtering. Bm3d had the best denoising performance but sometimes led to blurry
images. This novel two-step filter only depends on a single parameter that can be obtained from
global image statistics. To reduce computation time, denoising was restricted to the Y channel of
YUV-transformed images and four image segments were simultaneously processed in parallel on a
multi-core processor.

Keywords: night vision; real-world camera pictures; noise reduction; multi-core denoising; image
enhancement; image processing; local means calculation

1. Introduction

The astonishing visual abilities of some insect species observable under extremely dim
light conditions have attracted the attention of researchers for many years [1–3]. Nocturnal
insects need to cope with the degradation of visual information arising from shot noise
and transducer noise. Filtering in the spatial and temporal domains has been realized in
denoising algorithms developed for removing noise from movies that were recorded under
dim light conditions (e.g., [4,5]). The elimination of noise from static images is an even more
difficult task because the temporal domain is not available for filtering. Currently, it is still
challenging to remove noise from real-world camera images while avoiding artifacts and
preserving object contours and image sharpness. The problem is that the noise statistics of
camera images are very different from the Gaussian noise or salt-and-pepper noise often
added to images to demonstrate the performance of denoising methods. The bionic night
vision algorithm proposed by Hartbauer [6] was originally developed to remove noise
from dim light images, but needs to be modified to become applicable to real-world noisy
images exhibiting lower noise levels in three color channels. Here, I describe the modified
version of this bionic spatial-domain-denoising algorithm and applied it to a real-world
image dataset.

Images taken with a CCD or CMOS camera under various light conditions often
suffer from imperfections and sensor noise. In recent decades, the statistical property of
real-world noise has been studied for CCD and CMOS image sensors [7–10]. Real-world
noise has five major sources, including photon shot noise, fixed pattern noise, dark current,
readout noise, and quantization noise (for further detail, see [11]). Therefore, the denoising
of real-world images is still a challenging problem [10] and image databases containing
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noisy and noise-reduced camera images of the same scenes are needed. Xu et al., 2018 [11],
computed the mean image from static scenes to obtain the “ground truth” image for real-
world noisy camera images. Sampling the same pixel many times and computing the
average value (e.g., 500 times) will approximate the truth pixel value and significantly
remove image noise. The resulting image dataset was made available to the public (https:
//github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset, accessed on 1 March
2023) and contains 40 different scenes captured using five cameras from the three leading
camera manufactures: Canon EOS (5D Mark II, 80D, 600D); Nikon (D800); and Sony (A7 II).
This image dataset consists of 100 images and was used in this study to test the performance
of a modified version of the bionic night vision algorithm described by [6].

Typically, noise reduction can be achieved by applying linear and non-linear filters
(for a review of methods, see [12,13]). Linear smoothing, or median filtering, can reduce
noise, but at the same time smooth out edges, resulting in a blurred image. An alternative
and improved denoising method is total variation minimization (TV) denoising, which
has been described by [14]. The objective is the minimization of the total variation within
an image, a concept that can be approximately characterized as the integral of the image
gradient’s norm. Non-local means (NL-means) filtering represents an influential denoising
filter technique that concurrently preserves image acuity and object contour fidelity [15].
Furthermore, bilateral filtering constitutes a robust non-linear denoising algorithm rooted
in the consideration of spatial proximities among neighboring pixels alongside their ra-
diometric congruence [16]. While bilateral filtering offers computational expediency, it
poses challenges in the intricate calibration of its filter parameters [17], and it is recog-
nized that this algorithm may yield artifacts such as staircase effects and inverse contours.
Alternatively, image denoising can be accomplished through Fourier transformation of
the original image, wherein Fourier-transformed images undergo filtration and subse-
quent inverse transformation, thereby mitigating noise and averting undesirable blurring
phenomena (e.g., [18,19]). Frequency-domain methods are hindered by their propensity
to introduce multiple undesirable artifacts and their inability to uniformly enhance all
image components. In contrast, wavelet-domain hidden Markov models have exhibited
intriguing outcomes in the context of image denoising, particularly when employed on
diagnostic images [20–22]. In recent times, deep learning artificial neural networks (ANNs)
have been employed for image denoising [23,24]. However, when contrasted with more
straightforward denoising algorithms, the outcomes generated by ANN networks exhibit
reduced predictability.

