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Abstract: This paper examines the transferability of the Safety Performance Function (SPF) of the
Highway Safety Manual (HSM) and other 10 international SPFs for total crashes on rural multi-lane
divided roads in Egypt. Four segmentation approaches are assessed in the transferability of the
international SPFs, namely: (1) one-kilometer segments (S1); (2) homogenous sections (S2); (3) variable
segments with respect to the presence of curvatures (S3); and (4) variable segments with respect to the
presence of both curvatures and U-turns (S4). The Mean Absolute Deviation (MAD), Mean Prediction
Bias (MPB), Mean Absolute Percentage Error (MAPE), Pearson χ2 statistic, and Z-score parameters are
used to evaluate the performance of the transferred models. The overdispersion parameter (k) for each
transferred model and each segmentation approach is recalibrated using the local data by the maximum
likelihood method. Before estimating the transferability calibration factor (Cr), three methods were
used to adjust the local crash prediction of the transferred models, namely: (1) the HSM default
crash modification factors (CMFs); (2) local CMFs; and (3) recalibrating the constant term of the
transferred model. The latter method is found to outperform the first two methods. Besides, the results
show that the segmentation method would affect the performance of the transferability process.
Moreover, the Italian SPFs based on the S1 segmentation method outperforms the HSM and all of the
investigated international SPFs for transferring their models to the Egyptian rural roads.

Keywords: Safety Performance Functions (SPFs); SPFs transferability; segmentations; crashes;
rural roads; highway safety manual; Egypt

1. Introduction

The rapid increase in population and car ownership has resulted in a major increase in traffic
volume on both urban and rural roads in Egypt, which has led in turn to a significant increase in crash
frequency levels on these roads, causing loss of lives and property [1]. Herman et al. [2] stated that
the effect of traffic crashes on public health is noticeable to a great extent in countries with middle
and low-income as 90% of the fatalities in the world due to road traffic occurs in these countries.
Approximately 1.24 million persons are killed annually worldwide due to road traffic crashes and an
estimated 50 million are seriously injured [1]. In Egypt, the death rate due to road traffic crashes is
44 deaths per 100 million vehicle kilometers compared to about 0.8 deaths per 100 million vehicle
kilometers in the UK [1]. Road traffic crashes cost Egypt approximately 10 billion Egyptian Pounds
(EGPs, about $US 1.8 billion) annually [3]. Hence, traffic safety in Egypt is considered as an area
of serious importance due to the high cost of highway crashes paid by society as well as the loss of
lives [4].
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It is important to recognize the benefits of reducing road crashes. Of course, understanding of
various safety measures and their significance in safety treatments will lead to better decisions [5].
Therefore, crash prediction models are important tools for identifying the locations with severe
crash hazard, which enables evaluating the efficiency of treatments and helps professionals to take
effective decisions [6]. Safety performance functions (SPFs, i.e., crash prediction models) are defined as
mathematical relationships that relates the average crash frequency as a dependent variable with traffic
flow and other site characteristics as independent variables [7]. There is a need to develop SPFs to
apply crash modification factors (CMFs) to investigate the performance of an entity and to determine
the effect of a specific treatment [6].

There are two methods for constructing safety performance functions: (1) development of local
SPFs and (2) calibration of the Highway Safety Manual (HSM) models [8]. It is not an easy task to
perform statistical accident modeling, as it requires a considerable quantity of accurate data like recorded
traffic volumes, geometric characteristics, and recorded crashes for several years [9]. Another major
problem in the historical crash data is the crash underreporting [10–12]. Amoros et al. [11] reported
that most countries depend on police crash data in safety research, and this data is usually incomplete
and biased. Moreover, fatal crashes are well reported, but this is not the case in non-fatal crashes.
They concluded that any study based on police crash data may be quite misleading. Jacobs and
Sayer [13] stated that there is an underreporting of crash data in the range of 25% to 50% in developing
countries. As a result of these problems, attention was given to the transferability of SPFs in both time
and space [14]. It is useful if the SPFs produced for a specific area at a specific time can be used in a
different time in the same or a different area to obtain credible safety studies [14].

The World Health Organization has recommended that priority should be given to the adaptability
of confirmed and propitious methods from developed countries to developing countries and collecting
information about their effectiveness [15]. This is important as there is an expectation that the
developing countries will show the greatest proportional increase in road fatalities and injuries mainly
those in Africa and the Asia/Pacific region [15]. Srinivasan et al. [16] suggested that each jurisdiction
has to first calibrate the HSM SPF and assess the quality of the calibration process.

The HSM introduces a quantitative estimation and road safety analysis to transportation
experts [17]. It provides methods to evaluate the crash occurrence and to evaluate suggested solutions
to minimize crash occurrence and severity. The HSM used crash data of specific states in the United
States of America to develop specific SPFs dedicated to this environment. The HSM developed crash
modification factors (CMFs) for lane width, shoulder width, median width, automated speed control,
and presence of lighting for multilane rural roads. However, other geometric design characteristics
were found to be significant such as the presence of horizontal curves and traffic composition, therefore,
there is a need for additional investigations for all possible factors to be addressed in the future release
of the HSM [1,18].

HSM Transferability Procedure

The HSM transferability method is composed of three parts, as follows [17]:

(1) Choosing the suitable SPF according to the highway facility under specific base conditions,
(2) Adjusting the base conditions using CMFs if the cross-section of the road deviates from the

base condition, and
(3) Finally, the calibration factor (Cr) is estimated to calibrate the predictive model to local conditions

as follows:

Cr =
∑

Observed Crashes∑
Predicted Crashes

(1)

The Cr value of the investigated model is used to judge if the model gives acceptable results in
terms of the ability to estimate the number of crashes occurred on a roadway site with an acceptable
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error [19]. The calibrated SPF overestimates crashes for the roadway segment if the Cr is much lower
than one and underestimates crashes for the roadway segment if it is much higher than one.

The accuracy of the Cr value can be assessed by estimating the standard deviation of the Cr values
follows [20]:

SD =

√√√√√√√√√√√√∑
i

(
Nobs,i+ki N2

obs,i

)
(∑

i
Npred,i

)2 (2)

where SD = standard deviation of the calibration factor; Nobs,i = observed crashes on segment i;
Npred,i = predicted crashes on segment i and Ki = overdispersion parameter of the prediction model
at site i.

Various studies have examined the possibility of transferring the HSM SPFs for local
roadway networks [21–24]. Some studies reported that transferability proved its success [8,25–27],
while others reported less successful transferability and suggested that developing own particular
models is better [16,23,28,29]. Numerous studies have reported that the HSM SPFs calibration
process is time-consuming because of the constraints related to the data collection, readiness,
and completeness [21,30–33]. In addition, Fletcher et al. [34] reported that using simple or complicated
conversion formulas for models developed for another country would not be useful as a result of the
great differences in traffic composition, road condition, design, and the behavior of road user.

Moreover, Kaaf and Abdel-Aty [29] investigated the use of both the HSM default CMFs and the
locally derived CMFs for the transferability of the HSM model for Urban four-lane divided roads
in Saudi Arabia. They found that the estimated Cr value (0.56) based on the locally derived CMFs
is much better than the Cr value (0.31) based on the HSM default CMFs [29]. Two procedures can
be used to estimate CMFs, namely, the before-and-after analysis and the cross-sectional analysis
methods [29]. CMFs derived from before-and-after analysis are mainly depending on the safety
performance comparison before and after a certain treatment implementation. While CMFs derived
from the cross-sectional analysis depend on the comparison of the safety performance of sites that have
a specific feature with those that do not [6]. To get CMFs using before and after method, there is a need
for a large database of before-after applications to derive the link between the CMFs and application
circumstances. Such data is typically not available [35].

