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Abstract: In risk-related research of fire safety engineering, metamodels are often applied to ap-
proximate the results of complex fire and evacuation simulations. This approximation may cause
epistemic uncertainties, and the inherent uncertainties of evacuation simulations may lead to aleatory
uncertainties. However, neither the epistemic ‘metamodel uncertainty’ nor the aleatory ‘inherent
uncertainty’ have been included in the results of the metamodels for fire safety engineering. For
this reason, this paper presents a metamodel that includes metamodel uncertainty and inherent
uncertainty in the results of a risk analysis. This metamodel is based on moving least squares; the
metamodel uncertainty is derived from the prediction interval. The inherent uncertainty is modelled
with an original approach, directly using all replications of evacuation scenarios without the as-
sumption of a specific probability distribution. This generic metamodel was applied on a case study
risk analysis of a road tunnel and showed high accuracy. It was found that metamodel uncertainty
and inherent uncertainty have clear effects on the results of the risk analysis, which makes their
consideration important.

Keywords: metamodel; surrogate; uncertainty; risk; fire; evacuation

1. Introduction

In fire safety engineering, risks for occupants are of high concern and continuously
investigated in risk analyses. In a risk analysis, risks are quantified with the consequences
and frequencies of many scenarios subjected to uncertainty [1] (pp. 1, 5) with the frequency
and the consequences of many scenarios with random parameter settings [1] (pp. 1, 5).
Risks can be expressed as the individual risk, namely the ‘measure of fire risk limited to
consequences experienced by an individual and based on the individual’s pattern of life’
and the societal risk as a ‘measure of fire risk combining consequences experienced by
every affected individual’, often represented with a risk curve [2] (p. 3f).

The risk-related research in fire safety engineering comprises diverse methodolo-
gies for the analysis of consequences in many scenarios. In the methodology proposed
by Albrecht [3] with reference to Albrecht and Hosser [4], life safety in a community
assembly building was quantified with the probability for safe evacuation. De Sanctis
et al. [5] expressed the Live Quality Index based consequences of small fires in single family
houses based on statistical data, and the consequences of large fires were considered with
a probabilistic decision analytical approach. The methodology published by De Sanctis
and Fontana [6] was applied on the risk- and Life Quality Index-based optimisation of
the widths of doors in a retail building. Van Weyenberge et al. [7] analysed the risks for
humans in assembly compartments with reference to Van Weyenberge et al. [8]. Di Nardo
et al. [9] used system dynamics to include time-dependent variables for the qualitative
and quantitative analysis of risks caused by LPG cylinders in houses. Coping with more
complex structures, Schröder [10] evaluated the safe evacuation of underground metro
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stations in many different scenarios. Anderson and Ezekoye [11] carried out an analysis of
the community-averaged extent of damages caused by fires in residential buildings of the
United States and Yamamoto et al. [12] investigated the fire safety of road tunnel users. In
particular, the risks of road tunnel users have been widely under research, e.g., by Schubert
et al. [13], and culminated in several European methodologies for risk analysis, such as for
Germany [14] and Austria [15].

Whereas De Sanctis et al. [5] and Schubert et al. [13] applied probabilistic and em-
pirical models to compute the consequences of fire and evacuation scenarios, the other
methodologies combined a fire model and an evacuation model. The fire models are mostly
computational fluid dynamics models [3,7,10,12,14,15] and the evacuation models are most
often one-dimensional models [3,6,7,14,15], except for Yamamoto et al. [12], who used a
cellular automaton and Schröder [10], who employed a microscopic evacuation model.
Thus, in several methodologies, complex models were used, causing high computational
costs to evaluate the consequences for occupants in evacuation scenarios under the effects
of smoke spread from fire scenarios.

Because of the high computational costs of complex models, several authors ap-
ply metamodels to determine consequences, for example Albrecht and Hosser [4], De
Sanctis and Fontana [6], Van Weyenberge et al. [7] and ILF Consulting Engineers [15],
together with a zone model. A metamodel comprises three integral parts, summarised
in Queipo et al. [16] (p. 3): the experimental design, the database and the response surface
model (RSM). The experimental design specifies the parameters of discrete scenarios to
be computed with the complex model. The result of interest of these simulations is most
often a measure of the consequences in the scenarios. The database comprises these results
for all data points of the experimental design. From these results of the database, the RSM
approximates the result for any random scenario represented by a point on the domain
of the variables. Thus, the RSM simplifies the complex model and, therefore, is quick in
the determination of results but causes ‘metamodel uncertainties’ [17] (p. 9). Since the
‘inaccuracy of the metamodels can be interpreted as the metamodel uncertainty where
the true response is unknown except at the sample points’ [18] (p. 1) and since adding
additional data points could reduce the ‘inaccuracy’, the metamodel uncertainty can, in
our case, mostly be characterised as an ‘epistemic uncertainty’ also acknowledging minor
‘aleatory uncertainties’ [19]. Summing up, the metamodel has low computational costs
and, for this reason, can be helpful with regard to the global objective of the risk analysis.
Namely, the global objective is directed at the consequences of many random scenarios on
the entire domain of the variables.