Recently, powerful algorithms have been developed for the denoising of real-world
camera images to overcome the problem of different noise levels in the three color channels
of color images [25] and the fact that noise is signal-dependent and has different levels in
different local patches [11]. In the latter study, the authors proposed an algorithm that is
based on the trilateral weighted sparse coding (TWSC) scheme of real-world color images.
In contrast to denoising all color channels of RGB images with different levels of noise,
denoising was only applied to the Y channel of YUV-transformed images in this study and
a single hard threshold was used for an adaptive local averaging procedure [6] to enhance
the quality of real-world noisy images with complex noise statistics. This simple algorithm
was executed in parallel on a multi-core processor and the results were compared with four
common denoising algorithms.

2. Bionic Method of Image Denoising
2.1. Method Overview

The presented image denoising approach enhances the quality of real-world pho-
tographs captured with cameras through the combination of two consecutive image pro-
cessing stages. The initial stage involves pixel-level denoising, emulating the spatial
information integration observed in nocturnal insects [1,2] and the second stage enhances
image sharpness. The necessity for the second stage arises due to the advantageous im-
provement in signal-to-noise ratio achieved by aggregating visual information from a wide
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field of view, albeit at the potential cost of degrading image sharpness. To mitigate potential
blurriness, it is necessary to adapt the extent of spatial summation, with smaller summation
applied in regions of high contrast and larger summation in regions of greater image
uniformity. This adaptive local averaging (ALA) represents the primary processing step in
the algorithm, preserving object contours to a significant extent while introducing a slight
reduction in image sharpness [6]. ALA operates under the assumption that luminance val-
ues exhibit higher variability near object contours compared to homogeneous image areas.
Consequently, areas allowing local luminance value averaging are smaller in proximity to
object contours and larger in regions with higher image uniformity. ALA is executed at the
pixel level, employing a stringent threshold to assess the local gray value variability and
identify the size of a quadratic region within which gray value variability remains below a
predefined threshold, derived from global image statistics. Upon surpassing this threshold,
the algorithm calculates the average luminance value for pixels within this region and
stores it at the central pixel. Subsequently, in the second processing stage, an automatic
procedure for enhancing image sharpness is applied using unsharp masking. The image-
enhancement algorithm described here was programmed in Python (Version 3.8.3) and
allows the execution of commands at the level of pixels using the openCV and PIL image
libraries.

2.2. Import Pictures

Real noisy images were imported into Python using the command cv2.imread() from
the openCV image library. RGB images were converted into the YUV color scheme to
isolate the brightness channel (Y) for image denoising. After denoising the Y channel, it
was added to the original UV channels and the denoised image was converted back into
the RGB color scheme.

2.3. Image Statistics

The ALA denoising algorithm only depends on a single parameter that defines a
variability threshold for local averaging. This threshold (Th) parameter was derived from
the global image statistics of the Y channel of the YUV color scheme after employing
Equation (1). In this equation, the median gray value (µ) of an image was divided by 60 and
sigma (σ) was used to estimate the noise from the absolute of the Laplacian transformed
Y channel. The Laplacian of an image is the 2-D isotropic measure of the 2nd spatial
derivative of an image and highlights regions of rapid intensity change.

Th = (σ× 2) +
µ

60
(1)

2.3.1. Image Processing Step 1: Adaptive Local Averaging (ALA)

Image noise was widely removed by means of a patented “adaptive local averaging”
ALA procedure (PCT/EP2017/083061; international patent: WO 2018/122008) that was
executed for every luminance value of the Y channel. This denoising method only depends
on a single parameter (Th) and can be run in parallel on a multi-core processor. This
denoising method evaluates the variability in the pixel brightness values in expanding
quadratic patches of the image until reaching the pre-defined variability threshold Th. Then,
the gray value of the focal pixel is defined as the average brightness of pixels belonging
to this region. The minimum length of the expanding patch was 2 and its maximum was
restricted to 40 pixels.