Table 1 summarizes some relevant studies that investigated the transferability of the HSM model
for rural roads around the world. As a result of the scarcity of accurate models in Egypt [1], it is
necessary to evaluate the appropriateness of transferring the HSM SPFs to Egypt. This would benefit
Egypt in safety assessment and crash prediction, in addition to evaluating the measures of crash
reduction in terms of costs. To the author’s knowledge, Asal and Said [1] are the only researchers
who assessed the potential of transferring the HSM SPFs to the Egyptian rural divided multi-lane
highways. Their study led to the conclusion that there is a requirement for developing locally derived
SFPs [1], as The HSM SPFs over estimate crashes in Egypt (Cr = 0.48). Thus, the main objective of this
study is to investigate the transferability of the HSM and other international SPFs to rural multilane
divided roads in Egypt. The performance of the transferability process is assessed using four different
segmentation methods, namely: (1) one-kilometer segments; (2) homogenous sections; (3) variable
segments with respect to the presence of curvatures; and (4) variable segments with respect to the
presence of both curvatures and U-turns.
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Table 1. Studies investigating the transferability of HSM SPFs.

# Author Facility Type Calibration Factor (Cr) Transferability
Assessment

1 Sun et al. [36]
Rural two-lane

roads in Louisiana
State (USA)

Cr = 2.28 for AADT <
10,000 vpd

Cr = 1.49 for AADT >
10,000 vpd

The HSM SPFs
underestimate crashes in

Louisiana State.

2 Fitzpatrick et al. [37]
Rural two-lane
roads in Texas

State (USA)
Cr = 1.12

The HSM SPFs slight
under-predict crashes in

Texas State.

3 Martinelli et al. [38]
Rural two-lane
roads in Italian

Province of Arezzo
Cr = 0.38

The HSM SPFs
overestimate crashes

in Arezzo.

4 Koorey [39]
Rural two-lane

undivided roads in
New Zealand

Cr = 0.89
The HSM SPFs predict
New Zealand’s crashes

reasonably well.

5 Persaud et al.[40]
Rural two-way

undivided roads in
Ontario (Canada)

Cr = 0.74
The HSM SPFs

overestimate crashes
in Ontario.

6 Srinivasan et al. [41]
Rural two-lane

roads in
Arizona (USA)

Cr = 1.079 The HSM SPFs predict
Arizona crashes very well

7 Srinivasan et al. [42]
Rural-multilane
divided roads in

Florida (USA)
Cr =0.664

The HSM SPFs over
estimate crashes in

Florida state.

8 Brimley et al. [30]
Rural two-lane
roads in Utah
State (USA)

Cr = 1.16
The HSM SPFs slight

under-predict crashes in
Utah State.

9 Sacchi et al. [28]
Italian two-lane

undivided
rural roads

Cr = 0.44
The HSM SPFs

overestimate crashes on
Italian roads.

10 Dixon et al. [43]
Rural-multilane
divided roads in
Oregon (USA)

Cr = 0.77
The HSM SPFs over
estimate crashes in

Oregon state.

11 Sun et al. [26]
Rural-multilane
divided roads in
Missouri (USA)

Cr = 0.98 The HSM SPFs predict
Missouri crashes very well

12 Agostino [19] Italian rural roads Cr = 1.26
The HSM SPFs

underestimate crashes on
Italian roads.

13 Asal & Said [1]
Rural-multilane

divided rural roads
in Egypt

Cr = 0.48 The HSM SPFs over
estimate crashes in Egypt

2. Materials and Methods

This section introduces the data used in the current study, the used variables,
the investigated segmentation methods, the transferability alternatives evaluated, and the international
SPFs investigated, before viewing the results.

2.1. Data Description

Five rural multi-lane divided roads in Egypt were chosen in this research, as shown in
Figure 1. The codes and names of the investigated roads along with their lengths are given in
Table 2. The geometric data obtained from the General Authority of Roads, Bridges, and Land
Transport (GARBLT). This data consists of: (a) section length, (b) total pavement width in each direction,
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(c) median width, (d) shoulder width, (e) number of access points per section, (f) number of physical
U-turns per section (g) number of lanes in each direction, and (h) the presence of curves along
the section. Additionally, Google Earth maps were used to obtain missing geometric data. The data of
crash frequencies for each kilometer and traffic volumes along the rural sections were obtained from
GARBLT for four years (2008 to 2011). This data can be found in [4]. It is worth noting that GARBLT
classify the roads to agricultural and desert roads based on the roadside activities (i.e., land use).
The desert roads are the roads on which the main roadside activity is desert, while the agricultural
roads are the ones on which the main roadside activity is Agriculture.2020, 7, x FOR PEER REVIEW 5 of 23 
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Figure 1. Selected Rural Roads (Adapted with permission from [4], Springer Nature, 2020).

Table 2. Names and Lengths of Roads under Study.

Road Code Road Name Length (Km)

RD1 Cairo- Alexandria agriculture road 50

RD2 Cairo- Alexandria desert road 108

RD3 Cairo- Suez desert road 73

RD4 Ismailia-Port Said desert road 30

RD5 Ismailia-Suez desert road 61

Four various segmentation approaches were used in this study [4]:

(1) Sections with constant length, specifically, a length of one-kilometer (S1). This length was chosen
as the crash data reported by GARBLT was available only for every kilometer;

(2) Homogenous sections (S2): in this method, the highway length was divided into
homogenous segments, as suggested by HSM [17] with respect to AADT and some geometric
characteristics (e.g., number of lanes, median widths, shoulder width, etc.);

(3) Segmentation based on curvature (S3): the highway was divided into two types of segments based
on the presence of curves, as follows: (a) segments with curves, and (b) segments with no curves.
It is worth mentioning that, as the crash data is reported every kilometer, the consecutive
segments that contain curves are taken as one section and the consecutive one-kilometer sections
with no curves are taken as one segment. This is done with respect to the AADT and other
geometric characteristics; and
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(4) Segmentation based on curvature and U-turns (S4): the segments were categorized according
to the presence of both curves and U-turns, as in S3. The consecutive segments with curves or
U-turns were merged into one segment, and the consecutive sections without curves or U-turns
were merged into one segment.

The number of sections for each road using the different segmentation methods along with the
total crashes number per each year is presented in Table 3. It is worth noting that, the HSM procedure
suggests that the minimum sample size desired for the calibration processes for each facility type is 30
to 50 sites, with 100 crashes at least per year [17]. From Table 3, none of the selected roads satisfies the
HSM criteria needed for the calibration process regarding the number of sites and the total crashes per
year except the first road (Cairo-Alexandria agriculture road) for S1 and S4. Thus, the data for all five
roads were combined in one database to perform the calibration process.

Table 3. Crashes and number of sections based on the segmentation approach (Adapted with permission
from [4], Springer Nature, 2020).

Road Total
Crashes/Year

Number of Sections

S1 S2 S3 S4

RD1 271.75 50 16 28 30

RD2 46.75 108 21 51 55

RD3 47.50 73 31 41 48

RD4 69.0 30 13 13 21

RD5 24.0 61 34 44 40

Total 459.0 322 115 177 194

Summary statistics describing the geometric elements and the AADT of the selected roads for the
different segmentation methods are presented in Table 4.

Table 4. Summary statistics of the selected roads geometric elements and AADT (Adapted with
permission from [4],© Springer Nature, 2020).

