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Abstract: Automated driving promises great possibilities in traffic safety advancement, frequently
assuming that human error is the main cause of accidents, and promising a significant decrease
in road accidents through automation. However, this assumption is too simplistic and does not
consider potential side effects and adaptations in the socio-technical system that traffic represents.
Thus, a differentiated analysis, including the understanding of road system mechanisms regarding
accident development and accident avoidance, is required to avoid adverse automation surprises,
which is currently lacking. This paper, therefore, argues in favour of Resilience Engineering using the
functional resonance analysis method (FRAM) to reveal these mechanisms in an overtaking scenario
on a rural road to compare the contributions between the human driver and potential automation,
in order to derive system design recommendations. Finally, this serves to demonstrate how FRAM
can be used for a systemic function allocation for the driving task between humans and automation.
Thus, an in-depth FRAM model was developed for both agents based on document knowledge
elicitation and observations and interviews in a driving simulator, which was validated by a focus
group with peers. Further, the performance variabilities were identified by structured interviews with
human drivers as well as automation experts and observations in the driving simulator. Then, the
aggregation and propagation of variability were analysed focusing on the interaction and complexity
in the system by a semi-quantitative approach combined with a Space-Time/Agency framework.
Finally, design recommendations for managing performance variability were proposed in order
to enhance system safety. The outcomes show that the current automation strategy should focus
on adaptive automation based on a human-automation collaboration, rather than full automation.
In conclusion, the FRAM analysis supports decision-makers in enhancing safety enriched by the
identification of non-linear and complex risks.

Keywords: automated driving; human driving; risk assessment; resilience engineering; systems
thinking; overtaking manoeuvre

1. Introduction

In the past, traffic safety was improved by three major safety strategies including
engineering, enforcement, education [1], and their intertwinings. Nevertheless, according
to the World Health Organisation [2], over 1.2 million people die each year on the world’s
roads, and between 20 and 50 million suffer non-fatal injuries. These are still high numbers
that need to be improved. A promising countermeasure seems to be a technology advance-
ment by automated driving (AD, Level 3 and higher, according to SAE J3016 [3]), which
offers great possibilities in traffic safety enhancement. A frequent argumentation for this
assumption is that the human in his role as a driver is the main cause of accidents, claiming
that human error causes approximately 90% of road crashes, e.g., [4–7]. Consequently, it
is frequently recommended that the human driver be removed from the system and road
accidents will probably decrease by 90%. The common idea behind this is that technology
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can be introduced into a system by simply substituting machines for people so that the
system as a whole improves and there are no negative side effects. Unfortunately, this is a
persistent oversimplification fallacy, also called substitution myth [8,9].

This is in accordance with Rasmussen [10], who claimed that for a general understand-
ing of system behaviour, we do not have to focus on human errors, rather on mechanisms
shaping the behaviour in the system and its context. This is also in line with Woods and
Dekker [8], who stated that it is not sufficient to build a new mature system or technology
and then to test and assess its performance at the tail of the design process. Rather a
proactive approach at the beginning has to steer the design into a direction that considers
the usefulness of a potential new system given the possibilities new technology provides
and anticipates how technology transforms the nature of practice. Probably, this would
facilitate a system performance enhancement. Moreover, this is consistent with insights
by Ackoff [11], who stated that in any system, when one improves the performance of the
parts taken separately, the performance of the whole does not necessarily get improved
because the way the parts fit together determines the performance of the system and not on
how they perform taken separately. Thus, a system is not the sum of the behaviour of its
parts, it is a product of their interactions. Further, Grabbe et al. [12] designate the frequent
argumentation of AD as too simplistic thinking that falsely links the logic of a clear causal
link. Rather, according to Bengler et al. [13], the human driver is both an active and passive
participant in an accident, as well as accident avoidance and compensation element in the
same system. Consequently, a more differentiated view is required to improve the safety of
the entire road system through the efficient interaction between humans, machines, and
other road users.