ALA was executed in parallel using all four processors of a Dell™ computer (Łódź, Poland)
equipped with an Intel® Core™ i7-9700 CPU (Intel, Santa Clara, CA, USA). For this purpose,
the Y channel was divided into four segments of the same size. In order to process the
four image segments in parallel on the CPU, the multiprocessing. Pool as well as the
pool.starmap functions were used.
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2.3.2. Image Processing Step 2: Image Sharpening

After execution of ALA, image sharpness was enhanced by means of an unsharp
mask filter to obtain output images that are close to the ground-truth images obtained via
extensive camera image averaging (see https://github.com/csjunxu/PolyU-Real-World-
Noisy-Images-Dataset, accessed on 1 March 2023). For this purpose, a Gaussian blur filter
operating with a radius of five pixels was applied to each color channel obtained after
splitting the image into separate RGB channels. Then, each color channel was mixed with
its blurred counterpart by executing Equation (2) (b = blue channel, g = green channel,
r = red channel).

b, g, rsharp = (b, g, r× 1.6)− (b, g, rsharp × 0.6) (2)

Finally, the sharpened color channels were merged into an RGB image.

2.4. Common Noise Filters Applied to the Image Dataset

For the comparison of the denoising performance of the ALA filter with other com-
monly used denoising algorithms, all images from the real-world image dataset were
denoised with bm3d (https://inria.hal.science/inria-00369582/document, accessed on
3 August 2023), bilateral (bilateral; ref. [16]), non-local means (NL-means; ref. [15]), total
variation (TV filter; ref. [26]) and wavelet transform filters (wavelet; ref. [18]). These filters
are included in the skimage.restoration Python library. The following command was used
for the bilateral noise filtering of color images: denoise_bilateral(image, sigma_color = 2.0,
sigma_spatial = 2.0, mode = ‘edge’, multichannel = True). TV filtering of color images
uses a method that was described by [26] and was executed with the following com-
mand: denoise_tv_chambolle(image, weight = 0.01, multichannel = True). The wavelet
filter was executed for color images with this python command: denoise_wavelet(image,
sigma = sigma1, wavelet = ‘db2’, mode = ‘soft’, method = ‘BayesShrink’, multichannel = True,
rescale_sigma = True). It also applies BayesShrink, which is an adaptive thresholding
method that computes separate thresholds for each wavelet sub-band [18]. However,
estimating the sigma1 parameter resulted in weak image denoising. Therefore, sigma1
was defined as 10 percent of the standard deviation of the image to improve denoising
results. In contrast to these filters, the NL-means filter (for documentation, see non-
local means denoising for preserving textures—skimage v0.20.0 docs (scikit-image.org,
accessed on 3 August 2023)) was applied only to the Y channel of YUV-transformed
images with this command: cv2.fastNlMeansDenoising(Y, destination = None, h = 5,
template_window_size = 4, search_window_size = 4). The bm3d filter was executed on
the Y channel of YUV-transformed images with the python command bm3d.bm3d(Y,
sigma_psd = 7). The parameters of all filters were manually optimized for the real-world
image dataset used in this study.

2.5. Evaluation of Denoising Performance

The performance of all denoising algorithms was evaluated by calculating the peak
signal-to-noise ratio (PSNR) between the original (noisy) image and the denoised image
(method described by [27]). All images were transformed into gray value images before
calculating PSNR values using the arithmetic mean of the gray values. The resulting value
is given in dB and indirectly quantifies the difference between the noisy input image and the
output image. PSNR is the ratio of the maximum possible pixel value in the image relative
to the mean squared error between the original and the denoised image. Equation (3) was
used to calculate the PSNR values of the input and output images after transformation of
the color images to gray value images. In this equation, µ denotes the arithmetic mean of
the squared difference between two images.

PSNR = 20× log

 255√
µ
[
(image1− image2)2

]
 (3)

https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset
https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset
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A high PSNR indicates low noise and high quality, whereas a low PSNR indicates
high noise and low quality. However, high PSNR values also indicate a high similarity
between two images, because the PSNR value is infinite for identical images. This may
lead to a problem because high PSNR values also indicate a low denoising performance
if the output image is very similar compared to the noisy input image. Therefore, visual
inspection of the denoising performance is essential and PSNR values solely computed on
output images were additionally calculated using Equation (4).

PSNR = 20× log
(

255
µ

)
(4)

In Equation (4), µ denotes the arithmetic mean of gray-value-transformed images.
According to Equation (4), PSNR values of brighter images are lower. Therefore, care was
taken to preserve the brightness of images after denoising. This was checked by comparing
the average brightness before and after denoising.

