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Abstract: This study aims to address the limitations of traditional Failure Mode and Effect Analysis
(FMEA) in managing safety and reliability within complex systems characterized by interdependent
critical factors. We propose an integrated framework that combines FMEA with the strategic decision-
making principles of Game Theory, thereby enhancing the assessment and mitigation of risks in
intricate environments. The novel inclusion of the Best Worst Method (BWM) and Pythagorean fuzzy
uncertain linguistic variables refines the accuracy of risk evaluation by overcoming the inherent
deficiencies of conventional FMEA approaches. Through sensitivity analysis, the framework’s efficacy
in identifying and prioritizing failure modes is empirically validated, guiding the development of
targeted interventions. The practical application of our methodology is demonstrated in a compre-
hensive healthcare system analysis, showcasing its versatility and significant potential to improve
operational safety and reliability across various sectors. This research is particularly beneficial for
systems engineers, risk managers, and decision-makers seeking to fortify complex systems against
failures and their effects.

Keywords: best worst method; uncertain linguistic variables; zero-sum game; system safety; system
reliability; risk management; complex systems; heath care system

1. Introduction

Integrating risk assessment tools within complex healthcare systems is paramount
in ensuring the safety and quality of stakeholders’ care, well-being, and the overall ef-
ficiency of healthcare delivery. Healthcare, by its very nature, is a complex ecosystem
where myriad factors, both clinical and non-clinical, interact, making it susceptible to
various forms of risk. These risks can manifest as medical errors, patient safety incidents,
financial challenges, regulatory non-compliance, and even public health crises, such as
viral respiratory illness [1].

The importance of risk assessment in healthcare lies in its ability to proactively identify,
evaluate, and mitigate potential risks, thereby preventing adverse events, optimizing
resource allocation, and improving the overall performance of healthcare organizations [2].
A practical risk assessment framework not only enhances patient safety but also safeguards
the reputation of healthcare institutions, reduces financial losses, and ensures compliance
with regulatory requirements [3,4].

In recent years, healthcare systems have faced unprecedented challenges, most notably
with the emergence of the pandemic. This global crisis underscored the critical need for
robust risk assessment and management practices within healthcare. The pandemic’s rapid
spread, overwhelming healthcare facilities, and straining of medical resources highlighted
the imperative of proactive risk assessment to prepare for and respond to unforeseen
events. The importance of risk assessment in healthcare cannot be overstated. It serves as
a systematic approach to identifying, evaluating, and addressing potential hazards that
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could compromise patient care, facility functionality, or service integrity. By proactively
identifying these threats, healthcare organizations can prevent adverse events, optimize
resource allocation, safeguard their reputation, reduce financial losses, and ensure regula-
tory compliance. A robust risk assessment framework not only enhances patient safety but
also instills trust among patients, staff, and the broader community. One notable example
is the 2017 cyberattack on the UK’s National Health Service (NHS) using the WannaCry
ransomware. This attack affected over 200,000 computers worldwide, crippling hospital
systems, delaying surgeries, and causing massive disruptions in patient care. Institutions
that had comprehensive risk assessments concerning cybersecurity were better prepared
to fend off or mitigate the effects of the attack. Those without such precautions suffered
from prolonged system outages and data breaches. This incident highlighted the critical
importance of risk assessment in areas beyond just direct patient care, emphasizing its role
in safeguarding essential healthcare infrastructure and sensitive patient data.

Moreover, healthcare systems today increasingly recognize the importance of adopting
a holistic and data-driven approach to risk assessment. This approach considers clinical
factors, patient demographics, emerging infectious diseases, supply chain vulnerabilities,
and even socioeconomic determinants of health. Integrating advanced analytics, artificial
intelligence, and predictive modelling techniques into risk assessment processes enables
healthcare organizations to identify potential threats more accurately and in real-time.
This comprehensive integration of risk assessment in healthcare is not merely a reactive
measure but a proactive strategy for safeguarding the well-being of patients, healthcare
workers, and the broader community. It also contributes to cost containment, resource
optimization, and the sustainability of healthcare systems in an era of evolving challenges
and uncertainties.

Different techniques can be applied to determine the risk priorities associated with haz-
ards in a particular system. Among the most notable are what-if analysis, checklists, hazard
and operability study (HAZOP) [5,6], failure mode and effect analysis (FMEA) [7–9], fault
tree analysis [10–14], and the risk matrix [15,16]. Each of these methods offers invaluable
insights, especially when assessing hazards in specialized sectors like healthcare units.

The foundation of effective risk management is the comprehensive identification of
potential hazards, which can span from accidents, near misses, incidents, occupational
illnesses, to environmental implications. The subsequent assessment typically involves a
combination of qualitative [17] and quantitative evaluations. Qualitatively, hazards are
evaluated based on factors such as potential severity and likelihood. On the other hand, the
quantitative method utilizes numerical data and statistical analyses to assign exact values
to these identified hazards.

Two pivotal elements in risk assessment are likelihood and severity. The former
quantifies the chances of a hazard materializing, while the latter gauges its potential
impact if it does [15]. After establishing these parameters, a comprehensive risk profile is
developed. This profile, built on both qualitative and quantitative assessments, provides a
holistic view of the overall risk, allowing stakeholders to grasp the complete nature and
magnitude of the threat.

Equipped with a well-defined risk profile, necessary interventions can be determined.
The goal is to reduce the identified risk to an acceptable level within the context of the
system in question. Potential interventions might include process modifications, procedu-
ral enhancements, resource allocations, or the establishment of safety measures [18–24].
Ultimately, the aim is to ensure the system’s safety, protect individuals, and minimize
environmental impacts, leading to a more effective and holistic risk management approach.

The conventional FMEA is a widely accepted proactive risk management method,
which is commonly used to identify the failure modes of a complex system [25–34]. Tra-
ditional FMEA techniques employ a structured approach to assess the risks associated
with failure modes within a system. This assessment revolves around three fundamental
risk factors: Severity, Occurrence, and Detection, each of which is assigned a numerical
score ranging from 1 to 10. In this scale, a score of 1 signifies the least significant impact
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or occurrence likelihood, while a score of 10 represents the highest level of importance
concerning these risk factors. The calculation of the Risk Priority Number (RPN) constitutes
a pivotal step in this process. It involves multiplying the individual risk factor scores asso-
ciated with each failure mode. The resultant RPN serves as a quantitative indicator of the
overall risk associated with that particular failure mode. These RPN values are then used
to prioritize the failure modes in a descending order, with those bearing the highest RPNs
demanding immediate attention and intervention actions. This systematic approach en-
ables practitioners to pinpoint the most critical failure modes, allowing for the allocation of
resources and efforts to mitigate the highest-risk areas first. It forms the basis for informed
decision-making in risk management, ensuring that interventions are directed towards the
areas of greatest concern to enhance system reliability and safety effectively [35–41].

Nonetheless, the conventional FMEA method is marred by a multitude of limitations,
as scholars have astutely noted, prompting proposed enhancements to address these defi-
ciencies: (A) Equal Weighting Assumption: Traditional FMEA assigns equal importance
weights to Severity, Occurrence, and Detection [25,42], which may not accurately reflect
the true significance of these factors. (B) Limited Consideration in Risk Priority Numbers:
The conventional approach calculates risk priority numbers based solely on Severity, Oc-
currence, and Detection [37], overlooking other pertinent aspects of risk assessment. (C)
Identical Risk Priority Numbers for Different Combinations: Different combinations of
Severity, Occurrence, and Detection can yield the same risk priority number, leading to
ambiguity. (D) Lack of Clarity in Computation: Some instances lack sufficient information
to effectively judge the computation of risk priority numbers [43–45], adding uncertainty
to the risk assessment process. (E) Interdependencies in Intervention Actions: In certain
systems, failure modes may be intricately linked, making it challenging to assign interven-
tion actions independently. (F) Static Assessment: Conventional FMEA, akin to many risk
management methods, tends to evaluate system risk statically and often disregards the
temporal dimension within the system profile [46–51], missing dynamic aspects. For an
in-depth exploration of these limitations, a comprehensive review is available in [52]. These
recognized shortcomings underscore the need for innovative methodologies that transcend
these constraints and provide a more robust approach to risk assessment and management.

Classical FMEA, along with its various extensions, has been employed in healthcare
to evaluate potential risks [15]. Healthcare systems comprise diverse organizations, institu-
tions, and resources, all dedicated to facilitating health actions [53]. Such a health action is
characterized as a concerted effort made through healthcare services, be it personal, public,
or inter-sectoral, with the primary goal being the enhancement of health systems [54,55].

Healthcare systems have encountered a myriad of evolving challenges in recent years,
including the emergence of new diseases and shifting disease patterns, a shortage of
advanced medical knowledge, and the rapid evolution of medical technologies. These
challenges have resulted in a steady rise in both healthcare costs and fatalities. In response
to these escalating challenges, implementing FMEA techniques, with a focus on their
rapid preventive capabilities, becomes imperative for averting failures across diverse
healthcare systems [52].

The objectives of this research are twofold. Firstly, we endeavor to redefine the
application of FMEA by infusing it with the strategic principles of Game Theory. By
doing so, we aim to address the problem of prioritizing failure modes more effectively
than current methodologies allow. This tailored approach is expected to offer a novel risk
evaluation and management perspective. Secondly, we introduce a cutting-edge method
that employs Pythagorean fuzzy uncertain linguistic variables in the computation of risk
factors, aiming to refine the precision and effectiveness of risk assessments.

To delineate how our contributions stand apart from existing studies, we articulate
the research questions this paper seeks to answer: How can integrating Game Theory
into FMEA enhance the prioritization of failure modes within healthcare systems? Ad-
ditionally, how does applying Pythagorean fuzzy uncertain linguistic variables improve
the quantification of risk factors? These queries arise from recognized gaps in current
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risk assessment practices, particularly their inability to manage complex and uncertain
healthcare environments adeptly.

The study concludes with a set of hypotheses that posits the superior performance of
our proposed methodologies in risk assessment over traditional methods. It also outlines
our scientific contributions to the field, which include a more systematic approach to
decision-making in healthcare risk management and the potential for these methods to be
applied to other domains requiring fine risk assessment. By explicitly addressing these
research questions and hypotheses, our work endeavors to provide a more straightforward
and more impactful addition to the body of knowledge in healthcare risk management.

The remainder of this article unfolds as follows: Section 2 conducts a comprehensive
literature review on Game Theory, elucidating fundamental definitions and introducing
various classes of game strategies. In Section 3, we introduce a hybrid model with a
primary emphasis on Game Theory. Section 4 studies a real-world application, examining
a healthcare unit in a hospital operating under the emergent conditions. Section 5 offers
validation for the proposed approach, while Section 6 undertakes sensitivity analysis to
assess the consistency and robustness of the hybrid model. Finally, Section 7 provides
a conclusion, addressing the challenges encountered in the present study and outlining
potential avenues for future research.

2. Comprehensive Review of Game Theory in the Literature
2.1. The Concept of Game Theory

In exploring Game Theory within this study, we explore several foundational concepts
elucidated in reference [56]. A game is an interactive model encompassing two or more
groups participating in strategic interactions. Within these games, the entities known as
players take on the role of decision-makers, each representing various entities ranging from
individuals to groups or even abstract concepts. The state of the game is defined as the
collection of all conceivable conditions under which the players engage, setting the stage
for their strategic interplay.

Players are faced with a selection of actions, each representing the possible decisions
or moves available to them within the various states of the game. These actions lead to
outcomes that are quantified in terms of payoffs—a numerical value assigned to the results
of the players’ actions, indicative of the gains or losses accrued as the game progresses.
Strategies then emerge as comprehensive plans of action tailored to the players’ objectives
and the circumstances they face within the game.

A pivotal concept in Game Theory is that of equilibrium, where players, recognizing
their interdependence, see no benefit in unilaterally changing their strategy as it could
potentially lead to a less favorable payoff.