Therefore, according to Grabbe et al. [12], the very first step in the development process
of automated vehicles is to understand the mechanisms of accident development and
accident avoidance in road traffic. Hence, the driver’s contribution in the corresponding
situations can be assessed to derive requirements for automation and the potential of
automation with its accompanying factors. Thus, the understanding of the mechanisms
of the road system is essential. Otherwise, adverse automation surprises, as happened
in other domains such as aviation, e.g., [14–17], will probably occur due to safety blind
spots [18] and could ultimately develop into a “showstopper”. This raises the question of:
which methods are best suited to reveal the safety mechanisms in road traffic? To clarify
the question, Grabbe et al. [12] reviewed the historical development of accident analysis
models, the properties of the road system, and a common understanding of safety. In the
following, a brief overview of their analysis and main conclusions is given.

According to Hollnagel [19], three different and major accident models can be distin-
guished: sequential, epidemiological, and systemic. Sequential accident models describe
the accident as the result of a chain of discrete events occurring in a particular time se-
quence. Here, losses are caused by technical failures or human error, assuming that the
cause-and-effect relationship is linear and deterministic [20]. Then, the focus changed with
introducing the epidemiological models to an organisational level, where accidents result
from a combination of different interacting factors [20]. This improved the understanding
of accidents regarding complexity, but the causality is still linear and the links between
states are loose, which that does not adequately represent the dynamics of a system [21].
Thus, systemic models arose seeing the accident process as a complex and interwoven event
that cannot be broken down into its individual parts [22] and rather analysing interactions
within the whole system. Salmon et al. [23] concluded that the road system, which connects
technical, human, and social elements to transport people and goods from one place to
another, is of a socio-technical nature. Additionally, they also argued in favour of a complex
system based on the prerequisite properties of complexity presented by Dekker et al. [24].
Further, Perrow [25] defined a framework called interaction-coupling matrix to classify sys-
tems based on their system characteristics. Here, systems can be generally distinguished by
the two dimensions of interaction and coupling. The interactions can be linear or complex
and the couplings are loose or tight, which results in four quadrants of system assignments.
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In particular, a socio-technical system (STS) can be described by an increasing number of
tight couplings and complex and non-linear interactions [25]. Wienen et al. [22] extended
this framework by combining it with the three types of accident models mentioned above.
Based upon this, Grabbe et al. [12] classified the road system as a system with highly
complex interactions and tight couplings assigning it to the systemic quadrant within the
matrix. Consequently, they concluded systemic methods are best suited to represent a
safety assessment of AD and especially reveal mechanisms in road traffic. This is also
confirmed by the analyses of Larsson et al. [26] and Hughes et al. [27] claiming that system
theory and systemic models are an important and major basis for safety work in road traffic.
Furthermore, safety is a complex issue, and many different views exist, providing a variety
of measures giving a reasonable description. So, every view captures some elements of
safety but not the entire picture [28]. Thus, safety cannot be defined by one clear definition
or construct. However, the historical development of the scientific study of safety points out
two fundamental concepts where safety is concerned: the traditional thinking about safety,
also called safety-I [29], which is based on the Newtonian and reductionist approach [30],
and the modern view of risk and safety management, also called safety-II [29], which fol-
lows a complexity-oriented holistic approach [31] based on Resilience Engineering (RE) [32].
A critical perspective on the two safety perspectives concerning AD and road safety by
Grabbe et al. [12,33] unveiled that the safety argumentation, as well as the safety assess-
ment of AD, is largely safety-I driven, and the safety-II perspective is strongly neglected.
Thus, they requested an urgent application of this safety view. This is also in line with
Hollnagel’s [34] (last slide) general statement regarding safety management that “it is an
unavoidable dilemma that we inadvertently create the challenges of tomorrow by trying to
solve the problems of today with the mindset (models, theories & methods) of yesterday”.