3. Image Denoising Results

Adaptive local averaging (ALA) effectively removed sensor noise from the real-world
images that were taken in various settings using five different camera models. However,
the sharpness of ALA-filtered images was slightly reduced and it was necessary to enhance
image sharpness in a second filter step (Figure 1). A visual image comparison shows that
the performance of this two-step filter is comparable to the common image denoising filters
NL-means and TV filter (for examples, see Figures 2–5). Bm3d filtering performed the
best regarding its denoising performance and in many cases preserved image sharpness.
The bilateral filtering left some noise behind in dark image regions (Figures 2 and 3) and
the wavelet filter generated disturbing artifacts at object contours in the form of staircase
effects. Therefore, the results for the wavelet filter are not shown in Figures 2–5. The
staircase artifact was completely absent in the output of the two-step image processing
filter described in this study.
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Figure 1. Example of the two-step image enhancement: (A) A segment of the real-world noisy
image ‘Canon5D2_5_160_6400_reciever_8_real’. (B) ALA-filtered image shown in (A). (C) Unsharp
mask-filtered image shown in (B). (D) Ground-truth image obtained via multiple averaging of this
static scene. Note the high similarity between (C,D).
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Figure 2. Example of the performance of different noise filters. The dark real-world noisy image
“Canon5D2_5_160_6400_reciever_4_real” was taken with a Canon camera and a segment of this
image is shown as “Noisy input”. The output of the ALA filter followed by the unsharp mask filter
(ALA) is similar to the output of NL-means and TV denoising. The bilateral filter was imperfect in
dark image regions, whereas bm3d filtering removed noise effectively.

ALA filtering of the whole real-world image dataset resulted in an average PSNR
value of 38.0 ± 3.22 dB (Equation (3)) and additional image sharpening increased this
PSNR value to 39.0 ± 2.75 dB. The average PSNR values calculated using Equation (3) were
significantly higher for the five common denoising filters compared to the two-step filter
described here (p < 0.01, N = 100, Mann–Whitney U test, see Table 1). Calculating PSNR
values from the ground-truth images and denoised images (using Equation (3)) resulted
in rather similar average PSNR values for all filters with slightly higher values for the
bm3d, NL-means and TV filter compared to the two-step filter (see Table 1). In order to
estimate the image denoising performance without comparing input and output images,
PSNR values were also computed using Equation (4). The PSNR values of the output of
the five common image denoising algorithms were very similar, but the application of
two-step image denoising resulted in a slightly higher average PSNR value of 9.25 dB (see
Table 1). However, this small difference between the PSNR values of filter variants is not
significant (p > 0.05, N = 100, Mann–Whitney U test). The brightness of the output images
was not affected by any filter applied in this study and was 96 for the whole image dataset
for gray-value-transformed images. The mean SSIM index was very similar for all filter
variants tested in this study (Table 1). Interestingly, SSIM was highest for the bilateral filter,
which was less effective in removing sensor noise from images compared to the bm3d
filtering, which showed better denoising performance. In contrast, when the ground-truth
image was compared with filter output, mean SSIM was highest for the bm3d filter (see
Table 1).

Dividing images into four segments of equal size increased the processing speed, but
at the same time resulted in line artifacts after application of the ALA filter. Therefore, an
overlap of 20 pixels (equal to the maximum radius of the ALA filter) between adjacent
image segments was necessary to enable parallel processing without generating image
artifacts in the form of horizontal and vertical lines. The average processing speed of the
two-step image denoising filter in a Python script environment (Pycharm version 2023.1
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in Anaconda Python interpreter) was 36.6 ± 18.2 s for input images with a dimension
of 512 × 512 pixels (cropped image dataset), which is about three times faster compared
to single-core computing. A possible C-code compilation of the ALA filter function will
further increase the processing speed.
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Figure 3. Example of the performance of different noise filters. The bright real-world noisy image
“Sony_4-5_125_3200_plant_13_real” was taken with a Sony camera and a segment of this image is
shown as “Noisy input”. The output of the ALA filter followed by the unsharp mask filter (ALA) is
similar to the output of bm3d, NL-means and TV denoising. In this example, bilateral filtering did
not remove noise effectively.

Table 1. Comparison of the performance of different noise filters.