Geometric
Element

Maximum Minimum Mean

Segmentation Method Segmentation Method Segmentation Method

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

L (km) a 1.00 12.00 7.00 6.0 1.00 1.00 1.00 1.00 1.00 2.78 1.81 1.65

Accesses b 14 50 25 27 0 0 0 0 2.19 6.12 3.97 4.00

Uturn c 2.00 7.00 4.00 7.00 0.00 0.00 0.00 0.00 0.38 1.04 0.69 1.00

NHL d 2.00 5.00 5.00 5.00 0.00 0.00 0.00 0.00 0.34 0.95 0.61 1.00

AADT e 107,947 14,101 32,212

PW f 13 5.50 9.52

SW g 5.00 1.69 3.24

MW h 44.32 1.60 8.73

Nlanes i 4 2 3.05
a L = Section length. b Accesses = Number of side access points. c Uturn = Number of U-turns. d NHL = Number
of horizontal curves per section. e AADT = Average annual daily traffic (veh/day). f PW = Pavement width in each
direction in meters. g SW = Shoulder width in meters.h MW = Median width in meters. i Nlanes = Number of lanes
in each direction.

2.2. Investigated SPFs

Table 5 summarizes the investigated SPFs used in this study.
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Table 5. The investigated international SPFs.

Model SPF Reference

HSM Ln(N) = −9.025 + 1.049× Ln(AADT) + Ln(L) AASHTO [17]

Virginia Ln(N) = −7.47 + 0.88× ln(AAADT) + ln(L) Kweon et al. [44]

North-Carolina Ln(N ) = −5.89 + 0.76× ln(AADT) + ln(0.6214× L) Srinivasan and Carter [45]

Alabama Ln(N) =
−6.16 + 0.74× ln(AADT) + 0.35× ln(0.6214× L) Mehta & Lou [21]

Ohio Ln(N) =
−9.709+ 1.125× ln(AADT)+ ln(0.6214×L)− 0.074×SW Farid et al. [46]

Italy (2012) Ln(N ) = −18.52 + 1.17× ln(AADT) + ln(L) Cafiso et al. [47]

Italy (2017) Ln(N) = −19.19 + 1.24× ln(AADT) + ln
(

L
1000

)
Cafiso et al. [24]

Netherlands Ln(N) = −10.1934+ 0.4967× ln(AADT)+ 0.9647× ln(L) Reurings & Janssen [48]

Czech Rep. Ln(N) = −13.6468 + 0.9307× ln(AADT) + 0.9499× ln(L)
+0.42× LES + 0.0004×Curvature Šenk et al. [49]

Korea Ln(N ) = −15.245 + ln(AADT) + ln(L) Choi et al. [50]

Ghana Ln(N) = −1.92 + 0.37× ln(AADT) + 0.36× ln(L) Ackaah & Salifu [51]

L = Segment length (Kilometers); SW = Shoulder width (m); LW = lane width (m); LES = road vicinity (forest)
[1 = yes]; Curvature = Number of curves in the road segment.

Five models are from the United States of America (USA): the HSM model, and four models from
the states of Virginia, North Carolina, Alabama, and Ohio. Four models are from Europe: two models
from Italy, and the other two from The Netherlands and the Czech Republic. Finally, the other two
models are from Korea and Ghana, respectively.

2.3. Adjusting the Base Conditions

The base conditions of the international transferred SPFs were adjusted to accommodate local
conditions in Egypt using three alternatives, namely: (1) default CMFs from the HSM; (2) locally
derived CMFs; and (3) by recalibrating the constant term of the transferred SPF.

2.3.1. Default CMFs from the HSM

The HSM base conditions for the SPF for divided roadway segments on rural multilane highways
are as follows:

(a) Lane width (LW): 12 ft. (3.65 m),
(b) Right shoulder width: 8 ft. (2.44 m),
(c) Median width: 30 ft. (9.14 m),
(d) Lighting: None, and
(e) Automated speed enforcement: None.

If the local conditions are different from the HSM base conditions, then the corresponding CMFs
which have been documented in the HSM for the changes should be applied. These CMFs can be
obtained from the HSM (Equations (11)–(16) and (11)–(17), Tables 11–16 to 11–19) in the HSM) [17].
The HSM values were used to estimate the CMFs for lane width, median width, and right shoulder
width only, as the automated speed enforcement was not applied on the roads under study, and the
lightening information was not available in the collected data from GARBLT. Hence, the CMFs for
both of the auto speed enforcement and lightening are equal to one for all segments.
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2.3.2. Locally Derived CMFs Values

In this study, the local CMFs were derived using pre-developed jurisdiction cross-sectional SPFs,
using the four pre-mentioned segmentation approaches [4]. The best-developed jurisdictions
cross-sectional SPF is as follow (values between brackets [] represent the standard error) [4]:

N = exp
(
−13.62 [1.09] + 1.62 [0.12] × ln(AADT) + 1.54[0.13] ln(L) − 0.22 [0.10] × SW+

t− 0.21 [0.03] × PW− 0.08[0.02] ×Accesses− 0.44 [0.13] ×HL

)
Degrees of Freedom (DoF)= 698; Residual Deviance (RD) = 634.77;
AIC = 2167.60; 2LL = −2145.57; Shape Parameter(1/k) = 0.68 [0.07].

(3)

where N = Predicted number of crashes (crashes/year); AADT = Average annual daily traffic
(vehicle/day); L = Segment length (Km); ti = Time trend effect (t2008, t2009, t2010, t2011); SW = Shoulder
width (m); PW = Pavement width in each direction (m); Accesses = Number of side accesses per section
and HL = Categorized variable, yes if the section contains a horizontal curve, and No otherwise.

The pre-developed jurisdiction SPF was then used to derive local CMFs, as follows [52]:

CMFx,i = exp[βi × (X−X0,i)] (4)

where CMFx,i = CMF specific to variable i with value of x; βi = estimated coefficient for variable i;
X = value of variable i, such as lane width, median width, shoulder width and X0,i = base condition
defined for variable i. 12 ft (3.65 m) for lane width, 30 ft (9.14 m) for median width, 8 ft (2.44 m) for
shoulder width, and zero for the presence of HL curve and accesses.

Table 6 presents the locally derived CMFs based on the pre-developed SPF.

Table 6. Locally derived CMFs.

CMFi Value

CMFSW e−0.22×(SW−2.44)

CMFPW e−0.21×(PW−N∗3.65)

CMFAccesses e−0.08×(Accesses)

CMFHL e−0.44×(HL)

The pre-developed cross-sectional model showed that shoulder width, pavement width, and the
presence of either horizontal curves or accesses have a significant effect on crash occurrence, so the
CMFs of these variables were developed to evaluate its effect on crash reduction as shown in Table 6.
For example, for the shoulder width, the base case is assumed to be a shoulder width of 2.44 m (8 ft),
which would translate to a CMF of 1. CMFs for varying shoulder width can be estimated by comparing
their safety to the safety at a shoulder width of 2.44 m. For instance, for a shoulder width of 3 m,
the CMF for total crashes would be about 0.88 (12% reduction in crashes).