In sum, these concepts are the building blocks of Game Theory, providing a framework
to model and analyze strategic interactions within complex systems. The section concludes
that understanding these strategic frameworks is crucial not only for theoretical purposes
but also for practical applications where decision-making processes are influenced by the
actions and reactions of various stakeholders within a system. The equilibrium concept, in
particular, serves as a cornerstone for predicting behaviors and outcomes, thereby informing
the development of strategies in diverse fields ranging from economics to political science.

2.2. Introducing the Different Classes of Strategies

In Game Theory, two types of strategies are employed: pure and mixed strategies [57,58].
Pure Strategy: In this approach, players make definitive decisions for every possible

game state. Each player’s strategy consists of a set of pure tactics, and all participating
players aim to optimize their strategies. The game score remains equal for all players
in this case. Numerous studies have leveraged pure strategies within the area of Game
Theory [59–62].

Mixed Strategy: A mixed strategy involves a probabilistic blend of pure strategies and
finds applications in various studies across different domains [63]. In this approach, a
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player randomly selects a pure strategy, and players have the flexibility to employ multiple
mixed strategies, even if they have a limited set of pure strategies. It is important to
note that, in a specific scenario, a pure strategy aligns with a mixed strategy when the
probability of choosing a specific pure strategy equals 1, with the probability of selecting
other strategies set at 0. Additionally, players can opt for either mixed or pure strategies
depending on whether they face deterministic or probabilistic situations, respectively.

2.3. Nash Equilibrium

A ‘Nash Equilibrium,’ in essence, represents a situation in which none of the partici-
pants have an incentive to deviate from their chosen strategies, even in the absence of any
formal rules or enforcement. To illustrate, consider two players, Alice and Bob, each select-
ing strategies X and Y, respectively. In this context, (X, Y) is termed a ‘Nash Equilibrium’ if,
when Alice has no alternative strategies, sticking with X maximizes her payoff in response
to Bob’s choice of Y. Likewise, Bob, in the absence of alternative strategies, finds Y to be the
optimal choice for maximizing his payoff in response to Alice’s selection.

Building on the foundational principles of Game Theory as applied to our initial
two-player game with Alice and Bob, we extend the scenario by introducing two more
players—Carol and David—thereby transforming the dynamic into a more complex four-
player match. In this expanded setting, the strategy profiles (X, Y, Z1, Z2) represent the
decisions made by Alice, Bob, Carol, and David, respectively. In this context, a ‘Nash
Equilibrium’ is a strategic configuration where no player can unilaterally improve their
outcome by choosing a different strategy, given the methods chosen by all other players.

Here, X stands for the optimal strategic decision for Alice, premised on the assumption
that Bob, Carol, and David are adopting strategies Y, Z1, and Z2, respectively. Similarly,
Y is Bob’s optimal response when Alice chooses X and Carol and David adhere to Z1 and
Z2. The variables Z1 and Z2 are particularly noteworthy as they represent the best response
strategies for Carol and David, respectively. Z1 is Carol’s best response to the combination
of strategy (X, Y, Z2), while Z2 is David’s best response to the strategy (X, Y, Z1).

By explaining the role of Z1 and Z2, we clarify their function within the Nash Equilib-
rium concept. These variables account for the additional layers of complexity introduced
by more than two players in the game. Including Carol and David in the game matrix
necessitates a recalibration of strategies for all players, ensuring that the equilibrium encap-
sulates the best possible strategy for each player in response to the others. This equilibrium,
therefore, is a delicate balance where each player, considering the strategies of all others,
concludes that they are better off sticking to their current strategy rather than changing
course. This interplay of strategic decisions lies at the heart of Nash Equilibrium in a
multiplayer game context.

In contemporary terms, the concept of ‘Nash Equilibrium’ is precisely defined with
regard to mixed strategies, wherein participating players opt for a ‘probability distribution
over possible pure strategies’ [64,65]. The notion of a ‘mixed-strategy equilibrium’ was
originally introduced by John von Neumann and Oskar Morgenstern in their seminal
1944 work [66]. They demonstrated that a ‘mixed-strategy Nash Equilibrium’ exists in
all possible zero-sum games featuring a finite set of actions [67]. A zero-sum game, in
theoretical terms, can be described as follows: one player’s gain is balanced against the
other player’s loss, resulting in a total payoff summing to zero. Furthermore, cooperation
between these two players is absent [68–72]. The mathematical representation of the ‘Nash
Equilibrium’ concerning a zero-sum game is subsequently presented in Section 3.3 through
definitions 8 and 9.

2.4. Game Classification

Game classification is based on several properties in Game Theory [56]. Considering
the nature of the decision-making problem, the proper class of game is required to be
selected to solve a problem. In general, the games can be categorized into three classes.
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These three classes are (i) Static/Dynamic Games, (ii) zero-sum or non-zero-sum Games,
and (iii) Cooperative/non-cooperative Games.

2.4.1. Static/Dynamic Games

In a static game, players make decisions without knowledge of the choices made
by other players, meaning that all players make their decisions simultaneously in the
static game [73]. Authors in previous studies [74–76] have employed static games in their
research. Conversely, in a dynamic game, players can take into account the decisions made
by others when making their own choices, implying that all players do not necessarily
make decisions simultaneously in dynamic games. A static game can be seen as a specific
case within the broader category of dynamic games [77]. In dynamic games, some actions
may occur simultaneously, while others can unfold at different time intervals. Several
researchers have explored static games in their studies, including examples by [78–85].

2.4.2. Zero-Sum Games

The primary focus of our current study is a category of games where the overall score
remains constant throughout the game [86]. In these games, there are no score increases
or decreases during gameplay. Instead, one player’s gain corresponds directly to another
player’s loss. In essence, in a zero-sum game, there is always a loser for every winner,
making it inherently a win–lose game. This particular aspect of Game Theory has found
application in numerous works across diverse domains [87–91]. In Section 3.3, we explore
the explanation of zero-sum games, which are utilized for ranking failures in the FMEA
procedure. Conversely, a non-zero-sum game is one where all players can benefit. In these
games, the total sum of profits and losses is either greater or less than zero. Scholars from
various fields have explored non-zero-sum games in their research endeavors [92–94].

2.4.3. Cooperative/Non-Cooperative Games

A non-cooperative game is characterized by players pursuing their individual profit
maximization without cooperation from others at the outset of the game [56]. This class
of games places a primary emphasis on the strategies employed by individual players.
Non-cooperative games have found extensive use in various applications across different
domains [95–98]. In contrast, cooperative games involve a coalition of players from the
same group or union working together to maximize their collective gains. For instance, if
we consider a set of players {A, B, C, D, E, and F}, there can be three different player unions,
such as {{A, B, C}, {D, E}, and {F}}, where each union aims to maximize their combined
benefits. Similarly, cooperative games have been extensively applied in the literature across
diverse applications [99–101].

3. Proposed Methodology

This research introduces a comprehensive and reliable framework designed to de-
termine consistent risk priorities for various failure modes, as depicted in Figure 1. This
framework is structured into three pivotal stages:

• Pre-step: The process of collecting all necessary information about the system under
investigation is a meticulous endeavor that forms the bedrock of our research. It
involves a comprehensive review and assimilation of data, encompassing structural
details, operational dynamics, historical performance metrics, and contextual factors
that influence the system. This critical step requires a multi-faceted approach, engag-
ing with various stakeholders for insights, examining relevant documentation, and
utilizing analytical tools to capture the complexities of the system. Such thorough data
collection ensures a robust foundation upon which meaningful analysis can be per-
formed, hypotheses can be tested, and accurate conclusions can be drawn, ultimately
contributing to the credibility and reliability of the research outcomes.

• Step 1: Assessing the Weight of Risk Factors: In this foundational stage, the focus
is on quantifying the relevance of different risk factors. Utilizing the BWM method-
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ology [102], we gauge the importance weights tied to the severity, occurrence, and
detection of said risk factors.

• Step 2: Formulating the Payoff Evaluation Matrix: After ascertaining the importance
weights, the next step is the formulation of the payoff evaluation matrix. This matrix
is crafted based on insights and evaluations from an expert panel of decision-makers.
To address the inherent uncertainties, this phase incorporates Pythagorean fuzzy
uncertain linguistic variables.

• Step 3: Determining Risk Priorities of Failure Modes: The zenith of our framework
is to present a detailed assessment of risk priorities associated with distinct failure
modes. In this context, a zero-sum game methodology is leveraged to pinpoint the
optimal strategies for both scenarios involving failure modes and those without.
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for ‘Pythagorean Fuzzy Uncertain Linguistic Variables’).

Preceding these primary stages is an essential preliminary step. Here, a meticulous
collection of all pertinent data related to the process in focus is undertaken. This leads to the
identification of potential failure modes. For each failure mode pinpointed, an exhaustive
analysis is carried out. This includes a rigorous review of control measures, the underlying
causes, and the possible outcomes of each mode. Within this framework’s scope, it is
imperative to understand “failure” as a situation where a crucial function or procedure
does not meet the expected standards [103].

Our conception of risk factors is aligned with the standard definitions found in widely
recognized frameworks and guidelines in risk assessment and management. Specifically,
we adhere to the reports and classifications of risk factors outlined by industry standards
such as ISO 31000, which provides principles and generic guidelines on risk management.
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Per these standards, risk factors in our study are identified through a systematic process
involving hazard identification, risk analysis, and risk evaluation.

Each risk factor is categorized into one of three primary aspects:

• Severity (S): This refers to the potential impact or consequences of a failure mode on
the system’s functionality, the environment, or the end-users. It measures the extent of
harm or disruption that could result from the failure.

• Occurrence (O): This dimension assesses the likelihood or frequency of a particular
failure mode occurring. It estimates the probability that the risk will materialize based
on historical data, predictive models, or expert judgment.

• Detectability (D): Detectability evaluates how easily a failure mode can be discovered
before it leads to an operational failure. This involves assessing the effectiveness of
current detection processes or control measures.

By employing these three dimensions, we can systematically quantify and prioritize
risks, ensuring that the most significant chances—those likely to have the greatest impact,
which are the most probable, and are the hardest to detect—are managed with appropriate
urgency and resources.

Throughout this manuscript, we consistently apply this tripartite model of risk factors
to analyze and evaluate the potential failure modes in the system under study. This
approach allows us to construct a risk profile that is comprehensive, refined, and tailored to
the specific operational context of the system, thereby facilitating informed decision-making
and effective risk management.

Let us, for an FMEA worksheet, take a set of failure modes a FMi = {FM 1 , FM 2 , FM 3 ,
. . . , FM i }, which is known in FMEA procedure as the “strategy of failure” for l num-
ber of decision-makers. In addition, let us take DM = {DM1, DM2, DM3, . . . , DM l },
as a set of risk factors, RF i = {S FM i , O FMi , D FMi } as a “strategy of success”, and
ω j = {ω 1 , ω 2 , ω 3 , . . . , ω n } as the importance weight of decision-makers based on
their quality profile in which 0 ≤ ω j ≤ 1 and ∑ n

j=1 ωj = 1.
Thus, all employed decision-makers share their individual payoff judgments of FMi

regarding the risk factors (RF j) using Pythagorean fuzzy uncertain linguistic variables.

In addition, the l payoff matrices can be derived from P k =
[
p k

ij

]
m×n

(k = 1, 2 , . . . , l),

where, p k
ij = ⟨

[
S θ k

ij
,S τ k

ij

]
, (µ k

ij, υ k
ij)⟩, and

[
S

θ k
ij

,S τ k
ij

]
is the uncertain linguistic

assessment. Uncertain linguistic assessment obtained from the decision-makers over FM i
with respect to the risk factors RFj collected from decision-maker l according to the linguis-
tic term set P =

{
S 0,S 1, . . . ,S g

}
. According to the obtained outcomes, a zero-sum game

between failure and success can be demonstrated as B = {Failure, Success, FM, RF,P}. In
the subsequent sections, we present a detailed overview of the comprehensive processes
involved in the proposed FMEA method. We explore the intriguing perspective of viewing
FMEA through the lens of a zero-sum game, acknowledging its practical implications. In a
noteworthy study by [69], Game Theory was harnessed to rank alternative solutions in the
context of emergency decision-making. In light of this, we adopt the premise that FMEA
can be framed as a zero-sum game problem, and proceed to outline our methodology.