NL_Means TV_filter Bilateral Wavelet Bm3d ALA+
Sharpened

Noisy vs. Denoised
PSNR (dB), Mean 43.2 43.4 43.1 40.3 40.5 39.0
PSNR, STD 1.86 1.91 0.96 3.02 1.77 2.75
SSIM, Mean 0.988 0.989 0.991 0.984 0.981 0.978
SSIM, STD 0.0057 0.0049 0.0024 0.0074 0.0086 0.0093

Ground_truth vs. Denoised
PSNR (dB), Mean 39.1 39.2 38.3 37.9 39.7 38.0
PSNR, STD 2.81 2.74 2.67 2.57 3.00 2.93
SSIM, Mean 0.987 0.987 0.983 0.981 0.990 0.984
SSIM, STD 0.0060 0.0057 0.0082 0.0078 0.0066 0.0088

Denoised image
PSNR (dB), Mean 9.19 9.19 9.19 9.19 9.24 9.25
PSNR, STD 3.83 3.83 3.83 3.83 3.85 3.85
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Figure 4. Example of the performance of different noise filters. The dark real-world noisy image
“Ni-konD800_10_100_6400_planandsofa_7_real” was taken with a Nikon camera and a segment of
this image is shown as “Noisy input”. The output of the ALA filter followed by the unsharp mask
filter (ALA) is similar to the output of NL-means and TV denoising. In this example, bilateral filtering
left some noise in dark image regions. Bm3d removed noise effectively, but the output appears
slightly blurry.
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Figure 5. Example of the performance of different noise filters. The bright real-world noisy image
“Sony_3-5_200_1600_classroom_13_real” was taken with a Sony camera and a segment of this image
is shown as “Noisy input”. The output of the ALA filter followed by the unsharp mask filter
(ALA) is similar to the output of the other noise filters in this example. All filters removed sensor
noise effectively.
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4. Discussion

The filtering results show that the combination of “adaptive local averaging” (ALA)
and image sharpening leads to high-quality output images when real-world camera images
with complex noise statistics are taken as input (see Figures 2–5). Visual inspection of the
image denoising of this two-step filter shows that this special kind of local means filter
is comparable to the performance of NL-means and TV filters. Bm3d filtering was more
effective in removing sensor noise from images compared to the two-step filter, but some
output images appeared slightly blurry (for example, Figure 4). In contrast, the bilateral
filter was often less effective in removing noise from dark image regions and the wavelet
filter generated artifacts in the form of staircase effects appearing next to object contours
(data not shown). The ALA filter was originally inspired by the neuronal summation of
adjacent photoreceptor cells of nocturnal insects, such as Megalopta genalis, where spatial
integration of image information in lamina neurons leads to denoising and enables night
vision [2]. The drawback of any local averaging filter is that output images are often blurry.
Therefore, it was necessary to enhance image sharpness by applying an unsharp mask with
a fixed radius of five pixels to obtain an image quality that was comparable to ground-truth
images (see Figure 1).

PSNR values are often computed to compare the performance of different denoising
filters. The similar PSNR values of all noise filters applied in this study (see Table 1) demon-
strate a rather high performance of the two-step filter. The significantly lower average
PSNR value of this filter, obtained by comparing the noisy input with the filtered output, is
a consequence of the high number of tested images (N = 100). Using Equation (3) for PSNR
calculation can be problematic because even weak denoising filters yield high PSNR values
when the output image is similar to the noisy input (low denoising performance). This
is also reflected in the high average SSIM value of the bilateral filter (see Table 1), which
is unlikely the result of the denoising performance of this filter because bm3d filtering as
well as all other filters removed sensor noise much more effectively (see Figures 2–5). This
problem with PSNR values also becomes obvious when comparing the SSIM values that
were calculated for the ground-truth images and the denoised output (Table 1). In this case,
the bm3d filter had the highest SSIM value, which indicates a high similarity between the
filter output and ground truth images. Wavelet denoising had the lowest SSIM value, likely
because of its staircase artifacts reducing image quality. The SSIM value obtained with
the two-step filter described in this study was similar to the SSIM output of the bm3d, TV
and NL-means filters when ground-truth images were compared with the corresponding
filtered images. This result is surprising given the simplicity of the ALA filter, which only
performs adaptive local averaging. Interestingly, using the same noisy image dataset as in
this study, various elaborated denoising algorithms resulted in slightly lower PSNR values
(maximum = 37.81 dB for the TWSC filter; ref. [11]). However, it is difficult to compare
PSNR values between studies because several equations exist for calculating PSNR values
and in this study the PSNR values were calculated after the gray value transformation of
color images. To circumvent this problem, I calculated the PSNR values using Equation (4),
which revealed a slightly higher average PSNR value for the two-step denoising compared
to the five common denoising filters.