Since systemic analysis methods, as well as a safety-II perspective, seem best suited to iden-
tifying the safety mechanisms in road traffic against the background of AD, Grabbe et al. [12]
extensively compared the major systemic methods and discussed their benefits and limitations.
The authors recommended using the functional resonance analysis method (FRAM) at the
very beginning of a product development cycle, concluding that FRAM is the most adequate
method to reveal the safety mechanisms in road traffic. This is also supported by Ferreira and
Cañas [35], who see FRAM as a useful tool to build an understanding of the actual system
mechanisms and workings that are needed to support the risk management concerning the
proactive assessment of technological changes and their impacts. Apparently, there is no
“one-size-fits-all” solution to safety, which is especially true for complex and dynamic STS.
Thus, overall, we need combinations of different views, approaches, and measures including
safety-I and safety-II. However, a significant perspective, that is RE, is currently lacking and
inevitable as a fundamental basis for the safety assessment of AD. Here, FRAM, which is
based on RE, is the most recent and promising step to understanding STS [36]. Therefore,
Grabbe et al. [12] investigated the applicability of FRAM in a case study to evaluate its suitabil-
ity in more detail with regard to a purely methodical process. They discussed several strengths
and limitations. Ultimately, the authors concluded that the safety challenge of AD requires the
study of interactions and mechanisms of the road system where FRAM adequately addresses
these issues considering this method a “missing piece in the puzzle” for a risk assessment of
AD, which potentially helps to reveal hidden risks or safety blind spots of AD.

To continue this research and to reduce the research gap in the safety assessment of
automated vehicles regarding the aforementioned perspective, this paper aims to identify
the mechanisms of road traffic in one specific scenario, that represents a huge potential to
increase safety through automation in a complex setting, by using FRAM. Hence, these
mechanisms can be compared between a human driver and a highly automated vehicle,
which allows us to evaluate the contributions of the human driver and the automation.
Finally, system design recommendations for AD, considering potential accompanying
factors as well as insights for the validation process, reducing its effort, can be delivered in
order to show how FRAM can be used for a systemic function allocation for the driving
task between humans and automation.
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The remainder of this paper is structured as follows. Section 2 summarises the the-
oretical foundations and individual analysing steps of FRAM, as well as its applications.
Section 3 describes the implementation of the overall methodological research process and
its individual steps in detail. In Section 4, the results are presented including the FRAM
model of the analysed scenario, the identification of the contributions by the human driver
and the automation to the safety of the system, and recommendations for system design as
well as the validation process of AD. Then, Section 5 discusses the results with respect to
the research goals and also outlines methodological issues. Finally, a brief conclusion and
outlook for future research are given in Section 6.

2. Functional Resonance Analysis Method

FRAM [37] is basically a qualitative method for risk assessment and accident analysis.
It allows the modelling of mechanisms within a complex STS, including their interfaces
between humans and technology, coupling and dependency effects, nonlinear interactions
between elements, and functional variability [38]. The purpose of the resulting model is
to analyse how something happens or how a system works as work-as-done (WAD). In
particular, the description and understanding of the STS are given in terms of functions
rather than components. A FRAM model focuses on adjustments to everyday performance,
which usually contribute to things going right. Rarely, these performance adjustments
aggregate in unexpected ways, functional resonance will occur, and accidents are the most
extreme result. The ultimate objective is not to eliminate performance variability but to
investigate and monitor what is necessary for everyday performance to go right, trying to
dampen variability in order to reduce resonance effects and unwanted outcomes [37]. In
general, the results of a FRAM analysis contribute to the understanding of real work and
unveil unsafe functional interactions within one agent and between different agents that
are often underestimated by traditional methods and design approaches [35,39].