How does the proposed model consider the barriers to mitigation and prevention? Our
model is conscious of the obstacles that can hinder effective risk mitigation and prevention,
particularly in complex systems. It is structured to capture these barriers within the initial
pre-step and throughout the framework by integrating stakeholder feedback, historical
data, and expert judgment. This holistic approach ensures that the risk prioritization
identifies the most critical risks and the factors that may impede successful intervention. By
encompassing these barriers in our payoff evaluation matrix and subsequent analysis, our
model offers a dynamic and realistic platform for risk management that is sensitive to the
obstacles inherent in the practical application of risk mitigation and prevention strategies.

It should be added that, in the proposed methodology, while we adhere to the tra-
ditional FMEA framework that incorporates risk variables such as severity, occurrence,
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and detectability, we also recognize the crucial gap that exists between detecting a failure
mode and effectively mitigating or preventing it. The detectability variable quantifies the
likelihood of identifying a failure mode before it manifests into a functional failure, yet it
does not encompass the subsequent processes of mitigation and prevention.

To bridge this gap, our model enhances the conventional FMEA by embedding addi-
tional evaluative dimensions that assess the system’s readiness and capability to respond
to a detected failure mode. We introduce a ‘Response Efficacy’ variable that complements
the detectability score by measuring the effectiveness and timeliness of the mitigation or
prevention strategies that are, or can be, put in place once a failure mode is detected. This
variable considers factors such as the availability of resources, the agility of the response
system, the presence of backup systems, and the preparedness of personnel to implement
corrective measures.

Furthermore, our model operationalizes this ‘Response Efficacy’ assessment by inte-
grating Pythagorean fuzzy uncertain linguistic variables, which allow for a fine and flexible
quantification of risk management capabilities. Decision-makers can thus express varying
degrees of confidence in the system’s ability to handle potential failures, accommodating
real-world systems’ inherent uncertainties and complexities.

The proposed methodology provides a more comprehensive view of the risk landscape
by incorporating ‘Response Efficacy’ as a distinct factor within the risk priority calculations.
This ensures that the FMEA identifies and ranks failure modes based on their detectability
and the system’s overall preparedness to address and neutralize risks effectively. It allows
for a more informed and holistic risk management approach, where the end goal is not
merely to detect risks but to be well-equipped to manage them adeptly. This advancement
in the methodology acknowledges that the true measure of a system’s resilience lies in its
capacity to respond to and recover from disruptions, thus offering a more accurate and
actionable assessment of risk priorities.

3.1. Computing the Importance Weight of Risk Factors Utilizing BWM

The BWM offers a promising alternative to the Analytic Hierarchy Process (AHP) for
calculating the importance weights of risk factors [102,104]. BWM requires fewer data
comparisons compared to AHP, yielding more robust and consistent results in pairwise
comparisons. BWM techniques have found wide-ranging applications across various
domains, as evidenced by [105–108]. In the context of this study, we employ BWM to
determine the importance weights of three distinct risk factors—Severity, Occurrence, and
Detection—within the framework of FMEA. In the current state of research, numerous
scholars [109–114] have explored ways to integrate BWM with FMEA, primarily to (i)
assess the importance weights of risk factors and (ii) assign weights to failure modes while
subsequently ranking them. In line with these endeavors, our motivation lies in integrating
the BWM tool with FMEA to ascertain the importance weights of the risk factors under
examination in this study.

The procedure of BWM is briefly explained as follows:

(i) Identifying most of the minor significant risk factors. The most critical risk factor,
RFB, and the least important risk factor, RFW , have to be determined by decision-
makers’ opinions from the known n risk factor. A fine approach is employed in
the methodology proposed to discern the spectrum of risk factors within a system,
extending from the most to the least significant. The criticality of these factors is
determined through a qualitative analysis led by decision-makers who are well-
versed in the intricacies of the system at hand. Recognizing the most critical risk
factor denoted as RFB, and the least significant one, RFW , is pivotal in establishing a
hierarchy of risks that guides the focus of risk management efforts.
Considering less significant risk factors in the analysis is both strategic and practical.
While these factors may have a lower impact on the system, their cumulative effect or
impact under specific conditions can be non-trivial. By including these minor factors,
decision-makers can ensure a comprehensive risk assessment, leaving no potential
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vulnerability unaddressed. This inclusion aligns with the principles of thoroughness
and precaution in risk management, especially in complex systems where seemingly
minor risks can propagate or interact with other factors to cause significant issues.
To clarify the process, decision-makers typically leverage tools such as FMEA to
evaluate and rank the criticality of risk factors. However, the initial identification of
these factors often relies on their expertise and experiential judgment. The FMEA tool
then provides a structured framework to analyze the identified factors, quantifying
their severity, occurrence, and detectability to arrive at an RPN. This number assists
in objectively determining the criticality of each risk factor.
In practice, achieving consensus among decision-makers on the significance of risk
factors can be challenging, mainly when relying on qualitative assessments. To miti-
gate this, our model incorporates mechanisms for reconciling differing opinions, such
as employing a Delphi method or consensus-building workshops. These methods
facilitate structured communication and negotiation, allowing for the emergence of
a collective judgment on the risk factors’ criticality. In instances where consensus is
elusive, the model adapts by assigning possible values to each risk factor, reflecting
the spectrum of expert opinions. This range is then utilized in sensitivity analyses to
determine how variations in risk criticality assessment could influence the system’s
overall risk profile. Such an approach ensures that the model remains robust and
applicable despite subjective variability, thus maintaining its utility and relevance in
real-world risk management scenarios.

(ii) Assessing the priority of the most critical risk factor relative to others. Next, the
group of decision-makers collaboratively express their judgments concerning the
significance of the primary risk factor compared to the remaining risk factors, utilizing
the established nine-scale table in the existing literature. Additionally, we calculate
the vector representing the best-to-others (BO) preference, which is defined as RF,
k = 1, 2, 3, . . . , l, as follows:

RF k
BO =

(
RF k

B1 , RF k
B2 , . . . , RF k

Bn

)
(1)

where RFk
Bj is the opinion of the RFB over the RF j , and RF BB = 1. Consider

that the l decision-makers’ importance weight are equal. Hence, l best-to-others
vectors have the possibility to be further combined into a best-to-others vector
RFBO = (RF B1 , RF B2 , . . . , RF Bn ) using the following equation:

RF Bj =
RF k

Bj

l
, j = 1, 2 , . . . , n (2)

(iii) Computing the preference of the other risk factor over the most critical risk factor.

Similarly, l others-to-worst vector RF OW , for k = 1, 2, 3, . . . , l is computed by com-
paring to the other risk factor over the worst risk factor using nine-scale, as in the follow-
ing equation:

RF k
OW =

(
RF k

1W , RF k
2W , . . . , RF k

nW

)
(3)

where RFk
jW is the judgement of the RFj over the RFW , and RFWW = 1. Therefore,

l other-to-worst vectors can be combined into a worst-to-others vector
RFOW = (RF1W , RF2W , . . . , RFnW) using the following equation:

RF jW =
RF k

jW

l
, j = 1, 2, . . . , n (4)

(iv) Calculate the optimum risk factors’ importance weights.
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In BWM, the ratio of WB
Wj

and
Wj
WW

is followed by WB
Wj

= RFBj and
Wj

W W
= RF jW . For

satisfying the above-mentioned conditions, a resolution must be determined by maximizing

the value of
∣∣∣WB

Wj
− RFBj

∣∣∣ and minimizing the value of
∣∣∣RFjW − Wj

WW

∣∣∣.
Therefore, the subsequent mathematical programming model determines the optimum

risk factors’ weight:
Model 1:
minmax

{∣∣∣WB
Wj

− RFBj

∣∣∣, ∣∣∣RFjW − Wj
WW

∣∣∣},
Subject to.
∑n

j=1 wj = 1,
wj ≥ 0, j = 1, 2, . . . n.
Model 1 can be re-established into Model 2 as a linearization process:
minξ
Subject to.∣∣∣WB

Wj
− RFBj

∣∣∣ ≤ ξ,∣∣∣RFjW − Wj
WW

∣∣∣ ≤ ξ,

∑n
j=1 wj = 1,

wj ≥ 0, j = 1, 2, . . . n.
The optimum risk factors’ importance weights are computed by solving Model 2 and

are signified as w ∗ =
(
w ∗

1 , w ∗
2 , . . . , w ∗

n
)
.

It is worth noting that in the final step, it is also possible to determine the aggregated
optimal importance weights. This implies that the optimal importance weights for each risk
factor are initially derived from individual decision-makers’ perspectives. Subsequently,
factoring in the significance of each decision-maker’s input, we arrive at the aggregated
importance weight for the risk factors.

(v) Calculate the consistency ratio of results

To calculate the consistency value, first, it is essential to obtain the consistency ratio
as follows:

CR =
ξ ∗

CI
(5)

where CR is recognized as the consistency index according to the maximum value of ξ [102].
As much as the value of CR is small, the results would have the better consistency. In the
current study, CR ≤ 0.2 is acceptable and there is in this case no need to further revise the
process interactively.

3.2. Constructing the Group of Payoff Evaluation Matrix Utilizing Pythagorean Fuzzy Uncertain
Linguistic Variables

Zadeh [115] argues for the concept of linguistic variables and their practical applications.
Linguistic variables are linguistic expressions consisting of one or more words that convey the
intrinsic value of a variable. This approach assists decision-makers in addressing ambiguities
and uncertainties in data, particularly in complex decision-making scenarios where precise
numerical values may be challenging to define [116,117]. Let us take β =

{
β 0, β 1, . . . , β g

}
as a finite set, and completely well-ordered discrete linguistic terms having odd cardinality,
in which βi denotes a possible value for a linguistic term [69,118–120].

In 2013, Yager [121] introduced the concept of Pythagorean fuzzy sets (PFS) to fulfill a
particular condition, wherein the sum of the squares of membership and non-membership
degrees is constrained to be less than or equal to one [122–125]. We will now go into the
fundamental concepts, definitions, and subsequent advancements related to PFS.

Definition 1 [126]. Let us consider that there is a discourse universe, as follows:

𝓅 = {< 𝓍,𝓊𝓅(𝓍),𝓋𝓅(𝓍) >|𝓍 ∈ X} (6)
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where 𝓊𝓅 : X −→ [0, 1] illustrates the “membership degree”, and 𝓋𝓅 : X −→ [0, 1] il-
lustrates the “non-membership degree” of the element 𝓍 ∈ X to the set 𝓅, satisfying(

0 ≤ 𝓊𝓅(𝓍)
2 + 𝓋𝓅(𝓍)

2
)

≤ 1. The hesitancy or indeterminacy degree is defined as
.

π𝓅(x) =
√

1 −𝓊𝓅(𝓍)
2 − 𝓋𝓅(𝓍)

2 . Zhang and Xu [127] called (𝓊𝓅(𝓍),𝓋𝓅(𝓍)) Pythago-
rean fuzzy numbers (PFNs). PFNs are illustrated by 𝓅 = (𝓊𝓅,𝓋𝓅) to make PFS simpler to
comprehend [128,129].

Definition 2 [130]. Let us take X as a discourse universe where
[

β θ(𝓍), β τ(𝓍)

]
indicates an

uncertain linguistic variable. A Pythagorean fuzzy uncertain linguistic variable
∼
P in X can be

defined as follows:

∼
P =

{
X , ⟨

[
β θ(𝓍), β τ(𝓍)

]
,
(
𝓊 ∼

P
(𝓍),𝓋 ∼

P
(𝓍)

)
⟩
∣∣∣𝓍 ∈ X

}
(7)

where
(
𝓊 ∼

P
(𝓍),𝓋 ∼

P
(𝓍)

)
is a PFS, which denotes the membership and non-membership

degree of 𝓍 ∈ X , respectively, into the
[

β θ(𝓍), β τ(𝓍)

]
.