A scenario is typically specified with ‘control variables’ [20] (p. 15), briefly named
variables, such as the maximum heat release rate (HRR) or the number of occupants. Next to
these variables, ‘environmental variables’ [20] (p. 15) cause an ‘intrinsic’ randomness [21–23]
in the fire and the evacuation scenario, for example in the gas turbulence or the individual
characteristics of the occupants. Whereas the environmental variables are, in common
practice, of minor concern in the fire scenarios, they have a large effect in the evacua-
tion scenarios. For this reason, they are considered in the evacuation models of several
methodologies [4,6,7,15]. Thus, the stochastic result of the evacuation scenario is subjected
to an uncertainty, named the inherent uncertainty. Obviously, the inherent uncertainty can
be reduced by a detailed modelling of, for example, the individual characteristics and for
this reason it is also ‘epistemic’ [19]. However, since this precise description is uncommon
in evacuation modelling, the inherent uncertainty is treated as mainly an ‘aleatory uncer-
tainty’ with the ‘intrinsic randomness of a phenomenon’ [19]. Hence, replications of one
scenario lead to an observed random sample (ORS) of the results, which represents the
true but unknown inherent uncertainty of the evacuation model. A general approach in
evacuation modelling exemplified by Ronchi et al. [22] is to run several replications of a
specific evacuation scenario and then evaluate the ORS characterised by the two discrete
measures, mean and deviation.



Safety 2021, 7, 50 3 of 18

Besides fire safety engineering, several publications, such as Marrel et al. [24] and
Moutoussamy et al. [25], address metamodels for the stochastic simulation results of com-
plex models. Marrel et al. [24] describe a joint metamodel for the mean and the dispersion
of stochastic model results without replications. This metamodel is based on a Gaus-
sian process model with additional nugget effects to not directly interpolate to the data
points. The nugget effect is different for each data point, which allows to consider spatially
different dispersions. The dispersion is modelled with a multidimensional differential
exponential function. Moutoussamy et al. [25] present a metamodel to directly determine
the probability density functions of the results of the complex model at any arbitrary point.
Their method relies on replications at the data points and does not require the assumption
of a specific distribution type. They first discuss the classical kernel regression, where all
data points are considered with a weight depending on the distance to the arbitrary point.
Next, they propose a metamodel based on functional decomposition, which is similar to
kernel regression but the results are derived from a reduced database. The problem that
the model of the probability density function also produces negative values is coped with
adapted methods, such as the alternate quadratic minimisation.

Although several methodologies in fire safety engineering using metamodels anal-
yse the metamodel uncertainty, e.g., Albrecht [3], Van Weyenberge et al. [8], or consider
environmental variables, e.g., Albrecht [3], De Sanctis and Fontana [6], and ILF Consulting
Engineers [15], neither the metamodel uncertainty nor the inherent uncertainty have been
transferred to the results of the metamodel. At least, Van Weyenberge et al. [7] discuss the
integration of the inherent uncertainty. However, the authors of the present publication
think that it is important to take into account the metamodel uncertainty and the inherent
uncertainty in the final result of the metamodel to represent the result of the complex model
at an arbitrary point.

For this reason, a metamodel for fire safety engineering is presented, which includes
both uncertainties, and it is used in an exemplary case study for a fire risk analysis of a
road tunnel. This metamodel is based on the results of a computational fluid dynamics
model and a microscopic evacuation model. It considers temporal aspects within the
scenarios and has therewith another focus as the approach of Di Nardo et al. [9], who
model the evolution of risks. However, the metamodel can be also used within their
approach. Despite the available approaches for stochastic results, such as those of Marrel
et al. [24] or Moutoussamy et al. [25], the RSM is based on the deterministic results of the
complex model, namely the mean of each ORS, and also produces deterministic results.
One reason for this deterministic RSM is to allow to separate the deterministic result of
the RSM from the inherent uncertainty at any arbitrary point in order to comply with the
general approach for evacuation scenarios [22], that is, characterising the ORS by its mean
and deviation. Regarding the inherent uncertainty in the results of the complex model,
the authors propose an original approach called the sampled uncertainty approach. This
approach is suitable for the requirements of the microscopic evacuation models, namely, a
limited number of replications and different unspecific frequency distributions in the ORSs.
In conclusion, our metamodel, which includes the metamodel uncertainty and the inherent
uncertainty, is different from the other metamodels in fire safety engineering outlined
above and, for this reason, can contribute to the scientific basis.

2. Materials and Methods

Basically, the metamodel consists of the three parts of RSM, metamodel uncertainty
and inherent uncertainty. The symbols used to describe these three parts are shown
in Table 1. Firstly, the RSM is based on the projection array-based design method of
Loeppky et al. [26] for the experimental design and on the moving least squares method
by Lancaster and Salkauskas [27], both further detailed in Sections 2.1 and 2.2.1. The
experimental design establishes the database of data points simulated with the complex
model. Secondly, the metamodel uncertainty is the mainly epistemic uncertainty of the
RSM and is determined with the prediction interval method by Kim and Choi [18] outlined
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in Section 2.2.2. Thirdly, the original sampled uncertainty approach is used to reproduce
the ORS as described in Section 2.3.

Table 1. Symbols applied for the RSM, metamodel uncertainty and inherent uncertainty; vectors are highlighted in bold
and matrices are symbolised with bold capitals, e.g., y is the result at one point and Y for multiple points.

Symbol Description

Ndps number of data points
x data point
x̃ arbitrary point in the domain
X experimental design
y, Y deterministic result of the RSM
ŷ, Ŷ result of the metamodel considering the metamodel uncertainty and the inherent uncertainty
ŷi, Ŷ i result of the metamodel considering the inherent uncertainty
ŷm, Ŷm result of the metamodel considering the metamodel uncertainty
yc, Y c deterministic result of the complex model at one data point (data base X)
yc ORS, vector of results of all replications of a data point
yc∗ relative ORS divided by the mean result y of the ORS
δŷ metamodel uncertainty
ε̂ relative inherent uncertainty
∆ŷ, ∆Ŷ prediction interval

To sum up, the result of the metamodel ŷ at a point x̃ (or Ŷ for multiple points) in
Equation (1) combines the result of the RSM y, the metamodel uncertainty δŷ and the
relative inherent uncertainty ε̂.