2.3.3. Recalibrating the Constant Term and the Over-Dispersion Parameter of the Transferred SPF

The main advantage of recalibrating the constant term of the transferred SPF is that it allows
the transferred SPF to accommodate local conditions as the model constant takes into consideration
most factors outside the explanatory variables [14]. In this paper, the R-statistical software [53] was
used to recalibrate the over-dispersion parameter and the constant of the transferred SPFs using
the same approach by Sawalha and Sayed [14]. In this procedure, the constant of the transferred
SPFs is recalibrated using the maximum likelihood method. The R-statistical software was used to
recalibrate both of the overdispersion parameter and the constant of the transferred model by forcing
the coefficient of the variables of the transferred model to remain constant with the same values in
the transferred model. For all the three alternatives it is important to recalibrate the over-dispersion
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parameter (k) of the transferred SPFs before testing the SPFs transferability. The over-dispersion
parameter is an indication of the variability of the model compared with the Poisson distribution with
the same mean. The lower the value of the over-dispersion coefficient (k), the higher the accuracy of
the resulting models [14].

2.4. Recalibrating the Over-Dispersion Parameter

The overdispersion parameter (k) of the transferred model was recalibrated using local data to allow
the models to better suit local conditions in Egypt using the maximum likelihood procedure. This is the
most widely used procedure [54]. Two alternatives were applied in recalibrating the over-dispersion
parameter (k) of the transferred models. The first approach assumes that the over-dispersion parameter
of the transferred models is fixed for all locations, while the second approach assumes that this
over-dispersion parameter varies with the segment length. The difference between the two approaches
was assessed by estimating the standard deviation of the Cr value of the transferred SPFs.

2.4.1. Constant Over-Dispersion Parameter

The log-likelihood function based on the Negative Binomial used in estimating the model
parameters is as follows [55]:

ln[l ∗ (β 0,β1, . . . , b)] =
n∑

i=1

 ln Γ(obsi+b)− ln Γ(b)+bln(b)+
obsi ln

(
predi

)
− (b + obsi) ln

(
b + predi

)  (5)

where obsi = observed crashes on segment i; predi = predicted crashes on segment i; β0, β1, . . . ,
b = parameter estimates of the model coefficients; b = inverse of the overdispersion parameter
(shape parameter or b =1/k); and k = overdispersion parameter.

The recalibrated over-dispersion parameter of the prediction model is calculated as the value that
maximizes the sum of ln[l ∗ (β 0,β1, . . . , b)].

2.4.2. Over-Dispersion Parameter as a Function of the Segment Length

In this case, k will vary for each location, and the value of “k*L” is calculated as the value that
maximizes the sum of ln[l ∗ (β 0,β1, . . . , b)] as follows [55]:

ln[l ∗ (β 0,β1, . . . , b)] =
n∑

i=1

 ln Γ(obsi+b ∗ Li)− ln Γ(b ∗ Li)+b ∗ Li ln(b ∗ Li)+

obsi ln
(
predi

)
− (b ∗ Li+obsi) ln

(
b ∗ Li+predi

)  (6)

where b = inverse of the overdispersion parameter (shape parameter or b = 1/k) and Li = segment
length i.

2.5. Goodness-of-Fit (GOF) Measures

In this analysis, five GOF measures are used to compare the performances of the international
transferred SPFs, namely: (1) the mean absolute deviation (MAD); (2) the mean prediction bias (MPB);
(3) the mean absolute percentage error (MAPE); (4) Pearson χ2 statistic; and (5) Z-score.

2.5.1. The Mean Absolute Deviation (MAD)

MAD gives an indication of the average magnitude of variability in the model. Smaller values of
MAD are preferred to larger ones [56]. The MAD is given by:

MAD =

n∑
i=1

∣∣∣Ŷi−Yi
∣∣∣

n
(7)
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where n = sample size; Ŷi = predicted crashes for site i; and Yi = observed crashes for site i.

2.5.2. The Mean Prediction Bias (MPB)

MPB gives a knowledge into the average model bias compared to the observed data. If the model,
does not over/under predict observations, the estimation of MPB will be zero [56]. The MPB is given by:

MAD =

n∑
i=1

∣∣∣Ŷi−Yi
∣∣∣

n
(8)

2.5.3. The Mean Absolute Percentage Error (MAPE)

MAPE measures the deviation between predicted and observed values. The prediction would be
better when the value of MAPE approach “zero” [57].

MAPE =

n∑
i=1

∣∣∣Ŷi−Yi
∣∣∣

n∑
i=1

Yi

(9)

2.5.4. Pearson χ2 Statistic

The Pearson χ2 statistic is given by the following equation:

χ2
P =

n∑
i=1

[
yi−Ei(Y)

]
Var(Yi)

2

=

(
yi−µi

)2

µi(1 + µi/k)
(10)

where µi = the mean crash frequency at section i during the same time.
Pearson χ2 statistic is a measure of the goodness of fit that tests if a definite SPF developed by

using certain data set gives a reliable expectation for a different set of data [13]. In addition, if the SPF
that is applied to a new data set is correct and the observations in the new data set are independent,
then the expected value and the standard deviation of the Pearson χ2 statistics are as follow [58]:

E
(
χ2

P

)
= N (11)

σ
(
χ2

P

)
=

√√√
2N(1 + 3/k) +

N∑
i=1

1
µi(1 + µi/k)

(12)

where N = the number of observations in the new data set.

2.5.5. Z-Score

The score that measures how far the calculated χ2
P is from its expected value is called the Z-score

and is estimated as follows [14]:

Z =
χ2

P−E
(
χ2

P

)
σ
(
χ2

P

) (13)

The Z-score value can be used to test the transferability of the crash prediction model, as the
values near zero support the transferred model [14].
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3. Results

3.1. Default CMFs from HSM versus Locally Derived CMFs

Table 7 shows the values of the recalibrated over-dispersion parameter (k) along with the
calibration factors (Cr) of the transferred HSM SPF, with the standard deviation of the Cr in Parentheses,
derived from using the default HSM CMFs and the locally derived Egyptian CMFs for the total
crashes (TCs) for each segmentation approach. It can be noticed that from Table 7, the k parameter for
segmentation S2 is relatively lower than the other investigated segmentations, which may indicate
higher reliability of this segmentation method. It is worth noting that, the values of the calibration
factors using new local CMFs outperform the HSM default values for total crashes, which is consistent
with the results of AL Kaaf and Abdel-Aty [29]. Furthermore, by comparing the results of the calibration
factors using new local CMFs for each segmentation approach, it can be found that the calibration
factor from segmentation S2 (Cr = 0.738) is higher than the other segmentation methods, which is
expected as the HSM SPFs were developed using homogeneous sections. Finally, both calibration
methods yielded calibration factors lower than one meaning that HSM base SPFs are overestimating
the mean crash frequencies on rural multilane divided roads in Egypt for all segmentation approaches.

Table 7. Recalibrated overdispersion parameters and Calibration factors for the HSM model using
HSM default CMFs and locally derived CMFs.

Variable
Segmentation Method

S1 S2 S3 S4

Recalibrated
overdispersion
parameter (k)

2809 2579 2.965 2.713

Observed crashes 1836

Predicted crashes
using HSM default

CMFs
5695 5676 5678 5675

Calibration factor
using HSM default

CMFs (Cr)

0.322 a,b,c,g

(0.066) *
0.323 a,d,e,g

(0.127)
0.323 b,d,g

(0.115)
0.323 c,e,g

(0.102)

Predicted crashes
using Local CMFs 4692 2488 3706 3823

Calibration factor
using Local CMFs

0.391 a,b,c,g

(0.081)
0.738 a,g

(0.289)
0.495 b,g

(0.176)
0.480 c,g

(0.151)

* Values between parentheses () represent the standard deviation of the Cr. a The difference between S1 and S2
segmentation methods is statistically significant at the 5% SL. b The difference between S1 and S3 segmentation
methods is statistically significant at the 5% SL. c The difference between S1 and S4 segmentation methods SPF is
statistically significant at the 5% SL. d The difference between S2 and S3 segmentation methods SPF is statistically
significant at the 5% SL. e The difference between S2 and S4 segmentation methods SPF is statistically significant at
the 5% SL. f The difference between S3 and S4 segmentation methods SPF is statistically significant at the 5% SL. g

The difference between the two methods for the same segmentation method is statistically significant at the 5% SL.