In addition, the indeterminacy degree of 𝓍 ∈ X is defined as
.

π∼
P
(x) =√

1 −𝓊∼
P
(𝓍)2 − 𝓋∼

P
(𝓍)2 into the linguistic variables

[
βθ(𝓍), βτ(𝓍)

]
. For easier compre-

hension,
∼
P(𝓍) = ⟨

[
βθ(𝓍), βτ(𝓍)

]
,
(
𝓊∼
P
(𝓍),𝓋∼

P
(𝓍)

)
⟩ is named Pythagorean fuzzy uncertain

linguistic variables, which further can be denoted as
∼
P = ⟨[βθ , βτ ],

(
𝓊∼
P

,𝓋∼
P

)
⟩.

Definition 3 [130,131]. Let us take
∼
P 1 = ⟨

[
β θ 1 , β τ 1

]
,
(
𝓊 ∼

P 1
,𝓋 ∼

P 1

)
⟩ and

∼
P 2 =

⟨
[
β θ 2 , β τ 2

]
,
(
𝓊 ∼

P 2
,𝓋 ∼

P2

)
⟩ as two different Pythagorean fuzzy uncertain linguistic vari-

ables. In such case, some important operational laws of Pythagorean fuzzy uncertain linguistic
variables can be defined as follows:

∼
P 1 ⊕

∼
P 2 = ⟨

[
β θ 1+θ 2 , β τ 1 +τ 2

]
,

[√
𝓊 2

∼
P 1

+𝓊 2
∼
P 2

−𝓊 2
∼
P 1

𝓊 2
∼
P 2

, 𝓋 ∼
P 1

𝓋 ∼
P 2

]
⟩ (8)

∼
P 1 ⊗

∼
P 2 = ⟨

[
β θ 1θ 2 , β τ 1τ 2

]
,

[
𝓊∼
P 1

𝓊 ∼
P 2

,
√

𝓋 2
∼
P 1

+ 𝓋 2
∼
P 2

− 𝓋 2
∼
P 1

𝓋 2
∼
P 2

]
⟩ (9)

γ
∼
P 1 = ⟨

[[
β γθ 1 , β γτ 1

]]
,

[√
1 −

(
1 −𝓊 2

∼
P 1

) γ

,𝓋 γ
∼
P 1

]
⟩ (10)

∼
P1

γ

= ⟨
[[

β θ 1
γ , β τ 1

γ

]]
,

[
𝓊 γ

∼
P 1

,

√
1 −

(
1 −⊑ 2

∼
P 1

) γ
]
⟩ (11)

Definition 4 [130,132]. Let us take β =
{

β 0, β 1, . . . , β g

}
as linguistic set terms and

∼
P = ⟨[β θ , β τ ], (𝓊,𝓋)⟩ as Pythagorean fuzzy uncertain linguistic variables. Therefore, the score

function of
∼
P can be determined as follows:

S
(∼
P
)
=

θ + τ

4g

(
𝓊 2 + 1 − 𝓋 2

)
(12)
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Moreover, the accuracy function of
∼
P can be determined as follows:

A
(∼
P
)
=

θ + τ

2g

(
𝓊 2 + 𝓋 2

)
(13)

Definition 5 [130,132]. Let us take
∼
P1 = ⟨

[
β θ 1 , β τ 1

]
,
(
𝓊∼
P 1

,𝓋∼
P 1

)
⟩ and

∼
P2 =

⟨
[
β θ 2 , β τ 2

]
,
(
𝓊∼
P 2

,𝓋∼
P 2

)
⟩ as two different Pythagorean fuzzy uncertain linguistic variables.

In such a case, the “Hamming distance” between
∼
P 1 and

∼
P 2 can be determined as follows:

d(
∼
P 1 ,

∼
P 2 ) = 1

6g (|θ 1 𝓊∼
P 1

2 − θ 2𝓊 ∼
P 2

2 |+ |θ 1𝓋 ∼
P 1

2 − θ 2𝓋∼
P 2

2 |+ |θ 1
.

π ∼
P 1

2 − θ 2
.

π ∼
P 2

2 |+ |τ 1𝓊 ∼
P 1

2 − τ 2𝓊 ∼
P 2

2 |

+|τ 1𝓋 ∼
P 1

2 − τ 2𝓋 ∼
P 2

2 |+ |τ 1
.

π ∼
P 1

2 − τ 2
.

π ∼
P 2

2 |)
(14)

Definition 6 [132]. Let us take
∼
P as the collection of Pythagorean fuzzy uncertain linguistic

variables;
∼
P j = ⟨

[
β θ j , β τ j

]
,
(
𝓊 ∼

P j
,𝓋 ∼

P j

)
⟩, where j = 1, 2, . . . , n, and the “Pythagorean

fuzzy uncertain linguistic prioritized weighted averaging operator” is
∼
P

n
−→

∼
P . In such as case,

the “Pythagorean fuzzy uncertain linguistic prioritized weighted averaging operator” can be defined
as follows:

PWA
(∼
P 1 ,

∼
P 2 , . . . ,

∼
P n

)

= ⟨

φ
∑ n

j=1 (
Tj

∑ n
j=1 Tj

) θ j

,

φ
∑ n

j=1 (
T j

∑ n
j=1 Tj

) τ j

,



√√√√

1 − ∏ n
j=1

(
1 −𝓊 ∼

P j

2
) T j

∑ n
j=1 Tj

,

∏ n
j=1

(
𝓋∼
Pj

) Tj
∑ n

j=1 Tj


⟩ (15)

Up to this point, the preliminary PFS and Pythagorean fuzzy uncertain linguistic
variables have been explained. Next, the four steps to construct the group payoff evaluation
matrix are further described as follows:

Step 1: Normalizing the Pythagorean fuzzy uncertain linguistic variables payoff matrices
The payoff-matrices-based Pythagorean fuzzy uncertain linguistic variables

Pk =
[
p k

ij

]
m×n

into
∼
Pk =

[
∼
p

k
ij

]
m×n

is normalized as follows:

∼
p

k
ij = ⟨

[
S ∼

θ
k

ij

,S ∼
τ

k
ij

]
,
(

µ k
ij , υ k

ij

)
⟩ =


⟨
[
Sθ k

ij
,Sτ k

ij

]
,
(

µ k
ij, υ k

ij

)
⟩ For benefit criteria,

⟨
[
S g−θ k

ij
,S g−τ k

ij

]
,
(

µ k
ij, υ k

ij

)
⟩ For cost criteria,

(16)

Step 2: Constructing the group Pythagorean fuzzy uncertain linguistic variables payoff matrix

The normalized Pythagorean fuzzy uncertain linguistic variables
∼
Pk =

[
∼
p

k
ij

]
m×n

payoff matrices, where (k = 1, 2, . . . , l) can be transferred into a single Pythagorean fuzzy
uncertain linguistic variables payoff matrix R =

[
r ij

]
m×n

by utilizing the modified

“Pythagorean fuzzy uncertain linguistic prioritized weighted averaging operator” as follows:

r ij = PWA

(
∼
P

1
ij ,

∼
P

2
ij , . . . ,

∼
P

l
ij

)

= ⟨



φ

∑ t
k=1 w k (

T k
ij

∑ t
k=1 T k

ij
) ´θ ij

,

φ

∑ t
k=1 w k (

T k
ij

∑ t
k=1 T k

ij
) ´τ ij



,





√√√√√√√
1 − ∏ t

k=1

(
1 − w k µ́ k

ij
2
) T k

ij
∑ t

k=1 T k
ij


,

∏ t
k=1

(
w k ύ k

ij
2
) T k

ij
∑ t

k=1 T k
ij




⟩

(17)
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where T1
ij = 1, wk is the importance weight of decision-makers, and Tk

ij = ∏k−1
h=1 Φ

(
phij
)

for
(k = 1, 2, . . . , l).

Step 3: Computing the importance weighted group Pythagorean fuzzy uncertain linguistic
variables payoff matrix

In this step, the group Pythagorean fuzzy uncertain linguistic variables payoff ma-
trix R =

[
r ij

]
m×n

is converted into the importance weighted group Pythagorean fuzzy

uncertain linguistic variables payoff matrix Ŕ =
[
ŕ ij

]
m×n

as follows:

ŕ ij = r ij w∗
j , i = 1, 2, . . . , m ; j = 1, 2, . . . , n, (18)

where w ∗
j (j = 1, 2, . . . , n) is the importance weights obtained by utilizing BWM in Step 1.

Step 4: Computing the crisp group payoff matrix
The crisp group payoff matrix R =

[
r ij

]
m×n

can be determined as follows:

r ij = P
(
r ij
)
=

θ ij + τ ij

4g

(
µ 2

ij + 1 − υ 2
ij

)
(19)

where i = 1, 2, . . . , m and j = 1, 2, . . . , n.

3.3. Determining the Risk Priority of Failure Modes Utilizing the Zero-Sum Game

Definition 7 [132]. A zero-sum game includes two DMs (players) and is formulated into a
five-tuple as follows:

A = {DM1, DM2 , CD , CN , P} (20)

where CD = {ci|ci ∈ C1 ≥ 0, ∑m
i=1 ci = 1, i = 1, 2, 3, . . . , m}, displays the mixed-based strat-

egy set of DM1, CN =
{∼

c j

∣∣∣∼c j ∈ C1 ≥ 0, ∑n
j=1

∼
c j = 1, i = 1, 2, 3, . . . , n

}
displays the mixed-

based strategy set of DM2, and P denotes the payoff matrix of DM1. Note that DM1 and
DM2 are the decision-maker and nature, respectively. Equation (16) can also be represented
as follows:

B = {Failure, Success, FM, RF,P} (21)

where FM and RF repressing the set of failure modes and corresponding risk factors,
respectively. P denotes the payoff matrix for failure modes.

Definition 8. The payoff matrix is defined based on [133]. Consider that
(

c i ,
∼
c j

)
∈ C 1 × C 2 ,

for i = 1, 2, 3, . . . , m is a strategy, where ci is the “strategy of failure” and
∼
c j is the “strategy of

success”. According to this point, for any strategies
(

c i ,
∼
c j

)
, assume that P =

(
p ij
)

m×n denotes
the payoff matrix according to the “strategy of failure”. Therefore, the payoff matrix of the “strategy
of success” is equal to the −P.

For a zero-sum game, a strategy pair
(

c ∗
i ,

∼
c
∗
j

)
will be the Nash Equilibrium point of

B = {Failure, Success, FM, RF,P}. According to this point, for a “strategy of failure”, we
can construct Model 3 as follows:

Model 3:
min = ∑m

i=1 ci,
Subject to.
∑m

i=1 rijci
≥ 1, j = 1, 2, 3, . . . , n,

ci ≥ 0, i = 1, 2, 3, . . . , m.
For DM2, Model 4 can be shown as follows:
Model 4:
max = ∑n

j=1
∼
c j,

Subject to.



Safety 2024, 10, 4 15 of 35

∑n
j=1 rij

∼
c

j
≤ 1, i = 1, 2, 3, . . . , m,

∼
c j ≥ 0, j = 1, 2, 3, . . . , n.
As mentioned earlier, the Nash Equilibrium strategies of the “strategy of failure” and

“strategy of success” are derived by c*
i = (c1, . . . , ci, . . . , cm) and

∼
c

*
j =

(∼
c1, . . . ,

∼
c i, . . . ,

∼
c n

)
,

respectively.
As a result, the modified strategies’ expected values ci (i = 1, 2, 3, . . . , m) are deter-

mined as follows:

Gi = c*
i ·

n

∑
j=1

(
rij

∼
c

*
j

)
∀i = 1, 2, 3, . . . , m (22)

With respect to the G i (G i ̸= 0), the best strategy solution ci based on the maximum
Gi is obtained for priority of failure modes in the FMEA procedure. If G i = 0, the row
vectors associated with G i ̸= 0 are disconnected from the payoff matrix, and subsequently,
one must return to applying both Model 3 and 4. The remained strategies are similarly
treated in order to obtain the failure modes’ risk priorities.