ŷ = (y + δŷ) · ε̂ (1)

It therewith should reproduce the result of the complex model. The result of the
metamodel only considering the metamodel uncertainty and not the inherent uncertainty
is denoted with ŷm, and vice versa, it is denoted with ŷi.

The metamodel is used for a risk analysis in a case study described in Section 3.1. The
risk analysis requires the results of a high number of different points. These points are
drawn in a Monte-Carlo simulation and their results are determined with the metamodel.
The metamodel, therefore, uses the database earlier simulated with the complex model.

2.1. Experimental Design

Due to the global objective of the risk analysis, the results have to be computed on the
entire domain of the variables. According to Santner et al. [20] (p. 124), ‘computer experi-
ments’ often share the same global objective; hence, their ‘space-filling’ experimental design
should ‘spread the [data] points at which we observe the response evenly throughout the
region’. Latin hypercube designs [28] meet this requirement and are, therefore, commonly
used in computer experiments [20] (p. 125), for example by Van Weyenberge et al. [7].

The projection array-based design method by Loeppky et al. [26] extends the Latin
hypercube design in order to further improve its space-filling properties. In detail, the
projection array-based design is based on the substructure consisting of substrata from
Latin hypercube designs as well as on an additional structure of projection arrays formed
by strata, which are, for example, rectangles in a two-dimensional case. Each projection
array in a projection array-based design may contain at maximum one data point, and
each substrata of a variable contains exactly one data point, following Latin hypercube
designs. Loeppky et al. [26] further present a sequential refinement for the projection
array-based design, in other words adding subsequently new data points to an existing
experimental design.

The projection array-based design method is employed here because of its space-filling
properties and its sequential refinement. During its setup, data points are added randomly
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to the available strata and projection arrays. To improve the space-filling properties, each
projection array-based design is chosen from a large set of different designs with regard to
a maximin and minimax optimisation.

2.2. Response Surface Model and Metamodel Uncertainty

The methodologies of Anderson and Ezekoye [11] and Bundesanstalt für Straßenwe-
sen (BASt) [14] use event trees for the risk analysis and, therefore, directly use discrete
scenarios simulated with the complex model for the single events. This approach cor-
responds to a ‘nearest neighbour interpolation (NNI)’, which virtually adopts the result
for an arbitrary point directly from the data point of a discrete scenario with the smallest
Euclidean distance. Several computer codes are readily available to realise the NNI method.

2.2.1. Moving Least Squares

The methodologies of Albrecht [3] and Van Weyenberge et al. [7] employ the mov-
ing least squares method (MLS) [27] for their RSMs. MLS conducts a local weighted
least squares regression of a linear or quadratic polynomial at a point x̃. It therefore
extends the global least squares regression by weighting the data points as shown in
Equation (2) [29] (p. 18ff).

Y c
= WXβ + δy (2)

Here, δy are the approximation errors, β are the regression coefficients and Y c
=[

y1, . . . , yNdps

]T
are the deterministic results, i.e., the means of the ORSs, of the complex

model at the data points of the experimental design X =
[

x1, . . . , xNdps

]T
with Ndps data

points xi = [xi,1, xi,2, . . .].
The local weighting matrix W ≡W(x̃) is a diagonal matrix which weights the data

points depending on their Euclidean distance to the point x̃ with a weighting function. The
least squares estimators b of the regression coefficients can be calculated with Equation (3).

(
XTWX

)
· b = XTWY c (3)

Consequently, the local least squares estimators are only valid for one point, and
Equation (4) leads to a local result y ≡ y(x̃).

y = x̃ · b (4)

Three weighing functions are adopted from Kim and Choi [18] (Equation (4a)) as
well as Most and Bucher [30] (Equations (12) and (16)). The weighting function and its
weighting parameter are calibrated with a straightforward algorithm to fit to the results of
the data points. This algorithm reduces the prediction variance determined at arbitrary
points on the entire domain, similar to Kim and Choi [18] (p. 4), who use the prediction
variance for the ‘design optimisation’.

The results y of Equation (4) for every point are deterministic if the probabilistic
properties of the regression coefficients are neglected. The regression causes residuals,
namely the difference between the result of a data point and the approximated result of the
RSM.

2.2.2. Metamodel Uncertainty

Kim and Choi [18] introduce a method to calculate the metamodel uncertainty of
MLS in the following, called the prediction interval method. In detail, the metamodel
uncertainty δŷ is the difference between the result of the RSM and the unknown result of
the complex model δŷ = y− yc. It is normally distributed with a mean of zero and the
variance var(δŷ).

The prediction interval ∆ŷ is defined with Equation (5).
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∆ŷ =
∣∣∣tα/2,Ndps−Nterms ·

√
s2
∣∣∣ (5)

It depends on the Student distribution with the statistic tα/2,Ndps−Nterms for the two-sided
confidence level α and the degree of freedom Ndps − Nterms, where Nterms is the number of
terms in the regression model. Further, the prediction variance s2 ≡ (s(y− yc))2 is given in
Equation (6) [18] (Equation (21)) for the variance of the metamodel uncertainty var(δŷ).

s2 = σ2 ·
(

1 + (x̃)T ·
(

XTWX
)−1
· XTWWX ·

(
XTWX

)−1
· x̃
)

(6)

The prediction variance depends on the variance estimator σ2 in Equation (7), also
known as the leave-one-out cross-validation error, where y−i denotes the result of the RSM
at the data point xi with a database excluding this specific data point.

σ2 =
1

Ndps − Nterms

Ndps

∑
i=1

(
y−i − yc

i
)2 (7)

The metamodel uncertainty is derived from the prediction interval method with
Equation (8), where t̃ is a random number subjected to the Student distribution.