To examine the validity of differences between the values of the calibration factors derived from
the investigated segmentation approaches, two tests were employed: (1) the analysis of variance
(ANOVA) that shows the difference between the four segmentation methods and (2) the t-test that
shows the difference between each pair of segmentation methods for each transferred SPF model [59].
The result of the ANOVA test for both the calibrated HSM SPF using the HSM default CMFs and the
local CMFs values show a statistically significant difference between the values of the calibration factors,
derived from the investigated segmentation approaches at the 99.99% level of confidence as the p-values
are almost zero (i.e., 0.000). The t-test for the calibrated HSM using the default CMFs shows that
the difference between each pair of segmentation approaches is statistically significant at the 5%
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significance level (SL) except, the difference between S3 and S4 which is not statistically significant at
both the 5% and the 10% significance level (p-value = 0.458 > 0.1). Finally, the t-test was performed to
investigate whether there is a significant difference between the calibrated HSM SPF using the HSM
default CMFs and the local CMFs using the same segmentation method. The t-test results show a
statistically significant difference between the calibrated HSM SPF using the HSM default CMFs and
the local CMFs for each segmentation method at the 99.99% level of confidence as the p-values are 0.000,
0.000, 0.000, and 0.000 for S1, S2, S3, and S4, respectively.

3.2. Locally Derived CMFs versus Recalibrating the Constant of the Transferred Models

The results of recalibrating the over-dispersion parameters of the investigated international SPFs
and the total calibration factors with the standard deviation of the Cr in Parentheses () using the two
different procedures are shown in Tables 8 and 9, respectively. It can be seen from Table 8 that, for the
S1 segmentation method, the Netherlands and Italy (2012) models are the best models, as they lead
to the best calibration factors of 0.959 and 0.901 (i.e., close to one). For the S2 segmentation method,
the Virginia model is the best (Cr = 0.919). For the S3 segmentation method, Ohio, Italy (2017),
and Italy (2012) models are the best models (Cr = 0.944, 1.065, 1.138, respectively). For the S4
segmentation method, the Italy (2017), Ohio, and Italy (2012) models are the best models (Cr =1.031,
0.920, 1.103, respectively). Additionally, the calibrated Italian SPF models using the locally derived
CMFs have the lowest over-dispersion parameters.

Table 9 shows that for the S1 segmentation method, the Italy (2017) and Italy (2012) models are the
best models, as they lead to the best calibration factors of 1.050 and 1.084 (i.e., close to one). For the S2
segmentation method, the Italy (2017) and Italy (2012) models are the best models (Cr = 0.987 and 1.031,
respectively). For the S3 segmentation method, Italy’s (2017) model is the best (Cr = 1.156). For the
S4 segmentation method, Italy (2012) and Italy (2017) models are the best models (Cr =1.014, 0.974,
respectively).

By comparing between Tables 8 and 9, it can be noticed that the recalibrated k parameters for
the transferred models with recalibrated constant are lower than those estimated from the locally
derived CMFs, which may indicate higher reliability of this transfer alternative. Additionally,
the calibration factors for the transferred models with calibrated constant are outperforming the
transferred models calibrated using the locally derived CMFs.

Additionally, the ANOVA and t-test were performed to investigate whether there is a significant
difference among all the calibrated international SPFs for each segmentation approach. For example,
the result of the t-test for the calibrated Alabama SPF using the locally derived CMFs shows that
the difference between each pair of segmentation approaches is statistically significant at the 5%
significance level except, the difference between S3 and S4 which is not statistically significant at both
the 5% and the 10% significance level (p-value = 0.745 > 0.1), and the result of the ANOVA test shows
that the difference between the calibrated international SPFs using the locally derived CMFs for all
segmentation methods is statistically significant at the 99.99% level of confidence, as the P-values are
almost zero (i.e., 0.0000) for all segmentation methods.

Finally, the t-test was performed to investigate whether there is a significant difference between
each pair of the calibrated international SPFs for each segmentation method. For example, the t-test
results show that for the S1 segmentation method, the difference between the calibrated HSM and the
calibrated Netherlands model using the locally derived CMFs is statistically significant at the 5% level
of significance (p-value = 0.000).
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Table 8. The calibration factors estimate using the locally derived CMFs.

Model Nobs.
S1 S2 S3 S4

k Npred. Cr k Npred. Cr k Npred. Cr k Npred. Cr

HSM

1836

2.809 4692 0.391 a,b,c

(0.081) *
2.580 2488 0.738 a

(0.289) 2.966 3706 0.495 b

(0.176)
2.713 3823 0.480 c

(0.151)

Virginia 2.551 3760 0.488 a,b,c

(0.096)
2.379 1997 0.919 a

(0.346) 2.714 2965 0.619 b

(0.210)
2.475 3055 0.601 c

(0.181)

N. Carolina 3.210 5506 0.333 a,b,c

(0.073)
3.004 2931 0.626 a

(0.265) 3.537 4338 0.423 b

(0.164)
3.099 4467 0.411 c

(0.138)

Alabama 2.972 5636 0.326 a,b,c

(0.069)
2.229 1305 1.406 a,d,e

(0.516)
3.499 2487 0.738 b,d

(0.284)
2.564 2792

0.658
c,e

(0.201)

Ohio 1.812 2436 0.754 a,b,c

(0.125)
1.675 1302 1.410 a

(0.446) 1.934 1945 0.944 b

(0.271)
1.784 1996 0.920 c

(0.235)

Italy (2012) 1.657 2039 0.901 a,b,c

(0.143)
1.611 1082 1.697 a

(0.526) 1.800 1613 1.138 b

(0.315)
1.741 1665 1.103 c

(0.278)

Italy (2017) 1.752 2177 0.843 a,b,c

(0.138)
1.634 1156 1.588 a

(0.496) 1.838 1725 1.065 b

(0.298)
1.775 1781 1.031 c

(0.263)

Netherlands 1.966 1914 0.959 a,b,c

(0.166)
1.852 990 1.854 a

(0.616) 2.050 1469 1.250 b

(0.369)
1.892 1519 1.209 c

(0.318)

Czech 2.987 5045 0.364 a,b,c

(0.077)
2.708 2527 0.727 a

(0.292) 3.122 3834 0.479 b

(0.174)
2.854 3982 0.461 c

(0.149)

Korea 3.921 8958 0.205 a,b,c

(0.050)
3.606 4752 0.386 a

(0.179) 4.083 7072 0.260 b

(0.108)
3.764 7292 0.252 c

(0.093)

Ghana 2.323 2593 0.708 a

(0.133) 2.188 761 2.413 a,d,e

(0.871)
2.440 1388 1.323 d

(0.426)
2.148 1554 1.181 e

(0.331)

* Values between parentheses () represent the standard deviation of the Cr. a The Difference between S1 and S2 methods for the same transferred SPF is statistically significant at the
5% SL. b The difference between S1 and S3 methods for the same transferred SPF is statistically significant at the 5% SL. c The difference between S1 and S4 methods for the same
transferred SPF is statistically significant at the 5% significance level. d The difference between S2 and S3 methods for the same transferred SPF is statistically significant at the 5% SL.
e The Difference between S2 and S4 methods for the same transferred SPF is statistically significant at the 5% SL. f The Difference between S3 and S4 methods for the same transferred SPF
is statistically significant at the 5% SL. g The Difference between the HSM-The Netherlands models for the S1 method is statistically significant at the 5% SL. h The difference between the
Alabama-Virginia models for the S2 method is statistically significant at the 5% SL. i The Difference between the Korea-Ohio models for the S3 method is statistically significant at the
5% SL. j The Difference between the Czech-Italy (2017) models for the S4 method is statistically significant at the 5% SL.
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Table 9. Calibration factors estimates by recalibrating the constant of the transferred SPFs.