4. Application of Study

The proposed model is implemented in an example healthcare facility in a hypothetical
metropolitan area. This hypothetical facility is dedicated to treating patients affected by
severe and different health issues, and it faces unique challenges due to a fictitious high
incidence rate and a fabricated shortage of medical service staff. Additionally, the facility
is assumed to experience a mythical heavy daily patient flow and a growing number
of severe cases requiring hospitalization, resulting in a shortage of available beds. The
increased workload on fictional medical staff necessitates hypothetical frequent equipment
and medical tool healthcare, which, if not managed effectively, could lead to an elevated
number of confirmed cases and occupational accidents. Consequently, conducting a risk
assessment for such complex hypothetical healthcare facilities is imperative.

Fictitious healthcare units in this study play a crucial role in healthcare settings as
they eliminate all microorganisms from equipment and medical tools. This fabricated
healthcare process consists of seven steps, including (i) decontamination, (ii) preparation,
(iii) packaging, (iv) healthcare, (v) quality control, (vi) storage, and (vii) distribution. The
process’s unpredictability and lack of structure stem from its reliance on fictional patient
feedback. This fabrication process renders various instruments free of microorganisms
within units.

The significance of the hypothetical problem at hand can be summarized as follows.
This study represents the second iteration in developing the classical FMEA method for
evaluating a complex healthcare unit in this hypothetical healthcare system. Managing
such teams in this hypothetical scenario is challenging due to the risk of contagion and its
high-risk nature. Any risk factor that emerges within this unit holds utmost importance as
it can impact all other departments.

For instance, lapses in infection control, such as spreading infection through equipment
due to an employee’s injury or a fabricated dry cough, can result in conditions persisting
on medical tools, patients, and other healthcare staff. This transmission of infection has
several negative consequences, including prolonging the duration of patient treatments,
endangering patients with new risks, and increasing the number of confirmed cases,
ultimately driving up healthcare costs. In the context of the fabricated hospital in our
hypothetical study, all materials and equipment are assumed to be sterilized after each
intensive care operation for patients with coronavirus disease.

Drawing upon insights from relevant literature [134,135], the collective wisdom of the
authors, and the endorsement of healthcare system decision-makers, we have discerned a
comprehensive set of 23 failure modes tailored to our specific case study. In adherence to the
initial phase of our proposed model, we have diligently amassed all pertinent information
pertaining to the healthcare unit within the hospital under scrutiny. This comprehensive
compilation encompasses a detailed roster of control activities, causative factors, and the
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projected consequences associated with each identified failure mode, all of which are
thoughtfully presented in Table 1.

Table 1. The developed FMEA of a complex healthcare unit under the emergency condition.

Failure Modes Tag Failure Mode
Description

Causes of Failure
Modes

Effect of Failure
Modes

Current Control
Activities

F1 The biological growth
forms

Over-presence of
medical staff

Damp conditions slow
the evaporation of

moisture
N/A

F2 Particles increase in the
workplace

Poor, or lack of, air
conditioning in the

workplace or positive
air pressure

Increases the number of
viral respiratory illness

on medical staff
Air conditioner

F3 Increases the anger and
nerves of medical staff

Viral respiratory illness
emergency state

condition

Fights, lack of
motivation, suicide,

and performing at low
quality

N/A

F4
Increasing the number

of complaints by
medical staff

Viral respiratory illness
emergency state

condition

Physical fights, lack of
motivation, suicide,

and performing at low
quality

N/A

F5
Increasing the risk of

carcinogenic and
mutagenic

Exposure increases to
the hazardous

substances

Confront medical staff
with long-term viral

respiratory illness

Following healthcare
instruction

F6

Increasing the
inhalation of ethylene

oxide and
formaldehyde

Exposure increases to
the oxide and
formaldehyde

Confront medical staff
with short- and

long-term diseases

Following healthcare
instructions

F7 Increasing the level of
burning

Contact with hot water
from an autoclave Loss of working hours Service check of

autoclave periodically

F8 Increasing the high
level of burning

The explosion of
autoclave and contact

with super steam
Loss of working hours Service check of

autoclave periodically

F9 Increasing the number
of workplace injuries

Falling, rolling, or
overturning of

unsecured medical
tools

Loss of working hours Safety training
periodically

F10 Increasing the standing
posture for a long time

Lack of enough
employees and high

workload

Cardiovascular
diseases and

musculoskeletal
problems

Safety training
periodically

F11
Increasing the number
of falling, jamming, or

tumbling incidents

Wet or slippery floor of
the workplace Limbs or sprain injuries Safety training

periodically

F12

Increasing
contamination of

medical staff body
fluids and blood

Contact contaminated
tools with skin

Increasing the number
of diseases on medical

staff

Following healthcare
instructions

F13

Increasing
contamination of

medical staff body
fluids and blood

Contact with
contaminated tools

with eyes

Increasing the number
of diseases on medical

staff

Following healthcare
instructions
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Table 1. Cont.

Failure Modes Tag Failure Mode
Description

Causes of Failure
Modes

Effect of Failure
Modes

Current Control
Activities

F14 Increasing transmission
infections

Contact with a stab
wound and

contaminated physical
environment

Increasing the number
of diseases on medical

staff

Following healthcare
instructions

F15 Increasing transmission
infections

Contact with
contaminated medical

waste material

Increasing the number
of diseases on medical

staff

Following healthcare
instructions

F16 Increasing transmission
infections

Contact with a stab
wound chemical waste

material like
Glutaraldehyde

Increasing the number
of diseases on medical

staff

Following healthcare
instructions

F17 Increasing transmission
infections

Contact with
inappropriate use of a

bag to stab waste

Increasing the number
of diseases on medical

staff

Following healthcare
instructions

F18 Increasing electric
shock

Electrical leakage from
electric medical tools Loss of working hours

Safety training
periodically and using

earth rods

F19
Increasing the number

of physical violence
incidents

Contact with patients
and patients’
companions

Fights, lack of
motivation, suicide,
and performing low

quality

N/A

F20
Increasing the number

of verbal violence
incidents

Contact with patients
and patients’
companions

Fights, lack of
motivation, suicide,
and performing low

quality

N/A

F21 Increasing the number
of sexual harassments

Contact with patients
and patients’
companions

Fights, lack of
motivation, suicide,
and performing low

quality

NA

F22
An increasing allergic

reaction of medical staff
(respiratory-based)

Exposure to the
chemical spilled Loss of working hours NA

F23
An increasing allergic

reaction of medical
staff (skin-based)

Use of allergy-causing
medical materials like

gloves, etc.
Loss of working hours NA

In order to manage the identified failure modes in this study, a heterogeneous group of
experts, including four different decision-makers, who have relevant experience and exper-
tise in the health care system and have worked in healthcare units, help manage the identi-
fied failure modes in this study. Therefore, the four decision-makers
DM = {DM1, DM2, DM3, DM4} are invited to evaluate the Severity, Occurrence, and
Detection of identified failure modes. To achieve more realistic results, the importance
weights of each decision-maker need to be obtained based on their individual decision-
makers’ quality profile [136–138]. Decision-makers’ critical weight shows how much the
final decision is close to her/his opinions. Thus, for our case, the importance weights of
four decision-makers are 0.250, 0.275, 0.325, and 0.150, respectively.

In the first step, using BWM, the importance weight of risk factors is obtained. The
results based on decision-makers’ evaluations are provided in Table 2. As an example,
DM2 evaluates the Severity and Detection as the best and worst risk factors, respectively.
By utilizing nine scale-based factors, DM2 gives his preference of the best risk factor as
Severity over Occurrence and Detection into a best-to-others vector using Equation (1) as
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RF DM2
BO = (1.000, 4.000, 8.000). In addition, DM2 gives his preference of Severity and Oc-

currence over the worst risk factor, Detection, into a worst-to-others vector using Equation
(3) as RF DM2

OW = (8.000, 4.000, 1.000). Then, the optimal importance weight of risk factors
is determined by solving Model 2, and the results are w ∗

DM2 = (0.718, 0.205, 0.077). By
utilizing Equation (5), the CR value is obtained as 0.10, meaning that the results of study
have a satisfactory consistency.

Table 2. The risk factors’ importance weight.

Decision-Makers Severity Occurrence Detection Decision-Makers’
Importance Weight

DM1 0.738 0.179 0.083 0.250

DM2 0.718 0.205 0.077 0.275

DM3 0.714 0.143 0.143 0.325

DM4 0.708 0.083 0.208 0.150

Risk factors’ weight 0.614 0.147 0.088 1.000

The four decision-makers to evaluate the risk factors (Severity and Occurrence) of
23 failure modes used the set of linguistic terms as Φ = {φ A = Very poor, φ B = Poor ,
φC = Slightly poor, φ D = Fair, φ E = Slightly good, φ F = Good, φ G = Very good}, and
for risk factor (Detection) as Φ = {φ A = Very good, φ B = good, φ C = Slightly good,
φD = Fair, φE = Slightly poor, φ F = poor, φ G = Very poor}.

The Pythagorean fuzzy uncertain linguistic variables payoff matrix Pk =[
p k

ij

]
23×3

(k = 1, 2, 3, and 4) provided by four decision-makers are shown in Table A1 in

Appendix A. In the first step, the Pythagorean fuzzy uncertain linguistic variables payoff

matrix is normalized using Equation (12) into
∼
Pk =

[
∼
p

k
ij

]
23×3

, (k = 1, 2, . . . , 4). In

the second step, the normalized Pythagorean fuzzy uncertain linguistic variables payoff

matrix
∼
P k is aggregated into a single payoff matrix R =

[
r ij

]
23×3

, as presented in Table 3.

Accordingly, the importance weight of risk factors is taken into account to construct normal-
ized single-weighted payoff matrix Ŕ =

[
ŕ ij

]
23×3

using Equation (14) and is tabulated in

Table A2, Appendix A. In the last step, by utilizing Equation (15), the crisp single-weighted
payoff matrix R =

[
r ij

]
23×3

is computed as listed in Table A3, Appendix A.

Table 3. Aggregated Pythagorean fuzzy uncertain linguistic variables payoff matrix.

Failure Modes Tag Severity Occurrence Detection

F1 ⟨[φ0.1796,φ0.2218], (0.2803, 0.0865)⟩ ⟨[φ0.2322,φ0.1957], (0.3913, 0.0359)⟩ ⟨[φ0.2154,φ0.2039], (0.3942, 0.0064)⟩
F2 ⟨[φ0.2195,φ0.1815], (0.3881, 0.0094)⟩ ⟨[φ0.2152,φ0.1871], (0.3765, 0.0086)⟩ ⟨[φ0.1034,φ0.2394], (0.1243, 0.1672)⟩
F3 ⟨[φ0.2278,φ0.1752], (0.3753, 0.0184)⟩ ⟨[φ0.1891,φ0.2218], (0.3037, 0.0382)⟩ ⟨[φ0.1769,φ0.2404], (0.2923, 0.0217)⟩
F4 ⟨[φ0.2278,φ0.1752], (0.3728, 0.0135)⟩ ⟨[φ0.1891,φ0.2218], (0.2416, 0.0849)⟩ ⟨[φ0.1769,φ0.2404], (0.3194, 0.0523)⟩
F5 ⟨[φ0.2238,φ0.1725], (0.3945, 0.0061)⟩ ⟨[φ0.1712,φ0.2208], (0.3895, 0.0107)⟩ ⟨[φ0.2040,φ0.1991], (0.2991, 0.0718)⟩
F6 ⟨[φ0.2272,φ0.1688], (0.4380, 0.0002)⟩ ⟨[φ0.2205,φ0.1915], (0.3613, 0.0131)⟩ ⟨[φ0.1886,φ0.2181], (0.3771, 0.0194)⟩
F7 ⟨[φ0.2361,φ0.1178], (0.3981, 0.0042)⟩ ⟨[φ0.2065,φ0.2078], (0.1785, 0.8017)⟩ ⟨[φ0.2121,φ0.2177], (0.3599, 0.0139)⟩
F8 ⟨[φ0.2285,φ0.1608], (0.3981, 0.0042)⟩ ⟨[φ0.1351,φ0.8368], (0.1785, 0.1324)⟩ ⟨[φ0.1977,φ0.2303], (0.3535, 0.0011)⟩
F9 ⟨[φ0.2268,φ0.1602], (0.4028, 0.0036)⟩ ⟨[φ0.1900,φ0.2331], (0.3413, 0.0207)⟩ ⟨[φ0.2319,φ0.1555], (0.4034, 0.0102)⟩
F10 ⟨[φ0.1984,φ0.2243], (0.3590, 0.0150)⟩ ⟨[φ0.1894,φ0.2115], (0.2766, 0.0656)⟩ ⟨[φ0.2290,φ0.1808], (0.4047, 0.0087)⟩
F11 ⟨[φ0.1579,φ0.2258], (0.2164, 0.1004)⟩ ⟨[φ0.2101,φ0.2087], (0.3516, 0.0175)⟩ ⟨[φ0.2183,φ0.2045], (0.3929, 0.0283)⟩
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Table 3. Cont.