δŷ = s2 · t̃Ndps−Nterms (8)

In conclusion, the metamodel uncertainty δŷ is a random value for a single point.
The metamodel uncertainty is integrated into the metamodel with Equation (1), similar
to Nannapaneni and Mahadevan [17] (Equation (7)) and Kim and Choi [18] (Equation (25)).

2.3. Inherent Uncertainty

Salemi et al. [31] present a metamodel, using MLS with a database that comprises a
high number of data points with many replications. The variance at a point is quantified
with the equally weighted averaged variance of the ORSs at its neighbours, meaning the
spatially close data points. In their approach to quantify the aleatory uncertainty, it is
clearly distinguished between the deterministic results of the ORSs, i.e., their mean, for
the RSM and the variances of the ORSs. In this respect, their approach differs to other
approaches, such as that of Moutoussamy et al. [25], but it suits the general approach for
evacuation scenarios exemplified by Ronchi et al. [22].

However, evacuation scenarios are often analysed only in a limited number of data
points Ndps and replications Nrep. For this reason the databases common for evacuation
scenarios differ clearly to the database used by Salemi et al. [31]. Furthermore, the ORSs
of evacuation scenarios often have a variety of different, unspecific frequency distribu-
tions unequal to normal or lognormal distributions. For this reason, the approach of
Salemi et al. [31] or Gaussian processes [24] are less suitable for the databases of micro-
scopic evacuation models. Hence, the authors introduce an original approach, called the
‘sampled uncertainty approach’, to determine the inherent uncertainty.

The sampled uncertainty approach comprises three principal steps to derive the
inherent uncertainty at a point x̃. To begin, each ORS yc

i =
{

yc
i,1, . . . , yc

i,Nrep

}
in the database

is divided by its mean to get the relative ORS yc∗
i ≡ yc∗(xi) =

{
yc

i,1
yc

i
, . . . ,

yc
i,Nrep
yc

i

}
. Next, the

relative ORSs of all Nnb neighbours of the point x̃ are merged in the combined relative
sample Y c∗

Nnb
(x̃) =

{
yc∗

1 , . . . , yc∗
Nnb

}
. This combined relative sample is specific for each

point. It contains Nrep · Nnb replications and has the local discrete distribution D
(

Y c∗
Nnb

(x̃)
)

in Equation (9).

D
(

Y c∗
Nnb

(x̃)
)
= D

(
ω1 · U (yc∗

1 ), . . . , ωNnb · U
(

yc∗
Nnb

))
(9)
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Here, U
(
yc∗

i
)

is the uniform distribution of the ORS yc∗
i in which each replication is

subjected to the probability p = 1
Nrep

. Additionally, each of these uniform distributions is

weighted with a combination factor ω that sums up to ∑Nnb
i=1 ωi = 1 over all Nnb neighbours

and is ω = 0 for the other data points. The number of neighbours, therefore, defines
the region around an point where the ORSs are considered. At last, the relative inherent
uncertainty ε̂ ≡ ε̂(x̃) is directly drawn in Equation (10) from the combined relative sample.

ε̂ ∼ D
(

Y c∗
Nnb

(x̃)
)

(10)

The combined relative sample should correspond to the true ORS of the complex
model at a specific point x̃. Notably, this ORS is unknown since the results were not
simulated. Obviously, the required combination factors are unknown; hence, three basic
modes for the combination are discussed. Firstly, the combined relative sample can contain
only the closest ORS with ω = 1 and Nnb = 1. This mode leads to a discontinuous
transition in the centre between two data points, which is not reasonable. Next, Nnb ORSs
can be weighted with equal combination factors ω = 1

Nnb
such as in the approach of Salemi

et al. [31]. However, this uniform combination does not represent the true ORS if the point
x̃ ≡ xi is equal to a data point. So third, in the linear combination, Nnb data points are
linearly weighted with the weights ω(xi) = 1− (Nnb−1)·d(x̃,xi)

∑
Nnb
j=1 d(x̃,xj)

depending on their Euclidean

distance d to the point x̃. Since the combined relative sample should represent the true ORS
directly at a data point, it further yields ω(x̃ ≡ xi) = 1. For this reason, the initial parameter
Nnb has to be adapted for each point x̃ as a consequence of ∑Nnb

i=1 ωi = 1, e.g., a point x̃ ≡ x
equal to a data point leads to the adapted number of neighbours Nnb = 1. In conclusion,
the linear combination represents the true ORS at a point x̃ with regard to the following:
firstly, no discontinuous transitions in the results for the inherent uncertainty; secondly,
the unbiased combination of ORSs in the case of equal Euclidean distances between two
neighbouring data points; and thirdly, the direct adoption of an ORS at a data point. In this
respect, its results are most realistic among the three basic modes and is based only on the
little available information of the ORSs.

A relative ORS may lead to unrealistic results of the inherent uncertainty if its mean
results are close to zero. Hence, a limit yc

lim = 10−4 for the mean results of ORSs is defined
with regard to the evacuation scenarios but can be different in the case of other applications.
This limit prevents unrealistically high results in the metamodel because each relative ORS
with yc

i < yc
lim is manipulated to yc∗

i = {1, . . . , 1} and arbitrary points linked to these ORSs
always result in the relative inherent uncertainty ε̂ = 1.

In conclusion, the sampled uncertainty approach is suitable for a limited number
of data points and replications and, therefore, meets the requirements of microscopic
evacuation models. It derives the inherent uncertainty from the neighbours and separates
the inherent uncertainty from the deterministic results of the RSM, and therewith it is
similar to the approach of Salemi et al. [31]. However, there are also clear differences
because the ORSs are directly used without the quantification of additional parameters for
the variance or the fitting of a specific distribution type to the ORSs. Moreover, the sampled
uncertainty approach flexibly adapts to the variety of different frequency distributions of
the ORS.