Model

S1 S2 S3 S4

New
Constant k Cr New

Constant k Cr New
Constant k Cr New

Constant k Cr

HSM −10.202 1.605
1.134 a,b,c

−10.17 1.593
1.102 a,d,e

−10.306 1.628
1.263 b,d

−10.146 1.694
1.076 c,e

(0.177) * (0.334) (0.332) (0.265)

Virginia −8.458 1.642
1.184 a,b,c

−8.455 1.561
1.185 a,d,e

−8.575 1.65
1.335 b,d

−8.423 1.687
1.147 c,e

(0.187) (0.362) (0.354) (0.282)

N. Carolina −7.278 1.688
1.202 a,b,c

−7.295 1.593
1.228 a,d,e

−7.426 1.691
1.4 b,d

−7.256 1.788
1.181 c,e

(0.193) (0.379) (0.375) (0.138)

Alabama −7.394 1.697
1.204 a,b,c

−9.41 1.564
1.141 a,d,e

−7.094 2.078
1.4 b,d

−7.091 1.799
1.308 c,e

(0.194) (0.346) (0.416) (0.335

Ohio −10.219 1.581
1.154 a,b,c

−10. 191 1.642
1.130 a,d,e

−10.323 1.538
1.285 b,d

−10. 172 1.546
1.104 c,e

(0.176) (0.331) (0.329) (0.263)

Italy (2012) −18.826 1.568
1.084 a,b,c

−18.774 1.542
1.031 a,d,e

−18.937 1.62
1.214 b,d

−18.757 1.669
1.014 c,e

(0.168) (0.313) (0.319) (0.251)

Italy (2017) −19.545 1.605
1.05 a,b,c

−19.481 1.549
0.987 a,d,e

−19.639 1.627
1.156 b,d

−19.467 1.685
0.974 c,e

(0.164) (0.3) (0.304) (0.242)

Netherlands −10.5 1.865
1.195 a,b,c

−10.531 1.741
1.296 a,d,e

−10.621 1.861
1.393 b,d

−10.498 1.792
1.227 c,e

(0.201) (0.418) (0.392) (0.314)

Czech −14.921 1.627
1.172 a,b,c

−14.867 1.556
1.19 a,d,e

−15.006 1.653
1.333 b,d

−14.861 1.699
1.147 c,e

(0.184) (0.363) (0.353) (0.282)

Korea −17.081 1.612
1.157 a,b,c

−17.057 1.553
1.128 a,d,e

−17.189 1.629
1.287 b,d

−17.031 1.691
1.099 c,e

(0.18) (0.342) (0.338) (0.27)

Ghana −2.51 1.979
1.166 a,b,c

−1.933 2.188
1.372 a,d,e

−2.23 2.348
1.359 b,d

−2.234 2.053
1.279 c,e

(0.202) (0.495) (0.429) (0.35)

* Values between parentheses () represent the standard deviation of the Cr. a The difference between S1 and S2 methods for the same transferred SPF is statistically significant at the 5% SL.
b The difference between S1 and S3 methods for the same transferred SPF is statistically significant at the 5% SL. c The difference between S1 and S4 methods for the same transferred SPF is
statistically significant at the 5% SL. d The difference between S2 and S3 methods for the same transferred SPF is statistically significant at the 5% SL. e The difference between S2 and S4
methods for the same transferred SPF is statistically significant at the 5% SL. f The difference between S3 and S4 methods for the same transferred SPF is statistically significant at the 5% SL.
g The difference between the Netherlands-Italy (2017) models for the S1 method is statistically significant at the 5% SL. h The difference between the Ghana-Italy (2017) models for the S2
method is statistically significant at the 5% SL. i The difference between the Alabama-Italy (2017) models for the S3 method is statistically significant at the 5% SL. j The difference between
the Alabama-Italy (2012) models for the S4 method is statistically significant at the 5% SL.



Safety 2020, 6, 43 15 of 24

Table 10 summarizes the GOF results of the investigated international SPFs to Egypt after the
recalibration using the locally derived CMFs and by recalibrating the constant of the transferred
international SPFs using the four segmentation methods. It can be noticed that the transferred SPFs
with recalibrated the model constant have the lowest values of MAD, MPB, MAPE, and Z-score for
all segmentation approaches. In addition, the transferred SPFs using segmentation method S1 have
the best GOF results compared to the other segmentation methods. Additionally, the transferred
Italian SPFs using the locally derived CMFs and by recalibrating the constant have the lowest values
of MAD, MPB, MAPE, and Z-score for segmentation S1. For example, the MAD, MPB, MAPE, χp

2,
and Z-score values for transferred Italy (2012) SPF by recalibrating the constant are 4.670, −0.440,
0.819, 309.559, and −0.205, respectively, compared to 5.946, 0.630, 1.043, 179.548 and −2.295, for the
transferred Italy (2012) SPF using the locally derived CMFs. Moreover, the MAD, MPB, MAPE,
χp

2, and Z-score values for transferred Italy (2017) SPF by recalibrating the constant are 4.624,
−0.269, 0.811, 312.470, and −0.155, respectively, compared to 5.996, 1.060, 1.052, 166.785 and −2.443,
for transferred Italy (2017) SPF using the locally derived CMFs.Thus, it can be concluded that the
transfer of the SPFs with recalibrated model constant is superior to the transfer of the SPFs using
the local CMFs, and the transferred Italian SPFs using segmentation method S1 predict crashes in
Egypt reasonably well based on the GOF results.

3.3. Fixed Over-Dispersion Parameter versus Variable Over-Dispersion Parameter

Table 11 summarizes the standard deviation of the calibration factor (SD (Cr)) of the recalibrated
international SPFs using the locally derived CMFs using fixed over-dispersion parameter and
variable over-dispersion parameter. Additionally, Table 12 summarizes the standard deviation of
the calibration factor (SD (Cr)) of the recalibrated international SPFs by recalibrating the constant
using fixed over-dispersion parameter and variable over-dispersion parameter.

An examination of the tables indicates that using a variable over-dispersion parameter for
the recalibrated SPFs is better than using fixed over-dispersion parameter, as the values of the
standard deviation of the calibration factors of the recalibrated international SPFs with a variable
over-dispersion parameter is lower than the standard deviation of the calibration factors of the
recalibrated international SPFs with a Fixed over-dispersion parameter.
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Table 10. Goodness of fit results of the transferred international SPFs.