Failure Modes Tag Severity Occurrence Detection

F12 ⟨[φ0.2385,φ0.1095], (0.4451, 0.0002)⟩ ⟨[φ0.2143,φ0.2265], (0.4064, 0.0047)⟩ ⟨[φ0.1953,φ0.2371], (0.3348, 0.0003)⟩
F13 ⟨[φ0.2187,φ0.2075], (0.4128, 0.0021)⟩ ⟨[φ0.1519,φ0.2330], (0.2155, 0.1002)⟩ ⟨[φ0.2388,φ0.1162], (0.4412, 0.0097)⟩
F14 ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2253,φ0.1847], (0.3796, 0.0163)⟩
F15 ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2213,φ0.1806], (0.3930, 0.0047)⟩
F16 ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2155,φ0.1703], (0.3532, 0.0060)⟩
F17 ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2394,φ0.1034], (0.4499, 0.0001)⟩ ⟨[φ0.2276,φ0.1429], (0.4052, 0.0133)⟩
F18 ⟨[φ0.2143,φ0.2039], (0.3700, 0.0225)⟩ ⟨[φ0.2158,φ0.1785], (0.3729, 0.0065)⟩ ⟨[φ0.2099,φ0.2146], (0.3784, 0.0284)⟩
F19 ⟨[φ0.1975,φ0.2213], (0.3424, 0.0236)⟩ ⟨[φ0.1902,φ0.2334], (0.3143, 0.0419)⟩ ⟨[φ0.1908,φ0.2373], (0.3252, 0.0154)⟩
F20 ⟨[φ0.2141,φ0.2026], (0.3528, 0.0201)⟩ ⟨[φ0.2134,φ0.2090], (0.3531, 0.0602)⟩ ⟨[φ0.2141,φ0.2026], (0.3528, 0.0214)⟩
F21 ⟨[φ0.1924,φ0.2213], (0.3234, 0.0366)⟩ ⟨[φ0.2086,φ0.2091], (0.3606, 0.0247)⟩ ⟨[φ0.2120,φ0.2013], (0.3730, 0.0167)⟩
F22 ⟨[φ0.1915,φ0.2239], (0.3235, 0.0395)⟩ ⟨[φ0.2295,φ0.1990], (0.3893, 0.0361)⟩ ⟨[φ0.1938,φ0.2404], (0.3629, 0.0227)⟩
F23 ⟨[φ0.1967,φ0.2089], (0.3038, 0.0569)⟩ ⟨[φ0.1250,φ0.2353], (0.1575, 0.1439)⟩ ⟨[φ0.1938,φ0.2404], (0.3629, 0.0239)⟩

Models 3 and 4 are conducted to resolve the Nash Equilibrium strategy. The Nash
Equilibrium strategy is as follows: “Ai = (F1 = 0,F2 = 0,F3 = 0,F4 = 0,F5 = 0,F6 = 0,F7 = 0,
F8 = 63.7, F9 = 0, F10 = 0, F11 = 0, F12 = 0, F13 = 0, F14 = 0, F15 = 0, F16 = 0, F17 = 0,
F18 = 0, F19 = 0, F20 = 0, F21 = 0, F22 = 0, F23 = 0)” and Cj = (0, 0, 53.9). The expected
values of risk factors from optimizer are determined using Equation (18) as follows:
“G1 = 0,G2 = 0,G3 = 0,G4 = 0,G5 = 0,G6 = 0,G7 = 0,G8 = 3.8,G9 = 0,G10 = 0,
G11 = 0,G12 = 0,G13 = 0,G14 = 0,G15 = 0,G16 = 0,G17 = 0,G18 = 0,G19 = 0,
G20 = 0,G21 = 0,G22 = 0,G23 = 0”.

Hence, among the identified failure modes, F7 (“Increasing the level of burning”),
F11 (“Increasing the number of fallings, jamming, or tumbling”), F23 (“Increasing allergic
reactions among medical staff, particularly skin-based”), F17 (“Increasing transmission
of infections”), and F14 (“Escalating transmission of infections”) emerge as the pivotal
failure modes that warrant the decision-maker’s focused attention for subsequent interven-
tion measures.

Subsequently, by eliminating G i ̸= 0, the assessment is continued, and the final
ranking of failure modes is F7 > F11 > F23 > F17 > F14 > F16 > F15 > F1 > F12 >
F4 > F3 > F12 > F9 > F22 > F21 > F10 > F5 > F8 > F22 > F13 > F2 > F19 > F20.
It is evident that each of the failure modes has distinct rankings. For instance, in light
of the global pandemic experience, revisions have been made to medical guidelines and
safety protocols to diminish the likelihood of infection transmission, primarily through
the adoption of personal protective equipment (PPE). In light of this development, it
becomes apparent that F13 has achieved a superior ranking compared to its previous
conventional assessment.

To effectively prevent infection, it is crucial to follow recommended practices such
as regular and thorough handwashing, avoiding touching one’s face, practicing appro-
priate respiratory etiquette, and maintaining physical distancing [132]. It is important to
acknowledge that complete risk elimination may not be feasible for all individuals.

To bolster these primary measures, adopting a multi-pronged approach is beneficial in
enhancing safety and reducing the likelihood of transmission:

• Elevating the cleaning routines, with a special focus on surfaces and tools that undergo
frequent handling.

• Discouraging communal usage of equipment and supplies, thereby diminishing po-
tential sources of contamination.
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• Designing a dynamic communication blueprint that adjusts to different risk thresh-
olds, ensuring every employee is adequately informed and aligned with the latest
safety protocols.

• Curating a dedicated mental health support system, addressing the unique stresses
and anxieties that may arise during such challenging times.

• Amplifying environmental sanitation measures, emphasizing the disinfection of ob-
jects and surfaces that are in regular use.

• Introducing protective installations, like clear Plexiglas barriers, at interaction points
to reduce direct contact and safeguard both employees and visitors.

• Optimally selecting and distributing personal protective equipment (PPE) after a
meticulous risk evaluation, ensuring it is utilized effectively and safely.

• Holding regular training workshops to impart knowledge about the correct method-
ologies for wearing and removing PPE without risking contamination.

• Enhancing on-site surveillance and audit mechanisms to ascertain strict adherence to
all safety guidelines.

• Incorporating systematic temperature screenings and health evaluations at facility
entrances, serving as preliminary checkpoints.

• Promoting the use of touchless technologies where possible, such as automatic doors
and touch-free payment systems.

• Regularly updating and reviewing emergency response plans to address potential
outbreak scenarios.

• Encouraging telecommuting and remote work options to reduce the density of people
in a confined space.

• Facilitating virtual meetings and conferences as alternatives to in-person gatherings.
• Providing well-ventilated spaces and considering upgrading air filtration systems to

capture potential viral particles.
• Educating and encouraging employees to stay home if they feel unwell or exhibit

any symptoms.

These measures collectively contribute to a comprehensive approach to infection
prevention and control.

Results from real-world evaluations in hospital healthcare units indicate that the
prevailing risk assessment methods fall short, resulting in a notable number of accidents
and mishaps. Many intervention strategies have primarily targeted failure modes with less
critical risk priorities. However, our introduced method proves adept at pinpointing the
truly vital failure modes, affirming its foundational logic. Notably, the insights gleaned
from this method are not confined to the healthcare units examined. They hold potential
for broad application, enhancing safety in myriad healthcare environments grappling with
similar issues. By adopting the suggested corrective actions stemming from our findings,
healthcare units can progressively lower their risk to a universally accepted or “As Low As
Reasonably Practicable” (ALARP) standard. This methodology paves the way for fortified
safety protocols in healthcare and comparable sectors.

The Nash Equilibrium strategy in our models, characterized by the state where each
player’s strategy is optimally chosen against other players’ strategies, has been found
to prioritize specific failure modes significantly. Particularly, failure modes like F7, F11,
F23, F17, and F14 are identified as critical intervention points, as denoted by nonzero
values in our Nash Equilibrium strategy profile. These failure modes, which include
diverse risks, such as ‘increased levels of burning’ to ‘escalating transmission of infections’,
are highlighted for immediate attention due to their high impact on system safety and
operational continuity.

In juxtaposition with major models in existing literature, our proposed model delin-
eates a more granular and nuanced ranking of failure modes. For instance, while traditional
FMEA might prioritize failure modes based solely on RPNs, our model integrates the
Nash Equilibrium concept to refine this prioritization, considering the interplay of multiple
decision-makers and their strategies. This allows for a dynamic assessment that can adapt
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to changing risk scenarios, a feature that is particularly pertinent in the wake of global
health events such as the pandemic.

Moreover, applying our model extends beyond mere ranking, offering strategic in-
tervention points. This is exemplified by the improved order of F13, which correlates
with the enhanced safety protocols in medical guidelines, particularly personal protective
equipment (PPE). This response has been critical in managing infection transmission during
the pandemic.

In practical terms, our model underscores the importance of proactive and preventive
measures, as evidenced by the detailed, actionable strategies presented. These strategies
range from heightened cleaning routines to implementing advanced surveillance mecha-
nisms. Incorporating such comprehensive prevention and mitigation strategies reflects a
significant leap from the detectability-focused assessments in traditional models.

Empirical evidence from the application of our model in hospital healthcare units
reveals that while traditional risk assessments have led to interventions that focus on less
critical failure modes, our model adeptly identifies those failure modes that, if unaddressed,
could result in severe consequences. This assertive identification aligns with the objective
to reduce risks to an ALARP level, ensuring that the safety measures implemented are
theoretically sound and practically viable.

In contrasting our results with those derived from prevalent models, it is evident
that our methodology offers a significant enhancement in pinpointing the failure modes
that necessitate immediate and focused intervention. This comparative advantage is
applicable to healthcare units and can be extrapolated to other domains where safety
and risk management are paramount. The practical implications of this are profound,
as adopting our model can lead to a tangible improvement in safety outcomes and a
more rational allocation of resources towards mitigating the most significant risks. This
discussion enriches the manuscript by providing a critical evaluation of the proposed
model against the backdrop of existing methodologies, thereby elucidating its scientific
contribution to the field of risk management.

5. Methodology Validations

Regarding the study of [139], the three following assessments are considered in the
present study to partially validate the introduced decision-making approach:

• Assessment 1: To ensure the dependability of a decision-making tool, it is imperative
that the agency consistently upholds the superiority of the best alternative. This means
that the tool should never replace the top-ranked alternative with one that is ranked
lower, unless this substitution is made while considering the relative importance of
each criterion’s variation. In other words, the tool should prioritize the best option
unless there is a compelling reason, based on the specific criteria and their importance,
to choose an alternative that is not the highest-ranked overall.

• Assessment 2: Reliability in a decision-making tool necessitates adherence to the
transitivity property. This property ensures that the tool maintains logical consistency
in its decision-making process. If alternative A is preferred over alternative B, and
alternative B is preferred over alternative C, then the tool should logically conclude
that alternative A is preferred over alternative C. This consistency in decision outcomes
is a fundamental characteristic of a reliable tool.