3. Results and Discussion
3.1. Case Study: Risk Analysis for a Road Tunnel

The metamodel is applied on a risk analysis for the road tunnel depicted in Figure 1
with the variables provided in Table 2. The tunnel geometry is very common in Germany
and the ventilation corresponds to German legislation; for example, the forced longitudinal
ventilation is directed downhill in order to confine the smoke for the period of the evacua-
tion. This case study is focused on the evacuation area with the one emergency exit depicted
in the figure. This evacuation area is most quickly exposed to smoke; hence, including
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further evacuation areas with more emergency exits would have little effect on the out-
come. More detailed background to the risk analysis was presented by Berchtold et al. [32]
and Berchtold et al. [33]. The frequency of the fire in the scenario derives from the average
daily traffic volume, the ratio of heavy good vehicles and the tunnel length. Furthermore,
the fire scenario itself depends on the variables of the maximum heat release rate HRRmax
and time to maximum HRR tHRR. Since the evacuation scenario adopts the smoke spread
of the fire scenario, it also depends on these variables but additionally on the maximum
pre-evacuation time tpre among all tunnel users and on the number of tunnel users Ntu.
Moreover, the evacuation scenarios are distinguished between scenarios with a tunnel
alarm (TA) and with the failure of the tunnel alarm (FA), defined with a Boolean variable.
In the latter case, the tunnel users are alarmed individually by smoke. Considering this
Boolean variable, two metamodels with different databases for TA and FA are used in this
case study.

Figure 1. Geometry of the road tunnel applied for the risk analysis.

Table 2. Probability distributions of variables used for the risk analysis (above); and additional uniform distributions U for
HRRmax and Ntu (below) for the evaluation of the metamodel.

Variable Notation Model

maximum HRR/MW HRRmax D({5, 30, 50, 100}) = {0.9, 0.09, 0.009, 0.001} [14]
time to maximum HRR/s tHRR U (600, 1200)
maximum pre-evacuation time/s tpre U (100, 300)
number of tunnel users Ntu analytical model [34]
average daily traffic volume/day U (5000, 40, 000)
ratio of heavy good vehicles U (0.05, 0.45)
tunnel length/km U (1, 3)

maximum HRR (uniform)/MW HRRmax U (25, 200)
number of tunnel users (uniform) Ntu U (30, 180)

The databases for both metamodels are set up with the experimental design depicted
in Figure 2, using the projection array-based design method described in Section 2.1. The
scenarios are simulated with the fire model Fire Dynamics Simulator (FDS) [35], some on
the supercomputer JURECA [36], and the microscopic evacuation model, FDS+Evac [37].
The experimental design is set up in three subsequent refinement steps, which are focused
on the highest epistemic uncertainties at the outer region of the domain. The different
RSMs in each refinement step as well as their results in the Monte-Carlo simulations are
denoted with Y0, Y1, Y2, Y3, respectively, both for TA and FA. The number of fatalities N f at
is determined within the simulations of FDS and FDS+Evac for each scenario, using the
default incapacitation model of FDS+Evac, the fractional effective dose concept. Then, the
fraction of fatalities is calculated by dividing the number of fatalities through the number
of tunnel users in the scenario. This result is of interest for the metamodel and it is assumed
to be accurate in the present publication.
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Figure 2. Experimental designs for the fire scenarios in (a) and the evacuation scenarios in (b). The latter is four dimensional,
where the third and fourth dimensions for the variables tpre and Ntu are shown in the smaller squares, illustrating the
projection arrays of the variables HRRmax and tHRR in (a). Accordingly, all evacuation scenarios in one projection array are
based on the same fire scenario with equal parameters for HRRmax and tHRR. For example, all evacuation scenarios in the
top left projection array in (b) adopt the smoke spread of a single fire scenario with HRRmax = 25 MW and tHRR = 1200 s in
the corresponding projection array of (a).

The metamodels adopt the results of both databases and determine the consequences
of 106 random scenarios in a Monte-Carlo simulation. Table 2 shows the probability distri-
butions of the variables used to define the random scenarios. Due to the global objective
of risk analysis, the metamodel is validated on the entire domain of the variables. For
this reason, all variables are attributed to uniform distributions to get an even spread of
the random scenarios for the evaluation in Section 3.2. Then, the risk analysis discussed
in Section 3.3 is based on more realistic models for the maximum HRR and the number
of tunnel users. There, the results are expressed with the individual risk and the societal
risk curve.

3.2. Validation of the Metamodel

A validation is defined as the identification of ‘model form errors [uncertainties
of the model] by comparison with physical observations’ [17] (p. 9) or the ‘process of
determining the degree to which a calculation method is an accurate representation of the
real world ...’ [38] (p. 3). However, the validation of the metamodel is somehow different
to a common validation in fire safety engineering because the ‘physical observation’ or
‘real world’ are not experiments, but the results of the complex model. For this reason, the
metamodel is compared to the database that is assumed to contain accurate results.

The validation of the RSM, the metamodel uncertainty and the inherent uncertainty
are presented consecutively. It should be noted that MLS models cannot be expressed in
an analytical equation since they are a set of local regressions in Equations (3) and (4) at
multiple points.