FRAM follows four principles (i.e., the equivalence of success and failures, approxi-
mate adjustments, emergence, and functional resonance), and four steps (i.e., modelling the
system through identifying its functions, identifying the function’s performance variability,
aggregating the variability, and managing the variability) are required for its analysis as
detailed in Hollnagel [37]. The steps are briefly described in the following. In the first step,
the essential functions of the system ensuring the success of everyday work are identified
to build a model. These functions produce a certain outcome referring to tasks as work-
as-imagined (WAI) or activities as WAD. Each function is characterised by six aspects (i.e.,
input, output, precondition, resource, control, and time), which couple each function with
several other functions representing a specific instantiation of the model. The resulting
model is traditionally represented graphically by hexagons depicting each function with
its six aspects. Furthermore, the functions can be divided into two classes: foreground
and background functions. Foreground functions are the focus of the analysis and may
vary significantly during an instantiation of the model. In contrast, background functions
are stable and represent common conditions as system boundary that are relevant for and
used by foreground functions. The second step is to identify and specify the performance
variability of each function. This is crucial to understand how the variability can propagate
through the system by the couplings between functions, which can lead to unwanted
outcomes. After the identification process, the variability has to be characterised using
different variability manifestations, the phenotypes. The simple solution considers two
phenotypes, these are timing and precision, where the function’s output in terms of timing
can occur too early, on time, too late or not at all, and in terms of precision, the output can
be precise, acceptable, or imprecise [37]. As it is not enough to simply know the variability
of individual functions in isolation, the third step in FRAM is to aggregate the variability to
know where functional resonance emerges. This is done by defining upstream-downstream
couplings where variability can be caused through couplings of upstream functions, when
the output used as, for example, input or precondition is variable and thus affects the vari-
ability of downstream functions. This impact is likely to lead to an increase in variability
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(amplifying effect), a decrease in variability (damping effect) and to maintain variability
(no effect). The last and fourth step consists of the monitoring and management of the
performance variability that was identified in the previous steps. This step aims to manage
or dampen variability to a level where no unwanted outcomes arise, rather than eliminating
variability since this is inevitable for things going well in complex STS. Finally, this ensures
the safety and performance of the system. The implementation of each step is more detailed
in Section 3.

In the past, FRAM has been widely used, applied, and enhanced methodologically
in a variety of domains for retrospective as well as prospective analyses, as detailed in a
comprehensive review by Patriarca et al. [40]. Hence, FRAM has been progressively evolved
since its starting point in 2004. The main application fields include aviation, e.g., [41–43],
healthcare, e.g., [44–46], industrial operations in plants, e.g., [47–49], the oil and gas industry,
e.g., [50,51], and maritime, e.g., [39,52,53] and rail transport, e.g., [54,55]. However, the
context of road safety has seldom been addressed by FRAM. Here, applications refer to
road safety management in a case study in Myanmar [56], a comprehensive comparison
of FRAM with other systemic methods regarding the safety mechanisms in road traffic,
as well as a thorough investigation of FRAM’s applicability in a case study evaluating its
suitability with regard to a purely methodical way against the background of the impact
of introduced automation [12], and a safety analysis of conditional automated driving
including the human-machine collaboration in the event of an authority transfer from the
automated system to the human driver in time-critical situations [57].

3. Research Method
3.1. Overall Methodology

As mentioned above, FRAM is a qualitative research method, which implies that
classical statistical procedures applied to quantitative methods are not adequate to meet the
three quality criteria in quantitative terms of internal and external validity, reliability, and
objectivity. To overcome this issue, we applied the approach of Anfara et al. [58], translating
the quality criteria in qualitative terms into credibility, transferability, dependability, and
confirmability in order to better assess the research quality and rigour in this study and
thus to improve their trustworthiness. Additionally, Creswell and Miller [59] identified
several verification strategies to comply with the four qualitative terms, where Creswell
and Poth [60] recommended that at least two of these strategies be used in any qualitative
study. The assignment of the quality criteria in quantitative and qualitative terms, as well
as their verification procedures, can be taken from Table 1. Here, the verification strategies
underlined boldly are implemented in this study to fulfil the four qualitative terms.

Table 1. Assignment of the quality criteria in quantitative and qualitative terms as well as their
verification procedures based on Anfara et al. [58] and Creswell and Miller [59].

Quantitative Term Qualitative Term Verification Strategies

Internal validity Credibility
Prolonged engagement in field; Use of peer debriefing; Triangulation;

Member checks; Time sampling; Persistent observation;
Clarifying researcher bias

External validity Transferability Provide a thick description; Purposive sampling

Reliability Dependability Create an audit trail; Code-recode strategy;
Triangulation; Peer examination; Stepwise replication

Objectivity Confirmability Triangulation; Practice reflexivity

As described in Section 2, the FRAM method comprises four main methodological
steps. These steps and their underlying substeps are shown in Figure 1. The aforementioned
quality criteria and verification strategies are intertwined in these steps. The following
subchapters will explain the respective steps in detail.
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3.2. Step 0: Selection and Description of Scenario: Setting the Objective and Scope of Analysis

In this work, FRAM was used as a method for a qualitative/quantitative proactive risk
assessment. Thus, the scope of analysis and the degree of resolution have to be described
to set the scene and system boundary for the four steps that follow. In particular, a scenario-
based analysis was conducted to compare the contributions between a human driver and
AD and to evaluate their potential effects in order to improve the system design. The
scenario is described below.