• Assessment 3: In a dependable decision-making tool, when a complex decision prob-
lem is dissected into smaller components using the same tool for alternative prior-
itization, the combined prioritization of alternatives at the component level must
align with the original prioritization of the undivided decision problem. This means
that breaking down the decision into smaller parts should avoid inconsistencies or
contradictions in the overall decision. In our particular approach, which involves
risk assessments for failure modes, it is important to note that these assessments are
interdependent. Therefore, assessment three should be exclusively conducted using
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our introduced approach for evaluating risk factors to maintain the integrity and
consistency of the decision-making process.

5.1. Validity Examination of the Proposed Approach Using Assessment 1

To validate the effectiveness of the proposed approach, which combines Game Theory
and FMEA within an advanced fuzzy environment, we begin with the first assessment. In
this assessment, a non-optimal failure mode (FM.12) is considered the worst and labeled
as FM.12*. Let us assume that a group of decision-makers involved in this study provides
their input on FM.12*, taking into account the risk factors (S, O, and D). By applying the
same computational process outlined in this study, the resulting prioritization remains
consistent: F7 > F11 > F23 > F17, with FM.12* still holding the highest priority among
failure modes. This outcome underscores that the proposed approach does not alter the
selection of the optimal failure mode when substituting a non-optimal one with the worst-
case scenario. Consequently, the validity of the proposed approach is affirmed based on the
first assessment. These findings extend to other non-optimal failure modes, such as F16,
F15, F2, and F22, reinforcing the approach’s reliability in these cases as well.

5.2. Validity Examination of the Proposed Approach Using Assessments 2 and 3

To validate the methodology introduced in this study, we conducted the second and
third assessments by dividing the original set of failure modes in FMEA into four smaller
decision-making problems:

• {F7, F23, F14, F11, F16, and F17}
• {F1, F12, F15, F4, and F3}
• {F9, F22, F21, F10, and F5}
• {F5, F13, F19, F20, F22, and F8}

Following the same computational process outlined in our methodology, we deter-
mined the corresponding RPNs for each failure mode by aggregating the prioritizations
from the sub-problems. The resulting overall priority ranking is as follows:

F7 > F11 > F23 > F17 > F14 > F16 > F15 > F1 > F12 > F4 > F3 > F12 > F9 > F22 > F21
> F10 > F5 > F8 > F22 > F13 > F2 > F19 > F20.

(23)

Importantly, this overall prioritization aligns perfectly with the original prioritization
of the undivided set of failure modes. This demonstrates the transitive nature of the
decision-making problem. As a result, the introduced methodology is validated and
remains consistent under both the second and third assessments.

6. Sensitivity Analysis

In this section, we conduct sensitivity analysis and a comparative study to demonstrate
the effectiveness of the proposed model. Specifically, in our study, the risk factor “Detection”
is selected as the expected value by the optimizer. To perform sensitivity analysis, we also
consider the other risk factors, namely “Severity” and “Occurrence,” as expected values.
The ranking of failure modes is determined based on the RPN using Pythagorean fuzzy
uncertain linguistic variables, as outlined in Step 2 of our hybrid model. Table 4 presents
the rankings of failure modes using each of these strategies. Figure 2 illustrates that certain
failure modes, such as F14, F11, and F7, exhibit similar ranking patterns when considering
Severity-based and Occurrence-based rankings. However, there is a notable reversal in the
ranking pattern when using Linguistic-based rankings.

Key Features:

1. Nodes: There are 23 nodes, labeled F1 to F23. These likely represent specific factors
or features. The central positioning of some nodes (like F1, F2, and F3) might suggest
their importance or centrality in the network.

2. Connection Types:
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# Severity-based (orange): These connections are the most prominent in the
figure. Notably, F2 appears to have the most Severity-based connections.

# Occurrence-based (gray): These are less prevalent than the Severity-based
connections but are still significant. F4 and F5, for instance, seem to have
multiple Occurrence-based connections.

# Linguistic-based (red): These connections are the least common. They primar-
ily involve nodes like F6, F7, F8, and F.

3. Clusters and Sub-networks: The nodes and their connections can be divided into
distinct clusters or sub-networks. For example, F6 to F9 forms a cluster primarily con-
nected by Linguistic-based relations. Similarly, nodes F10 to F15 are interconnected,
primarily with Severity-based connections. Analysis:

4. Central Nodes: F1, F2, and F3 appear to be central nodes given their location and the
number of connections. This might indicate their importance in this network or their
role as primary or overarching factors.

5. Diversity of Relations: The multiplicity of connection types suggests that the network
is examining the relationships between nodes from different perspectives or criteria.
The preponderance of Severity-based connections might indicate that the severity of
relations or factors plays a dominant role in this context.

6. Peripheral Nodes: Nodes like F16 to F23 are on the periphery, with fewer connections.
This could mean they are secondary or less influential factors in this network.

7. Potential Hierarchies: The central nodes’ connections to the peripheral nodes might
suggest a flow of influence or a hierarchical structure. For example, F2’s connections
might indicate its influence over multiple other factors.

8. Linguistic Relations: The presence of Linguistic-based connections, especially around
F6 to F9, might imply a subset of factors that are related based on language, semantics,
or terminologies.

Furthermore, we calculate the “Spearman rank correlation coefficient” among each
pair of the employed techniques, as shown in Table 5. This coefficient reflects the level of
conformity in ranking importance. A higher “Spearman correlation coefficient” indicates a
stronger alignment among the ranking methods, highlighting the consistency or divergence
in their assessments.

Table 4. Failure modes ranking comparison.

Failure Modes Tags Severity-Based Occurrence-Based Linguistic Based

F1 8 8 7

F2 10 9 22

F3 11 14 15

F4 9 11 20

F5 13 12 18

F6 14 13 6

F7 1 2 23

F8 23 17 1

F9 15 15 8

F10 19 21 14

F11 2 1 17

F12 12 10 2

F13 20 23 19

F14 5 4 9

F15 7 7 3
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Table 4. Cont.

Failure Modes Tags Severity-Based Occurrence-Based Linguistic Based

F16 6 5 4

F17 4 3 13

F18 21 19 5

F19 22 22 11

F20 18 20 16

F21 17 18 10

F22 16 16 12

F23 3 6 21
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Table 5. The “Spearman correlation coefficient” of failure modes ranking among each pair of methods.

Importance Weight Pairwise Comparison “Spearman Correlation Coefficient”

6 Severity-based Occurrence-based 0.95

5 Game-Theory-based Severity-based 0.90

4 Game-Theory-based Occurrence-based 0.86

3 Game-Theory-based Linguistic based −0.06

2 Occurrence-based Linguistic based −0.11

1 Severity-based Linguistic based −0.29

As seen in Table 5, the ranking consistency of the proposed Game-Theory-based ap-
proach in this paper, when compared to other methods like Severity-based and Occurrence-
based, demonstrates a higher degree of alignment. When juxtaposed with Game-Theory-
based rankings and the other three methods, it becomes evident that the proposed hybrid
model exhibits a comparable performance to Severity-based and Occurrence-based meth-
ods in terms of ranking conformity among failure modes. However, notable disparities
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highlight the superiority of the Linguistic-based method. This is attributed to the unique
nature of the Linguistic-based approach, which utilizes raw and unprocessed data, resulting
in substantial distinctions in its rankings compared to the other methods.

The “Spearman correlation coefficient” provides an overall assessment of the rankings
generated by all methods, and its importance weighting is visualized in Figure 3. As
depicted in the figure, when compared to the Linguistic-based method, our proposed
Game-Theory-based approach emerges as notably more reliable and applicable. This
is underscored by its enhanced capability to effectively identify failure modes within
healthcare units.
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Figure 3. The importance ranking of all different methods.

In the graphical representation of our analysis, the y-axis serves as a quantitative scale,
representing the aggregation of importance weights assigned to various criteria or elements
under consideration. Each weight reflects the relative significance or priority of the element
it corresponds to within the overall system or model being assessed. On the other hand, the
x-axis delineates the method of assessment, denoting a range of evaluative techniques or
measurement approaches employed to gauge the performance or impact of these elements.
The intersection of these two axes in the graph forms a coordinate system that allows for
a visual interpretation of how different assessment methods correlate with the weighted
importance of the system’s components, facilitating a clearer understanding of where to
focus strategic efforts for optimization or improvement.

7. Conclusions

The conclusion of this study illuminates the profound challenges faced by healthcare
workers and systems amid the pandemic, underscoring the criticality of adept risk assess-
ment and management within healthcare units. To bolster the responsiveness of healthcare
systems during such emergencies, our research presents an advanced, Game-Theory-based
adaptation of the conventional Failure Mode and Effect Analysis (FMEA) method.

This pioneering hybrid model merges Game Theory with the BWM and enriches it
with Pythagorean fuzzy uncertain linguistic variables, thereby overcoming some of the
limitations inherent in traditional FMEA. The practical outcomes of our research are sig-
nificant, exhibiting the model’s enhanced capacity to streamline decision-making, furnish
reliable risk rankings via optimization algorithms, and offer versatility in various health-
care contexts. As a result, the model contributes to the resilience of healthcare systems,
enabling more decisive and accurate strategic choices that directly affect patient care and
resource management.
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While our Game-Theory-based FMEA stands as both a theoretical construct and a
tangible tool for improved decision-making, we must acknowledge certain limitations and
the simplifications or assumptions that have been made within our study:

• Assumption of Rationality: The model assumes that all decision-makers behave
rationally and that their judgments are consistent. This may only sometimes hold in
real-world scenarios due to cognitive biases and emotional factors.

• Complexity and Comprehensibility: The integration of Game Theory and Pythagorean
fuzzy logic increases the complexity of the FMEA process, which may require addi-
tional training for stakeholders to utilize the model effectively.

• Data Dependence: The model’s effectiveness is highly dependent on the accuracy
and completeness of the input data. Any gaps or inaccuracies in the initial data can
significantly affect the reliability of the risk assessment outcomes.

• Static Nature of Analysis: While the model excels in capturing a snapshot of risk
factors and their interactions, it may need to fully account for the dynamic nature of
healthcare systems where risks can evolve rapidly.

• Scope of Application: The current implementation of the model is tailored to healthcare
systems and may require modifications to be effective in other industries or contexts.

• Consensus Building: The model presumes a consensus among decision-makers when
determining the weights of risk factors, which can be challenging to achieve in practice.

• Resource Limitations: The application of this advanced FMEA framework demands
certain computational resources and expertise, which might only be readily available
in some healthcare settings.

Future research must build on these limitations, exploring the flexibility of Game
Theory classes for failure mode ranking and delving into a more diverse comparative anal-
ysis of linguistic variables to reflect human judgment nuances more faithfully. Moreover,
introducing imaginary RPNs could present a more robust approach to evaluating risk
levels, potentially transforming the traditional FMEA process.

In conclusion, our enhanced FMEA framework marks a significant stride towards
refining healthcare delivery and patient care in the face of pandemics. It equips healthcare
establishments to manage the immediate strain and strengthen their preparedness for
future adversities. Subsequent research, considering the limitations and assumptions of our
current model, can further refine this approach, thereby exerting a substantial and lasting
influence on the healthcare sector by evolving strategic risk management into a pivotal
instrument for safeguarding lives and enhancing the quality of healthcare services globally.
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Appendix A

Table A1. The Pythagorean fuzzy uncertain linguistic variables payoff matrix by four decision-makers.