3.2.1. Response Surface Model

The validation or ‘model adequacy checking’ [29] (p. 43ff) of the RSM is directed at
the reproducibility of the response surface of its entire domain. Therefore, the convergence
of the generalisation error and the RSM are assessed. Firstly, the generalisation error, in
other fields called the prediction error sum of squares [29] (p. 46), is the root of Equation (7)
with Ndps in the fraction. It converges from the second refinement step Y2 with values
of about 0.03 (FA) and 0.02 (TA), which reflects the ‘inability’ [17] (p. 9) of the RSM to
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‘accurately’ reproduce the results of the complex model. The authors acknowledge this
inability and include the metamodel uncertainty in the results of the metamodel. Secondly,
the evaluation of the RSM with a global objective is based on results of Monte-Carlo
simulations. Each Monte-Carlo simulation leads to a specific sample of results of arbitrary
points combining both TA and FA. Hence, each sample of a RSM has a specific frequency
distribution. Thus, the convergence between two RSMs is shown by comparing their
frequency distributions in a quantile plot in Figure 3. This figure shows the results of the
Monte-Carlo simulations with the RSMs Y0, Y1, Y2, Y3 of all refinement steps. As a result,
the RSMs Y2 and Y3 converge in accordance with the generalisation error. To sum up,
subsequent refinements of the experimental design X2 caused only small effects on the
result of the RSM, and for this reason, the sequential refinement was stopped.
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Figure 3. Quantile plot showing the frequency distributions of the results of Monte-Carlo simulations
for the RSMs Y0, Y1, Y2, Y3 of all refinement steps relative to the RSM Y3. The Monte-Carlo
simulations combines both random scenarios with TA and FA.

Next, the differences between the RSMs derived from the NNI method Y NNI and MLS
Y MLS, using the database Y c

2, are discussed with regard to the generalisation error, local
effects on the RSMs as well as global effects on the results of the Monte-Carlo simulations.
The generalisation errors of MLS with values of 0.03 (for TA and FA) are clearly lower
than the generalisation error of NNI with 0.06 for TA and FA. Looking at the local effects,
MLS and NNI can both reproduce the large horizontal response surface adjacent to high
gradients as illustrated in Figure 4. However, NNI cause discontinuities that are not
expected in the true response surface. The global effects of these discontinuities can be
seen in the results of the Monte-Carlo simulations with the frequency distributions shown
in Figure 5. NNI causes apparent differences to MLS in the upper quantiles of the results
meaning that more points lead to high results. This difference originates in the elevated
results in the local region of points with HRRmax = 200 MW and tHRR = 600 s in Figure 4.
Obviously, the choice of the response surface method can have clear effects on the results
of a Monte-Carlo simulation.

To sum up, MLS led to the convergence of the generalisation error and of the RSM after
the second refinement step and showed advantages to NNI with regard to the generalisation
error and the representation of the complex response surface on the entire domain. In
conclusion, the RSM using MLS and the database Y c

2 constitutes the deterministic results of
the complex model for the global objective.
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Figure 4. RSMs subjected to MLS and NNI for points with tpre = 147 s and Ntu = 39 for TA.
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Figure 5. Quantile plot showing the frequency distributions of the results of Monte-Carlo simulations
for RSMs, using different response surface methods in comparison to the RSM of MLS.

3.2.2. Metamodel Uncertainty

For the validation of the metamodel, the predictive capability of the prediction interval
is evaluated. Therefore, the complete sample validation [18] (p. 5) is used in which the
results of the RSM Y2 are compared to a validation set. The validation set consists of a
high number of different points evenly spread over the entire domain. These points are
produced with a RSM YXval . The experimental design Xval of this RSM is a batch design
of the PAD method with the same number of data points as the experimental design
X2, and also contains data points at the outer vertices. However, it does not focus on a
particular region, such as the experimental design X2, and therefore, it is based on different
structures and substructures. Hence, the validation set of the batch design is considered to
be independent to the RSM Y2.

For the validation, the confidence level α of the prediction interval of the RSM Y2 and
an empirical confidence level α̂ are juxtaposed with each other. The empirical confidence
level is the probability p in Equation (11) that the validation set YXval lies within the
prediction interval ∆Ŷ2(α) of the RSM Y2.

α̂ = p
(
Y2 − ∆Ŷ2(α) < YXval < Y2 + ∆Ŷ2(α)

)
(11)

The inaccuracy of the RSM is covered by the prediction interval if the empirical
confidence level is similar to the confidence level α. If the empirical confidence level is
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higher, the prediction interval is larger than the observed inaccuracy of the RSM, in other
words, conservative.

As a result, the empirical confidence levels are clearly elevated in comparison to the
prescribed confidence levels as shown in Table 3. Accordingly, the prediction interval is
too conservative.

Table 3. Empirical confidence level α̂ of the prediction interval method using the batch design as the
validation set for different confidence levels α and for TA and FA.

α α̂(TA, FA)

0.75 0.91/0.96
0.90 0.97/0.99
0.95 0.98/1.00

One reason for the conservative predictive capabilities is that the prediction interval is
independent from the local results of the response surface. This characteristic leads to a
drawback in a region with a plain response surface close to zero as illustrated in Figure 4. In
this region, there are two reasons why the metamodel uncertainty should be small. Firstly,
the residuals are presumed to be small because the results of all data points in this region
are close to zero. Secondly, the results of the RSM are expected to be close to zero because
of the results of its neighbours. The prediction variance in this region is elevated despite
the results being known. However, adding additional data points with the expected result
of zero in this region can reduce the empirical confidence levels and therewith increase the
predictive capabilities.

3.2.3. Inherent Uncertainty

The sampled uncertainty approach for the inherent uncertainty aims to reproduce
the true inherent uncertainty of the complex model at any point. Looking at an ORS of
one specific data point, the sampled uncertainty approach directly samples from this ORS
and thus, produces a bootstrap sample, which represents the ORS in the case of many
realisations. For this reason, the sampled uncertainty approach always represents the ORS
directly at the data points.