The scenario selected was an overtaking manoeuvre on a rural road. The main reasons
are as follows. First, accidents in the city and on rural roads are by far the most critical,
considering the accidents according to their location concerning frequency and severity
in Germany. Furthermore, 58% of all fatal accidents in 2018 in Germany occurred on
rural roads. Second, on rural roads, collisions with oncoming vehicles and leaving the
carriageway pose the greatest danger [61]. By far the largest proportion of collisions
with oncoming vehicles is caused by overtaking manoeuvres [62]. Therefore, overtaking
situations represent accident black spots on rural roads, offering great potential for road
safety improvement. Additionally, overtaking situations are classified as a relevant scenario
category for a scenario-based validation of AD [33]. Third, according to Netzer [63],
overtaking is a very complex traffic process with a variety of influencing factors involving
several different subtasks, such as swerving, adjusting speed, merging, and the interaction
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of at least two drivers. Thus, this scenario offers a great potential to highlight the interaction
and complexity of road traffic, including the systemic interdependencies between different
road agents and the environment. In addition, results might be transferred to other road
traffic scenarios because overtaking situations make up a large part of everyday driving
tasks. Overall, the overtaking situation on rural roads is a good starting point for a socio-
technical analysis under the lens of RE.

Figure 2 schematically depicts the overtaking scenario. This consists of four road
users or agents: the ego vehicle (EV), the lead vehicle (LV), the rear vehicle (RV), and the
oncoming vehicle (OV). Behind the OV, identified by the second orange and unlabelled
vehicle, other vehicles form a line of cars. However, these vehicles and drivers are not
considered agents for the modelling and scope of analysis and are therefore out of system
boundary. To get a better overview, the scenario can be divided into five temporal and
spatial stages from EV’s point of view (see Figure 2): following a vehicle in front, swerving
into the oncoming lane, passing the leading vehicle, merging back into the starting lane,
and getting in the lane again.
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Figure 2. Schematic illustration of the overtaking scenario comprising different road users/agents
and divided into five temporal and spatial stages. EV = ego vehicle, LV = lead vehicle, RV = rear
vehicle, OV = oncoming vehicle.

The four agents are driving on a straight rural road for a distance of 1500 m with no
vertical elevation, on which the maximum speed limit is 100 km/h, overtaking is permitted
and no obstructions exist. One lane runs in each direction and the median is dashed. The
total width of the road is 6 m. The road is well constructed and all necessary road markings
are in place. On the side of the road, there is light vegetation. The weather conditions are
sunny and dry.

The EV is following the LV and at the same time followed by RV. The LV is driving
at a speed of 80 km/h. In the oncoming traffic, a vehicle OV and following vehicles are
coming towards at 100 km/h with different time gaps. In principle, the OV represents the
oncoming traffic. All agents always keep the necessary safety distance to their vehicle in
front and comply with the traffic regulations. The EV is under time pressure and wants
to reach its destination quickly, and since LV is travelling below the speed limit, it starts
an overtaking manoeuvre. The other agents are reacting to the overtaking manoeuvre
of EV. In general, the EV is driven once by a human driver and once by an automated
system (SAE-level 4) according to SAE J3016 [3] with no car-to-x communication. The
other vehicles are always driven by a human driver in both cases. Overall, the overtaking
scenario should represent a simple and everyday overtaking manoeuvre on a rural road, in
which four road users are interacting primarily with one other. This represents a scenario
in which most overtaking accidents occur, that is a straight flat section in daylight and on a
dry rural road, all in all, under good external conditions [62].