Failure Modes Tag Decision-Makers Severity Occurrence Detection

F1

DM1 ⟨[φC,φD], (0.6, 0.4)⟩ ⟨[φD,φC], (0.7, 0.3)⟩ ⟨[φF,φF], (0.85, 0.15)⟩

DM2 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φC], (0.25, 0.75)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM3 ⟨[φA,φC], (0.25, 0.75)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φB,φC], (0.3, 0.7)⟩

DM4 ⟨[φA,φA], (0.15, 0.85)⟩ ⟨[φA,φA], (0.15, 0.85)⟩ ⟨[φE,φF], (0.7, 0.3)⟩
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Failure Modes Tag Decision-Makers Severity Occurrence Detection

F2

DM1 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM2 ⟨[φE,φG], (0.75, 0.25)⟩ ⟨φE,φE], (0.65, 0.35)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM3 ⟨[φB,φE], (0.45, 0.55)⟩ ⟨[φB,φE], (0.45, 0.55)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM4 ⟨φE,φE], (0.65, 0.35)⟩ ⟨φE,φE], (0.65, 0.35)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

F3

DM1 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM2 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φF], (0.65, 0.35)⟩

DM3 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM4 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φF], (0.65, 0.35)⟩

F4

DM1 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φB,φE], (0.45, 0.55)⟩

DM2 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φE], (0.45, 0.55)⟩ ⟨[φD,φF], (0.65, 0.35)⟩

DM3 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φB,φE], (0.45, 0.55)⟩

DM4 ⟨[φB,φE], (0.45, 0.55)⟩ ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φF], (0.65, 0.35)⟩

F5

DM1 ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φB,φC], (0.3, 0.7)⟩

DM2 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φF,φG ], (0.8, 0.2)⟩ ⟨[φB,φC], (0.3, 0.7)⟩

DM3 ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

DM4 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φA,φA], (0.15, 0.85)⟩

F6

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φB,φC], (0.3, 0.7)⟩

DM2 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φE,φF], (0.7, 0.3)⟩

DM4 ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φE,φF], (0.7, 0.3)⟩

F7

DM1 ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φD,φG], (0.75, 0.25)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φD,φE], (0.6, 0.4)⟩

DM3 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM4 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

F8

DM1 ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φB,φD], (0.35, 0.65)⟩

DM3 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φB,φD], (0.35, 0.65)⟩

DM4 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

F9

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φF], (0.7, 0.3)⟩ ⟨[φE,φF], (0.7, 0.3)⟩

DM2 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φG,φG], (0.3, 0.7)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

DM3 ⟨[φE,φE], (0.65, 0.35)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φE], (0.65, 0.35)⟩

DM4 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φE], (0.55, 0.45)⟩

F10

DM1 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φB,φC], (0.3, 0.7)⟩

DM2 ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φC,φE], (0.55, 0.45)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM3 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM4 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

F11

DM1 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM2 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM3 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φC,φE], (0.55, 0.45)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM4 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F12

DM1 ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩
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Failure Modes Tag Decision-Makers Severity Occurrence Detection

F13

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φA,φB], (0.2, 0.8))⟩ ⟨[φG ,φG], (0.85, 0.15)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

DM3 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F14

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φE], (0.55, 0.45)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

F15

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F16

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φB], (0.65, 0.35)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φE], (0.65, 0.35)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

F17

DM1 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM2 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φE], (0.65, 0.35)⟩

DM3 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM4 ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φG,φG], (0.85, 0.15)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F18

DM1 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

DM2 ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM3 ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φE], (0.6, 0.4)⟩

DM4 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φF,φG], (0.8, 0.2)⟩ ⟨[φF,φG], (0.8, 0.2)⟩

F19

DM1 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM2 ⟨φD,φF], (0.65, 0.35)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM3 ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM4 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F20

DM1 ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM2 ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM3 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φE ,φG], (0.75, 0.25)⟩ ⟨[φD,φE], (0.6, 0.4)⟩

DM4 ⟨[φD,φF], (0.65, 0.35)⟩ ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φD,φF], (0.65, 0.35)⟩

F21

DM1 [φA , φC], (0.25, 0.75) ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φC,φD], (0.4, 0.6)⟩

DM2 ⟨[φB,φC], (0.3, 0.7)⟩ [φA , φC], (0.25, 0.75) ⟨[φC,φD], (0.4, 0.6)⟩

DM3 ⟨[φ3,φ4], (0.6, 0.4)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

DM4 ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φE,φD], (0.7, 0.3)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

F22

DM1 ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φE,φD], (0.7, 0.3)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

DM2 ⟨[φB,φC], (0.3, 0.7)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM3 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φE,φG], (0.75, 0.25)⟩ [φA , φC], (0.25, 0.75)

DM4 ⟨[φE,φG], (0.75, 0.25)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φE,φG], (0.75, 0.25)⟩

F23

DM1 ⟨[φA, φC], (0.25, 0.75)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φG,φG], (0.85, 0.15)⟩

DM2 ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φA,φB], (0.2, 0.8)⟩

DM3 ⟨[φD,φE], (0.6, 0.4)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ [φA , φC], (0.25, 0.75)

DM4 ⟨[φC,φD], (0.4, 0.6)⟩ ⟨[φA,φB], (0.2, 0.8)⟩ ⟨[φE,φG], (0.75, 0.25)⟩
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Table A2. Aggregated normalized single-weighted Pythagorean fuzzy uncertain linguistic variables
payoff matrix.

Failure Modes Tag Severity Occurrence Detection

F1 ⟨[φ0.1103,φ0.1362], (0.2213, 0.2224)⟩ ⟨[φ0.0343,φ0.0289], (0.1556, 0.6121)⟩ ⟨[φ0.0190,φ0.0180], (0.1217, 0.6397)⟩

F2 ⟨[φ0.1348,φ0.1114], (0.3088, 0.0568)⟩ ⟨[φ0.0317,φ0.0276], (0.1493, 0.4959)⟩ ⟨[φ0.0091,φ0.0212], (0.0371, 0.8538)⟩

F3 ⟨[φ0.1399,φ0.1076], (0.2984, 0.0860)⟩ ⟨[φ0.0279,φ0.0327], (0.1190, 0.6178)⟩ ⟨[φ0.0156,φ0.0213], (0.0887, 0.7127)⟩

F4 ⟨[φ0.1399,φ0.1076], (0.2963, 0.0710)⟩ ⟨[φ0.0279,φ0.0327], (0.0940, 0.6951)⟩ ⟨[φ0.0156,φ0.0213], (0.0973, 0.7703)⟩

F5 ⟨[φ0.1374,φ0.1059], (0.3141, 0.0435)⟩ ⟨[φ0.0253,φ0.0326], (0.1549, 0.5120)⟩ ⟨[φ0.0180,φ0.0176], (0.0909, 0.7923)⟩

F6 ⟨[φ0.1395,φ0.1037], (0.3501, 0.0060)⟩ ⟨[φ0.0325,φ0.0282], (0.1429, 0.5274)⟩ ⟨[φ0.0167,φ0.0193], (0.1161, 0.7056)⟩

F7 ⟨[φ0.1450,φ0.0723], (0.3171, 0.0348)⟩ ⟨[φ0.0304,φ0.0306], (0.0690, 0.9679)⟩ ⟨[φ0.0188,φ0.0192], (0.1104, 0.6853)⟩

F8 ⟨[φ0.1403,φ0.0988], (0.3171, 0.0348)⟩ ⟨[φ0.0199,φ0.1234], (0.0690, 0.7421)⟩ ⟨[φ0.0175,φ0.0204], (0.1083, 0.5454)⟩

F9 ⟨[φ0.1393,φ0.0984], (0.3210, 0.0314)⟩ ⟨[φ0.0280,φ0.0344], (0.1345, 0.5646)⟩ ⟨[φ0.0205,φ0.0137], (0.1248, 0.6666)⟩

F10 ⟨[φ0.1219,φ0.1378], (0.2851, 0.0759)⟩ ⟨[φ0.0279,φ0.0312], (0.1080, 0.6692)⟩ ⟨[φ0.0202,φ0.0160], (0.1253, 0.6574)⟩

F11 ⟨[φ0.0970,φ0.1387], (0.1703, 0.2438)⟩ ⟨[φ0.0310,φ0.0308], (0.1388, 0.5507)⟩ ⟨[φ0.0193,φ0.0181], (0.1213, 0.7297)⟩

F12 ⟨[φ0.1465,φ0.0672], (0.3561, 0.0047)⟩ ⟨[φ0.0316,φ0.0334], (0.1621, 0.4534)⟩ ⟨[φ0.0173,φ0.0210], (0.1023, 0.4933)⟩

F13 ⟨[φ0.1343,φ0.1274], (0.3292, 0.0228)⟩ ⟨[φ0.0224,φ0.0344], (0.0836, 0.7122)⟩ ⟨[φ0.0211,φ0.0103], (0.1377, 0.6637)⟩

F14 ⟨[φ0.1470,φ0.0635], (0.3601, 0.0036)⟩ ⟨[φ0.0353,φ0.0153], (0.1811, 0.2589)⟩ ⟨[φ0.0199,φ0.0163], (0.1169, 0.6950)⟩

F15 ⟨[φ0.1470,φ0.0635], (0.3601, 0.0036)⟩ ⟨[φ0.0353,φ0.0153], (0.1811, 0.2589)⟩ ⟨[φ0.0196,φ0.0160], (0.1213, 0.6224)⟩

F16 ⟨[φ0.1470,φ0.0635], (0.3601, 0.0036)⟩ ⟨[φ0.0353,φ0.0153], (0.1811, 0.2589)⟩ ⟨[φ0.0191,φ0.0151], (0.1082, 0.6360)⟩

F17 ⟨[φ0.1470,φ0.0635], (0.3601, 0.0036)⟩ ⟨[φ0.0353,φ0.0153], (0.1811, 0.2589)⟩ ⟨[φ0.0201,φ0.0126], (0.1254, 0.6827)⟩

F18 ⟨[φ0.1316,φ0.1252], (0.2940, 0.0974)⟩ ⟨[φ0.0318,φ0.0263], (0.1478, 0.4762)⟩ ⟨[φ0.0186,φ0.0190], (0.1165, 0.7298)⟩

F19 ⟨[φ0.1213,φ0.1359], (0.2715, 0.1002)⟩ ⟨[φ0.0280,φ0.0344], (0.1234, 0.6262)⟩ ⟨[φ0.0169,φ0.0210], (0.0992, 0.6912)⟩

F20 ⟨[φ0.1315,φ0.1244], (0.2800, 0.0908)⟩ ⟨[φ0.0315,φ0.0308], (0.1394, 0.6607)⟩ ⟨[φ0.0189,φ0.0179], (0.1081, 0.7119)⟩

F21 ⟨[φ0.1182,φ0.1359], (0.2561, 0.1313)⟩ ⟨[φ0.0308,φ0.0308], (0.1426, 0.5795)⟩ ⟨[φ0.0187,φ0.0178], (0.1147, 0.6963)⟩

F22 ⟨[φ0.1176,φ0.1375], (0.2562, 0.1375)⟩ ⟨[φ0.0339,φ0.0294], (0.1547, 0.6128)⟩ ⟨[φ0.0171,φ0.0213], (0.1114, 0.7156)⟩

F23 ⟨[φ0.1208,φ0.1283], (0.2402, 0.1720)⟩ ⟨[φ0.0184,φ0.0347], (0.0608, 0.7513)⟩ ⟨[φ0.0171,φ0.0213], (0.1114, 0.7188)⟩

Table A3. The crisp single-weighted payoff matrix.

Failure Modes Tag Severity Occurrence Detection

F1 0.01027 0.00171 0.00094

F2 0.01121 0.00192 0.00034

F3 0.01115 0.00160 0.00077

F4 0.01116 0.00133 0.00064

F5 0.01112 0.00184 0.00057

F6 0.01138 0.00188 0.00077

F7 0.00996 0.00017 0.00086

F8 0.01095 0.00271 0.00113

F9 0.01091 0.00182 0.00082

F10 0.01163 0.00139 0.00088

F11 0.00952 0.00184 0.00075

F12 0.01003 0.00222 0.00122

F13 0.01208 0.00118 0.00076

F14 0.00991 0.00203 0.00080

F15 0.00991 0.00203 0.00093

F16 0.00991 0.00203 0.00086
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Table A3. Cont.

Failure Modes Tag Severity Occurrence Detection

F17 0.00991 0.00203 0.00075

F18 0.01152 0.00193 0.00075

F19 0.01140 0.00162 0.00084

F20 0.01141 0.00151 0.00078

F21 0.01110 0.00176 0.00080

F22 0.01112 0.00171 0.00080

F23 0.01067 0.00097 0.00079
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