Next, the results of the sampled uncertainty approach are compared to the ORSs at
validation points yc∗

val . The sampled uncertainty approach uses the database Y c
2 and the

validation points are derived from the batch design described in Section 3.2.2. In total, 60
and 55 validation points for TA and FA respectively are considered, excluding the outer
vertices and validation points with the mean results smaller than the limit yc

lim.
Different combination modes are discussed in Section 3.2.2. Hence, the linear combina-

tion mode is compared to the observed relative samples of the closest data point yc∗
clo ∈ Y c

2
as well as to the uniform combination with Nnb = 20 neighbours. For their comparison, the
sampled uncertainty approach with the linear and the uniform combination mode produces
the frequency distributions ε̂lin and ε̂uni drawn from the combined relative sample at each
validation point. The difference between the frequency distributions are quantified with
the Wasserstein metric.

Table 4 shows the medians of the Wasserstein metric among all validation points for the
different modes. Accordingly, the linear combination leads mostly to the smallest median
values and moreover, it improves the measures in 70 and 80 percent of the validation points
as exemplified in Figure 6a for an improvement and in Figure 6b for a worsening. Hence,
the linear combination best represents the ORSs of the validation points.
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Table 4. Medians of the Wasserstein metric wd to the observed relative samples yc∗
val of all

validation points.

ε̂lin yc∗
clo ε̂uni

wd(TA) 0.10 0.10 0.15
wd(FA) 0.032 0.041 0.069

0.0 3.0

ε̂

0.0

0.75

p
(ε̂

)

ŷcval
ε̃lin
ŷcclo
ε̃uni

(a) HRRmax = 91 MW, tHRR = 676 s, tpre = 214 s, Ntu = 81
and TA and the closest data point at HRRmax = 79 MW,

tHRR = 671 s, tpre = 225 s, Ntu = 63.

0.0 3.0

ε̂

0.0

0.75

p
(ε̂

)

ŷcval
ε̃lin
ŷcclo
ε̃uni

(b) HRRmax = 115 MW, tHRR = 1121 s, tpre = 202 s,
Ntu = 52 and FA and the closest data point

HRRmax = 94 MW, tHRR = 1031 s, tpre = 201 s, Ntu = 71.

Figure 6. Relative frequencies p of the relative inherent uncertainties of the linear combination ε̂lin and uniform combination
ε̂uni as well as the observed relative sample of the validation point yc∗

val of the batch design and the closest data point yc∗
clo.

As another result, the Wasserstein metric and the root mean squared error seem to cor-
relate with the distance between the validation points and their closest data points. Hence,
further refinement steps could reduce the differences between the frequency distributions.
However, a Monte-Carlos simulation of arbitrary points from the RSM Y2 with the linear
combination mode leads to similar results as when the closest neighbour combination
mode is used. For this reason, further refinement of the database will not improve the
results of the risk analysis. Consequently, the sampled uncertainty approach with the linear
combination mode sufficiently reproduces the true inherent uncertainty of the complex
model at a point.

3.3. Effects of the Metamodel and Inherent Uncertainty on the Results of the Risk Analysis

The case study in Section 3.1 is used to exemplify the effects of the metamodel un-
certainty and of the inherent uncertainty on the results of a risk analysis for road tunnels.
During the validation, the variables maximum heat release rate HRRmax and number of
tunnel users Ntu are subjected to uniform distributions to achieve an equal spread of points
on the entire domain. Now, for the risk analysis, these variables are based on the more
realistic probability distributions in Table 2. For this reason, the random scenarios consider
smaller maximum values, both for the maximum HRR and for the number of tunnel users,
which leads to smaller consequences in the random scenarios compared to the results
presented in Section 3.2.

The following discussion of the effects is based on the metamodels summarised in
Table 5, and on the results in Figure 7, which illustrates the effects on the consequences, as
well as on the risk measures for individual riskRind and the societal risk curve in Table 5
and Figure 8.
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Table 5. Effects of metamodel uncertainty and inherent uncertainty on the individual riskRind; the
risk measure is shown relative to the results of the RSM Y .

Metamodel Y Ŷm Ŷ i Ŷ

metamodel uncertainty no yes no yes
inherent uncertainty no no yes yes
Rind
Rind(Y)

1 8.3 1.0 8.3

0.0 0.29

quantiles of Y
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Figure 7. Quantile plot showing the effects of the metamodel uncertainty and the inherent uncertainty
on the frequency distribution of the results in Monte-Carlo simulations relative to the RSM Y , neither
with metamodel uncertainty nor with inherent uncertainty. The RSMs Ŷm, Ŷ i and Ŷ consider either
the metamodel uncertainty, the inherent uncertainty or both, respectively.
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Figure 8. Effects of the metamodel uncertainty and inherent uncertainty on the frequency F of
scenarios with N f at fatalities; to be noted: the societal risk curve accounts for N f at ≥ 1, which hides
all random scenarios leading to zero fatalities; the maximum number of fatalities is in the range of
max.N f at ≈ 102, where the exact number is not relevant for the evaluation of the metamodel.

To calculate the risk measures, the consequences of the random scenarios determined
with the metamodel have two particular characteristics. First, the consequence of each
random scenario is related to the number of fatalities and for this reason, it is bound to the
lower limit of zero. Second, the each consequence is multiplied, i.e., weighted, with the
scenario’s frequency, according to the definition of risk. It follows that random scenarios
with small consequences have stronger weights in the risk measures, whereas random
scenarios with high consequences are likely to have reduced weights because of their rare



Safety 2021, 7, 50 15 of 18

occurrence. The following discussion of the effects, therefore, has to be seen with respect to
the lower limit as well as the weighting. The discussion is generalised at the end of this
section.