3.3. Step 1: Identification and Description of the System’s Functions
3.3.1. Develop the WAI Model

The WAI model is based on a comprehensive and detailed hierarchical task analysis of
driving developed by Walker et al. [64]. This work is created on a task analysis conducted
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by McKnight and Adams [65] in 1970, the UK Highway Code, several driving standards
and manuals, input by subject matter experts (SMEs), and numerous on-road observation
studies. The tasks and plans are constructed using logical operators such as And, Or,
If, Then, Else, While, and so on. The list of tasks and plans, which are essential for the
overtaking scenario, were translated into functions where the logical operators were used
to define couplings between each function through their aspects. First, a WAI model
was created for each agent, followed by a WAI model combining all agents in one model
assigned to the five temporal stages of the scenario. In addition, the functions were labelled
and distinguished by different information processing levels.

3.3.2. Develop the WAD Model

Since it is not sufficient to know only the theoretical mechanisms of the overtaking
process, the next step is to create a WAD model using observations and interviews imple-
mented in a driving simulator study which serves to update and enhance the WAI model
into a more realistic overall model.

Driving Simulator

Here, a static driving simulator (see Figure 3) was used. The environment is simulated
by three flat screens with a resolution of 4K covering the space from the left-side window
to the right-side window of the car, which ensures a 120◦ viewpoint in front. Additionally,
the rear-view mirror is virtually displayed at the top of the centre screen. The side mirrors
are displayed via two small monitors placed to the left and right of the subject. The driver,
seated on a default automobile seat that is adjustable in height and longitudinal direction,
has a steering wheel for lateral control that can be adjusted along the axis, as well as
an accelerator and brake pedal for longitudinal control. The use of a turn signal and a
shoulder view to the rear are not possible. Behind the steering wheel is a combination
display that shows the engine speed and the current speed of the vehicle. Further, the
driving simulator is equipped with automatic transmission and sound, consisting of engine,
environmental, and vehicle noises that are reproduced via two speakers placed next to
the pedals. During a test drive, the room was darkened to increase the immersion for the
driver. SILAB 6.0 of the Würzburg Institute for Traffic Sciences GmbH in Germany was
used as the simulation software.
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A total of 10 participants took part in the study. Of these, seven were men and
three were women with an average age of 28 years (SD = 2.26 years), ranging from
24–31 years. All owned a valid driving licence and drive an average of 18,000 km a year
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(SD = 10,055 km/year), which shows a solid experience in road traffic. Furthermore, all
subjects have already participated in a driving simulator test and were well acquainted
with the driving simulator, which is why it can be assumed that their real driving behaviour
has not changed much in the driving simulator. This is consistent with the indication that
80% would perform similar driving manoeuvres and overtaking manoeuvres in reality.
The driving styles were heterogeneous, ranging from safe and leisurely to slightly risky
and fast-paced, which was surveyed using a 5-point Likert scale.

Procedure

First, the subjects were informed about the goals and content of the study and signed
an informed consent. Afterwards, the subjects took a seven-minute test drive, which
included everyday driving scenarios on rural roads, to learn about steering, braking, and
the driving simulator system. Then the actual test drive began. Here, the driving data,
as well as the audio track and the subject’s behaviour, were recorded for evaluation. In
total, the experiment lasted 30 min, and each subject experienced the scenario from the
perspective of each of the four agents, in which the order of perspectives was as follows: EV,
LV, RV, OV. The subject passed through each perspective three times. The first pass of the
overtaking manoeuvre was used for familiarisation, during the second the subjects were
asked to think aloud and explain their actions over the following few seconds, and during
the third pass, the simulation was stopped five times (which represented the five stages of
the scenario, see Figure 2) whereupon the subjects were asked to explain in detail which
functions they would perform over the next few seconds. The functions refer to the three
information processing levels of perception, cognition, and action. Between the actual test
scenarios, that is the overtaking manoeuvre on the straight rural road, the test subjects each
drove a small winding course through a wooded area so that the entire scenario would
appear as natural as possible. After the test drive, subjects completed a short questionnaire
to collect demographic data. Additionally, driver type data, as well as perceptions in the
driving simulator test, were surveyed. Finally, a semi-structured interview was conducted.
The interview queried specific aspects of the overtaking process from the perspective of all
four agents that had not been considered before. The interview consisted of ten questions.
The first six questions related to the execution of the overtaking manoeuvre regarding the
five stages. The subject described, for example, the information on which their decision to
start an overtaking manoeuvre was based, as well as its concrete execution. In addition,
it was asked how the driver determines whether a current overtaking manoeuvre is at
risk, how he/she reacts, and how a manoeuvre is successfully completed. The last four
questions were general in nature (e.g., perception of environmental influences, the influence
due to time pressure, or factors that can trigger a critical situation).