S1 Segmentation Method

SPF Model
MAD MBP MAPE χp

2 σ(χp
2) Z−score

Local
CMFs

New
Constant

Local
CMFs

New
Constant

Local
CMFs

New
Constant

Local
CMFs

New
Constant

Local
CMFs

New
Constant

Local
CMFs

New
Constant

HSM 10.717 4.781 8.870 −0.673 1.880 0.838 71.423 293.208 77.922 61.315 −3.216 −0.469

Virginia 9.094 5.013 5.977 −1.180 1.595 0.836 76.460 285.254 74.656 61.886 −3.289 −0.594

N. Carolina 13.146 5.069 11.398 −0.960 2.306 0.889 66.012 287.028 82.738 62.583 −3.094 −0.559

Alabama 13.730 5.089 11.798 0.968 2.408 0.893 68.819 288.034 79.910 62.727 −3.168 −0.541

Ohio 6.583 4.675 1.864 −0.762 1.154 0.820 119.594 284.803 64.420 59.940 −3.142 −0.621

Italy (1) 5.946 * 4.670 ** 0.630 * −0.440 ** 1.043 * 0.819 ** 179.548 309.559 62.083 60.756 −2.295 * −0.205 **

Italy (2) 5.996 ** 4.624 * 1.060 ** −0.269 * 1.052 ** 0.811 * 166.785 312.470 63.543 61.340 −2.443
** −0.155 *

Netherlands 6.604 5.363 1.243 −0.930 1.158 0.940 70.159 290.670 76.888 62.895 −3.275 −0.498

Czech Rep. 11.708 4.902 9.965 −0.837 2.053 0.860 68.558 286.699 80.092 61.657 −3.164 −0.573

Korea 22.356 4.832 22.118 −0.749 3.921 0.848 60.885 289.918 90.667 61.422 −2.880 −0.522

Ghana 7.868 5.533 2.352 −0.811 1.380 0.970 122.362 348.290 71.650 66.895 −2.786 0.393

S2 Segmentation Method

HSM 12.885 9.601 4.530 −1.182 1.011 0.753 26.560 93.582 44.837 44.837 −1.972 −0.595

Virginia 12.567 9.945 1.120 −1.993 1.986 0.780 27.613 90.811 43.261 43.261 −2.020 −0.668

N. Carolina 15.858 10.161 7.607 −2.369 1.244 0.797 24.716 90.754 47.986 47.986 −1.881 −0.664

Alabama 12.462 9.762 −3.685 −1.576 0.977 0.766 36.286 91.967 42.048 42.048 −1.872 −0.639

Ohio 10.993 9.400 −3.708 −1.463 0.862 0.737 37.252 89.532 40.610 40.610 −1.997 −0.727

Italy (1) 10.689 ** 9.382 ** −5.238 ** −0.389 ** 0.838 ** 0.736 ** 60.680 96.620 36.662 36.662 −1.482 * −0.510 **

Italy (2) 10.581 * 9.270 * −4.721 * 0.163 * 0.830 * 0.727 * 58.974 98.557 36.878 36.878 −1.519
** −0.455 *

Netherlands 11.458 10.648 −5.871 −2.915 0.899 0.835 53.716 90.094 38.844 38.844 −1.578 −0.714
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Table 10. Cont.

Czech Rep. 13.701 9.782 4.802 −2.036 1.075 0.767 25.797 90.919 45.812 45.812 −1.947 −0.666

Korea 22.514 9.708 20.253 −1.450 1.766 0.761 23.369 92.521 52.135 52.135 −1.758 −0.624

Ghana 11.992 11.458 −7.473 −3.459 0.941 0.899 47.923 93.439 36.719 36.719 −1.826 −0.604

S3 Segmentation Method

HSM 15.037 7.992 10.566 −2.162 1.450 0.770 37.719 149.175 59.196 45.636 −2.353 −0.610

Virginia 13.547 8.252 6.379 −2.605 1.306 0.796 39.276 144.694 56.894 45.965 −2.421 −0.703

N. Carolina 18.660 8.394 14.137 −2.964 1.799 0.809 35.295 151.525 62.883 46.432 −2.253 −0.549

Alabama 13.714 9.175 3.676 −2.963 1.322 0.885 43.441 144.405 58.054 46.634 −2.301 −0.699

Ohio 10.445 7.882 1.615 −2.301 1.007 0.760 54.672 144.180 49.097 44.680 −2.492 −0.735

Italy (1) 9.585 ** 7.773 ** −1.259 ** −1.826 ** 0.924 ** 0.749 ** 75.859 158.888 47.636 45.643 −2.123 * −0.397 **

Italy (2) 9.572 * 7.678 * −0.629 * −1.402 * 0.923 * 0.740 * 73.503 159.278 48.061 45.722 −2.153
** −0.388 *

Netherlands 10.501 8.858 −2.072 −2.926 1.012 0.854 66.624 157.078 52.324 48.321 −2.193 −0.412

Czech Rep. 16.198 8.209 11.288 −2.591 1.562 0.791 36.637 145.992 60.583 46.005 −2.317 −0.674

Korea 30.188 8.071 29.581 −2.313 2.910 0.778 29.039 147.401 68.488 45.691 −2.160 −0.648

Ghana 10.501 9.773 11.288 −2.738 1.059 0.942 71.171 117.476 48.486 78.527 −2.183 −0.758

S4 Segmentation Method

HSM 13.659 7.493 10.242 −0.668 1.443 0.792 43.319 163.096 59.548 48.158 −2.530 −0.642

Virginia 12.099 7.771 6.285 −1.213 1.278 0.821 45.698 155.991 57.180 48.196 −2.594 −0.789

N. Carolina 16.968 7.951 13.562 −1.454 1.793 0.840 40.068 153.741 63.209 48.439 −2.435 −0.831

Alabama 12.681 8.063 4.928 −2.228 1.340 0.852 46.082 164.059 58.077 49.858 −2.547 −0.601

Ohio 9.405 7.436 0.924 −0.890 0.994 0.776 72.072 158.497 49.672 46.845 −2.455 −0.758

Italy (2012) 8.748 ** 7.347 ** −0.880 ** −0.130 * 0.924 ** 0.776 ** 109.561 169.772 49.178 48.355 −1.717 * −0.501 **
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Table 10. Cont.

Italy (2017) 8.720 * 7.263 * −0.282 * 0.256 ** 0.921 * 0.767 * 105.363 171.620 49.583 48.547 −1.788
** −0.461 *

Netherlands 9.599 8.346 −1.636 −1.751 1.014 0.882 92.172 162.146 50.914 49.777 −2.000 −0.640

Czech Rep. 14.739 7.667 11.063 −1.213 1.557 0.810 41.700 156.258 60.910 48.108 −2.500 −0.785

Korea 28.439 7.572 28.126 −0.850 3.005 0.800 37.504 160.706 69.064 48.130 −2.266 −0.690

Ghana 10.024 8.566 −1.453 −2.065 1.059 0.905 96.587 124.462 53.758 52.720 −1.812 −1.319

* The best GOF values. ** The second best GOF values.
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Table 11. The Calibration factors estimates using the locally derived CMFs with “fixed” and “variable” over-dispersion parameters.