The effects of the metamodel uncertainty on the consequences and on the risk measures
are two-fold. Firstly, random scenarios with small consequences yi ≈ 0 in the RSM led
to high metamodel uncertainties as a result of the drawback of the prediction interval
method. The additive integration in Equation (1) together with the lower limit led to clearly
elevated consequences in the metamodel ŷm

i > 0. Secondly, the metamodel uncertainty had
small effects on random scenarios with high consequences in the RSM, leading to similar
frequency distributions between the metamodel Ŷm and the RSM Y for the upper quantiles
in Figure 7. Looking at the risk measures, the effects of the metamodel uncertainty on the
consequences were amplified by the weighting with the frequency of the random scenarios.
The metamodel uncertainty leads to, firstly, a clear rise in the individual risk as well as in
the lower part of the societal risk curve. This effect originates from the random scenarios
with small consequences. It is further amplified by the drawback of the prediction interval
method in the metamodel uncertainty as discussed in Section 3.2.2. Nonetheless, the effect
is still considerable on the individual risk and on the societal risk curve in Figure 9 if the
drawback is reduced by adding additional data points with the expected result. Secondly,
the metamodel uncertainty has little effects on the upper part of the societal risk curve
because of random scenarios with high consequences.
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Figure 9. Effect of the metamodel uncertainty on the frequency F of scenarios with N f at fatalities
when the drawback of the prediction interval method is reduced in Ŷmps by adding additional data
points with the expected result.

The inherent uncertainty in the metamodel Ŷ i causes a larger dispersion in the con-
sequences of the random scenarios in comparison to the RSM Y as depicted in Figure 7.
The effects have to be discussed with regard to the multiplicative integration of the rel-
ative inherent uncertainty in Equation (1). More precisely, the inherent uncertainty has
slight effects at random scenarios with small consequences yi ≈ 0 in the RSM. Hence, it
influences the individual risk and at the left part of the societal risk curve only little. The
relative inherent uncertainty contributes to the clear effects at random scenarios with high
consequences in the RSM. This clear effect results again in large effects on the maximum
consequences among all random scenarios and thus also on the right part of the societal
risk curve. However, the weighting of the random scenarios with their frequencies, esp. the
small frequencies in scenarios with high consequences, reduces this effect of the inherent
uncertainty on both risk measures.

The effects discussed above are influenced by the lower limit of the consequences
and the weighting of the random scenarios. However, the metamodel might be also used
for other purposes besides risk analysis for life safety, where the results of the metamodel
are neither bound to a lower limit nor weighted. First, if the results of the metamodel are
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not bound to a lower limit, the metamodel uncertainty has no effect on a measure such
as the individual risk because the mean of this normally distributed uncertainty is zero.
The effect of the inherent uncertainty on such a measure depends on the skewness of the
ORSs, e.g., positive skewness leads to an increase and might additionally be augmented
in the case of a lower limit. The societal risk curve, or a similar measure, is shifted to
the right by both uncertainties, independent from the lower limit. Second, looking at the
result of the metamodel without the weighting of the consequences, the strong effect of
the metamodel uncertainty on a measure such as the individual risk would be reduced
because the random scenarios with small consequences but high frequencies where the
metamodel uncertainty is increased are no longer given a stronger weight. Opposite, the
effect of the inherent uncertainty, which is higher at scenarios with high consequences and
small frequencies, would be clearly increased without the weighting. Summing up, the
metamodel model uncertainty and the inherent uncertainty are expected to have different
but clear effects on measures such as the individual risk or the risk curve without the lower
limit of the consequence or the weighting of the scenarios.

4. Conclusions

In this publication, a metamodel on the basis of complex simulation models was
developed, validated and applied for a risk analysis of a road tunnel. The metamodel
consists of three parts: the response surface model based on the projection array-based
design method and moving least squares, the metamodel uncertainty and the inherent
uncertainty of the complex model. Its validation reveals accordance with the results of the
complex models. As a result, the moving least squares model shows a high accuracy on the
entire complex response surfaces, which is, in particular, confirmed with the comparison to
the nearest neighbour interpolation. Accordingly, the use of moving least squares instead
of the nearest neighbour interpolation can improve the accuracy of a risk analysis. The
metamodel uncertainty and the inherent uncertainty have clear effects on the results of
the risk analysis and are especially important where the database is small or where the
complex model has large aleatory uncertainties.

The original sampled uncertainty approach uses all simulated scenario replications
and describes the aleatory uncertainty without the assumption of parameters or spe-
cific types of probability distributions. For this reason, it is explicitly suitable for a low
number of replications and varying frequency distributions among the results of the
different scenarios.

The methods of the generic metamodel are suitable for the evaluation of a wide param-
eter domain of complex response surfaces. The separation of the deterministic response
surface model and the aleatory uncertainty of the complex model makes the metamodel
applicable on deterministic and stochastic complex models as well as experiments in engi-
neering. Thus, it is useful for expensive simulations or experiments where the results are
required on a wide domain of parameters.

The methodology and the results presented in this publication are subjected to limita-
tions. The results of the risk analysis are limited to the specific scenario described in the
case study. Furthermore, response surface methods other than moving least squares, such
as the first- and second-order regression methods, may be more efficient when the focus
is on a small range of parameters as it often is in optimisation problems. Moreover, the
accuracy of the metamodel uncertainty may be limited due to the use of the prediction
interval method. Improving this issue by adding additional points or by applying other
response surface methods, such as the Gaussian process model, still constitutes an open
point for future research.
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