In recent years, modern artificial neuronal network approaches have been developed
for image denoising (e.g., [23,24]). Noise-free ground-truth images are essential for ANN
training and the image dataset used in this study would offer this possibility, although the
number of images is rather small for splitting the data into training and test datasets. In a
follow-up study, the performance of the ALA filter will be compared with modern ANN-
based noise filters using bigger image libraries such as the Smartphone Image Denoising
Dataset (SIDD) consisting of 30,000 noisy images from 10 scenes.

A major benefit of the ALA filter is that it only depends on a single threshold parameter
(Th) that can be derived from global image statistics (see Equation (1)). In contrast, several
parameters need to be carefully adjusted for all other filters applied in this study. For
example, the NL-means filter adjusts a smoothing parameter and four other parameters
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(tau, alpha, beta, gamma) that affect denoising performance and image sharpness. Using
Equation (1), it was possible to calculate the Th for ALA denoising in a way that enhanced
the quality of real-world noisy images exhibiting various levels of noise and different
degrees of image brightness. To account for differences in image statistics, it was necessary
to take the median image brightness and a kind of noise estimate into account for the
calculation of the Th parameter for ALA denoising (see Equation (1)).

The ALA denoising described in this study is computationally demanding because
the pixel-wise calculation of the diameter restricts local averaging to a small image region.
To increase the processing speed, denoising was only performed on the brightness channel
of YUV-transformed images. This saved 2/3 of the processing time compared to denoising
all color channels of RGB images with different noise statistics that need to be taken into
account for high-quality image denoising [28]. Another method of enhancing the process-
ing speed was achieved by splitting input images into four equal segments for multi-core
parallel processing. In this study, parallel processing improved the computation speed
almost three times and depended on the number of processors that were simultaneously
available. Nevertheless, none of these methods are sufficient to compute large images in
a short period of time because the computation demand increases with image size in a
non-linear way. For practical purposes, it will be necessary to compile the ALA algorithm
as C-code to enhance the processing speed on standard computer hardware. Theoretically,
it would also be possible to enhance the processing speed by running ALA on a multi-
processor environment supported by modern computation clusters. Another solution
constitutes fast computer graphics hardware (GPU) or FPGA (field-programmable gateway
arrays) hardware. In the latter case, processing speed increases due to the parallel architec-
ture of FPGA boards [27,29]. Simple algorithms, like the ALA filter, can be implemented
in reconfigurable FPGA hardware [30], which is considered a practical way to obtain
high computing performance (Xilinx Inc. System Generator for Digital Signal Processing;
http://www.xilinx.com/tools/dsp.htm, accessed on 3 August 2023). Recently, image
denoising based on the ALA filter was successfully implemented on a Trenz Electronic
FPGA hardware platform for denoising high-resolution 16-Bit mammography images (the
prototype is shown in Figure 6). This hardware enables parallel execution of ALA image
denoising on many image segments at the same time.
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5. Conclusions

ALA image denoising relies on a single threshold parameter and operates in the spatial
domain to successfully remove sensor noise from real-world camera images exhibiting
various noise and brightness levels. In combination with an image-sharpening filter, this
two-step image denoising method enhanced the quality of real-world images that were
taken with different camera models in various light conditions. Compared to all other
filters applied in this study, only one threshold parameter is required for effective noise
removal using the ALA filter. The calculation of this threshold parameter only takes image
brightness and an estimate of image noise into account. The denoising performance of
this two-step filter is comparable to NL-means and TV denoising after visual inspection
of filtered images. Compared to bm3d filtering, the two-step filter removed noise less
effectively, but conserved image sharpness better. This led to similar SSIM values for both
filters when ground-truth images were compared with denoised ones. In conclusion, the
two-step filter exhibited good denoising performance on noisy real-world camera images,
but did not perform better than more mathematically complex noise filters. ALA denoising
was executed on a multi-core processor on the Y channel of YUV-transformed images,
which reduced the computation time and simplified the noise estimation. This rather
simple denoising algorithm also runs on FPGA hardware, which allows image processing
to be executed in parallel at the level of adjacent pixels.
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