Model
Segmentation S1 Segmentation S2 Segmentation S3 Segmentation S4

Fixed k Variable k Fixed k Variable k Fixed k Variable k Fixed k Variable k

HSM 0.391
(0.081) *

0.391
(0.081)

0.738
(0.289)

0.738
(0.266)

0.495
(0.176)

0.495
(0.128)

0.480
(0.151)

0.480
(0.117)

Virginia 0.488
(0.096)

0.488
(0.096)

0.919
(0.346)

0.919
(0.270)

0.619
(0.210)

0.619
(0.152)

0.601
(0.181)

0.601
(0.139)

N. Carolina 0.333
(0.073)

0.333
(0.073)

0.626
(0.265)

0.626
(0.204)

0.423
(0.164)

0.423
(0.116)

0.411
(0.138)

0.411
(0.106)

Alabama 0.326
(0.069)

0.326
(0.069)

1.406
(0.516)

1.406
(0.370)

0.738
(0.284)

0.738
(0.178)

0.658
(0.201)

0.658
(0.148)

Ohio 0.754
(0.125)

0.754
(0.125)

1.410
(0.446)

1.410
(0.365)

0.944
(0.271)

0.944
(0.199)

0.920
(0.235)

0.920
(0.182)

Italy (2012) 0.901
(0.143)

0.901
(0.143)

1.697
(0.526)

1.697
(0.417)

1.138
(0.315)

1.138
(0.234)

1.103
(0.278)

1.103
(0.212)

Italy (2017) 0.843
(0.138)

0.843
(0.138)

1.588
(0.496)

1.588
(0.343)

1.065
(0.298)

1.065
(0.221)

1.031
(0.263)

1.031
(0.201)

Netherlands 0.959
(0.166)

0.959
(0.166)

1.854
(0.616)

1.854
(0.480)

1.250
(0.369)

1.250
(0.272)

1.209
(0.318)

1.209
(0.247)

Czech Rep. 0.364
(0.077)

0.364
(0.077)

0.727
(0.292)

0.727
(0.226)

0.479
(0.174)

0.479
(0.126)

0.461
(0.149)

0.461
(0.114)

Korea 0.205
(0.050)

0.205
(0.050)

0.386
(0.179)

0.386
(0.139)

0.260
(0.108)

0.260
(0.078)

0.252
(0.093)

0.252
(0.072)

Ghana 0.708
(0.133)

0.708
(0.133)

2.413
(0.871)

2.413
(0.675)

1.323
(0.426)

1.323
(0.317)

1.181
(0.331)

1.181
(0.255)

* Values between parentheses () represent the standard deviation of the Cr.
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Table 12. The Calibration estimates after recalibrating the constant with “fixed” and “variable” over-dispersion parameters.

Model
Segmentation S1 Segmentation S2 Segmentation S3 Segmentation S4

Fixed k Variable k Fixed k Variable k Fixed k Variable k Fixed k Variable k

HSM 1.134
(0.177) *

1.134
(0.177)

1.102
(0.334)

1.102
(0.263)

1.263
(0.332)

1.263
(0.253)

1.076
(0.265)

1.076
(0.201)

Virginia 1.184
(0.187)

1.184
(0.187)

1.185
(0.362)

1.185
(0.285)

1.335
(0.354)

1.335
(0.270)

1.147
(0.282)

1.147
(0.216)

N. Carolina 1.202
(0.193)

1.202
(0.193)

1.228
(0.379)

1.228
(0.299)

1.400
(0.375)

1.4
(0.288)

1.181
(0.138)

1.181
(0.226)

Alabama 1.204
(0.194)

1.204
(0.194)

1.141
(0.346)

1.141
(0.273)

1.400
(0.416)

1.4
(0.327)

1.308
(0.335)

1.308
(0.261)

Ohio 1.154
(0.176)

1.154
(0.176)

1.130
(0.331)

1.130
(0.262)

1.285
(0.329)

1.285
(0.251)

1.104
(0.263)

1.104
(0.201)

Italy (2012) 1.084
(0.168)

1.084
(0.168)

1.031
(0.313)

1.031
(0.247)

1.214
(0.319)

1.214
(0.243)

1.014
(0.251)

1.014
(0.190)

Italy (2017) 1.050
(0.164)

1.050
(0.164)

0.987
(0.300)

0.987
(0.206)

1.156
(0.304)

1.156
(0.232)

0.974
(0.242)

0.974
(0.183)

Netherlands 1.195
(0.201)

1.195
(0.201)

1.296
(0.418)

1.296
(0.330)

1.393
(0.392)

1.393
(0.300)

1.227
(0.314)

1.227
(0.245)

Czech Rep. 1.172
(0.184)

1.172
(0.184)

1.190
(0.363)

1.190
(0.285)

1.333
(0.353)

1.333
(0.271)

1. 147
(0.282)

1.147
(0.215)

Korea 1.157
(0.180)

1.157
(0.180)

1.128
(0.342)

1.128
(0.270)

1.287
(0.338)

1.287
(0.259)

1.099
(0.270)

1.099
(0.206)

Ghana 1.166
(0.202)

1.166
(0.202)

1.372
(0.495)

1.372
(0.384)

1.359
(0.429)

1.359
(0.336)

1.279
(0.350)

1.279
(0.279)

* Values between parentheses () represent the standard deviation of the Cr.
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4. Discussion and Conclusions

This paper evaluated the transferability of HSM SPFs for total crashes on multilane divided
rural roads in Egypt. As it is not an easy task to perform statistical crash modeling especially in
developing countries, as it requires a considerable quantity of accurate data like recorded traffic volumes,
geometric characteristics, and recorded crashes for several years. It will be useful if the SPFs produced
for a specific area at a specific time can be used in a different time in the same or a different area as it will
save time, effort, and money. The HSM SPFs was calibrated using both the HSM default CMFs values and
local CMFs from a pre-developed Egyptian SPFs. Five Egyptian major rural roads with four-year crash
data between 2008 and 2011were used in this research study. In addition, four different segmentation
approaches were considered in this study, to compare the segmentation effect on transferability, namely:
fixed segment length of one kilometer (S1); homogenous sections (S2); according to the presence of
curvatures (S3); and according to the presence of curvatures and U-turns (S4).

The highway safety manual (HSM) models along with several international safety performance
functions (SPFs) from United States of America, Europe, Netherlands, the Czech Republic, Korea,
and Ghana were calibrated using the local CMFs from a pre-developed Egyptian SPFs and by
recalibrating the constant of the transferred SPFs, to assess their suitability to represent crashes on
Egyptian rural multilane highways.

The HSM transferability procedure was used in this analysis. The overdispersion parameter
of the transferred models was firstly recalibrated to allow the transferred international SPFs to suit
local conditions. The maximum likelihood method was presented for recalibrating the overdispersion
parameter of the transferred international SPFs. Moreover, the t-test and ANOVA were used to
investigate if the difference between the various segmentation approaches and among the calibrated
models is statistically significant. In addition, five performance measures were used to assess the
performance of the transferred models. These measures are the mean absolute deviation (MAD),
the mean prediction bias (MPB), the mean absolute percentage error (MAPE), Pearson χ2 statistic,
and Z-score.

Based on the presented results and analyses, the main conclusions of this study are:

• The segmentation method was found to affect the performance of the transferred SPF model.
The difference between the segmentation approaches and among the investigated international
models is statistically significant at the 5% significance level.

• The total crashes calibration factors derived from both HSM default CMFs values and locally
derived CMFs are lower than one, meaning that the HSM models are overestimating the crash
occurrence on multilane rural divided roads in Egypt. Moreover, the calibrated HSM model using
locally derived CMFs with the S2 segmentation method outperformed the calibrated HSM model
using HSM default CMFs values;

• The calibrated Italian SPF using both locally derived CMFs and by recalibrating the constant
outperformed all other investigated international SPFs, as they performed very well for all
segmentation methods, especially, for the S1 segmentation method;

• The recalibration of the constant of the transferred models to allow it to better suit local conditions
in Egypt is superior to the SPFs recalibration using the local CMFs;

• Using variable overdispersion parameter for the recalibrated SPFs outperforms the constant
overdispersion parameter.

Study Limitations

In spite of the fact that this study introduced comprehensive examinations to evaluate the
transferability of the international SPFs to Egypt; the main challenge of this study was the lack of recent
crash data, and therefore crash data for the years 2008 to 2011 were used. The second challenge was
the crash underreporting; Asal and Said [1] reported that less than half of the road crashes fatalities are
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reported to the police. Thus, crash underreporting is considered a major problem in safety analysis
that requires quick solutions.
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