Measures and Analysis

In the evaluation to identify and describe the system’s functions, the interviews, as well
as the audio track and the driving and behavioural driver data, were used. The responses in
the interviews, as well as the audio track during the experiment, were collected, categorised,
and assigned frequencies. From this processed interview data, as well as the objective
data streams such as the longitudinal and lateral driving behaviour in response to scenario
objects or the behaviour of other drivers, activities for driving tasks were identified and
subsequently translated into functions. This finally led to the WAD model, where the
individual functions were linked based on the observations.

3.3.3. Develop the Overall Model

As a first step, each of the two researchers compared the WAI and WAD models they
had created individually and tried to unify them into an overall model. The procedure was
such that the WAI model formed the basis and newly discovered functions and couplings
were added by the WAD model. After this, the two individually generated overall models
were combined using a joint comparison and discussion by the two researchers. In a final
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step, the researchers refined the complete overall model in iterative steps by going through
the model using an in-depth cognitive walkthrough to recognise potential missing functions
or couplings and falsely linked functions. The overall model, as well as the WAI and WAD
models, were produced using the software FRAM Model Visualiser (FMV) [66] Pro 2.1,
available at http://www.zerprize.co.nz/FRAM/index.html (accessed on 25 August 2021).

3.3.4. Validate the Overall Model

In the last step, the overall model was calibrated and validated through a focus group
within a peer review workshop to ensure objective, reliable, and valid analysis results
based on the FRAM model. The peers were seven experts (5 male, 2 female) with strong
knowledge and broad experience of human factors in the automotive area. The experts were
educated about the FRAM model and its creation process one week before the workshop
through a 90-min recorded video. In addition, general background information about
FRAM was given to familiarise the peers with the method, and participants were divided
into three groups (EV; LV; RV & OV) to provide comments on the specific agents. In the
workshop, the overall model was then discussed step by step for each agent. However,
it turned out that the planned format was inefficient. Therefore, in three separate two-
and-a-half-hour meetings, the model was explained and discussed again in detail for the
respective three groups, and the experts then gave their feedback and the models were
iteratively adapted. At a follow-up meeting, the overall model was finally iteratively
calibrated and fine-tuned again with all seven peers in a joint two-hour session. To validate
the overall model, the peer group reflected on their personal experience and human factors
knowledge of driving a car, including manual driving as well as automated driving. This
contained additions, modifications, or deletions regarding functions and their couplings,
as well as the assignment of agents, temporal stages, and information processing levels.
Having agreed that the overall model accurately reflects the essential mechanisms of the
overtaking scenario, the last step was a formal validation. Here, the model has been
checked and adjusted for consistency and completeness, using another software facility, the
FRAM Model Interpreter [66,67], which is incorporated into the FMV Pro. It was a stepwise
automatic interpretation of the syntactical and logical correctness of the overall model.

3.4. Step 2: Identification of Performance Variability
3.4.1. Identify Performance Variability for the Human Driver

The identification of the performance variability for the human driver was twofold
and was based on objective as well as subjective data, as described below.

Driving Simulator Study

First, a second driving simulator study was conducted. The simulator environment
and the setting were the same as mentioned in Section 3.3.2.

Sample

Overall, 30 subjects (20 males, 10 females) including German students and scientific
employees, aged between 21–30 years (M = 24.84 years; SD = 2.96 years), took part in
the study. All had a valid driving licence and drive an average of 11,724 km a year
(SD = 7742 km/year). Furthermore, half of all subjects had already participated in a
driving simulator test. Additionally, 80% would perform similar driving manoeuvres and
overtaking manoeuvres in reality. All subjects had experienced driving skills, with 76%
driving daily to weekly. The driving styles were heterogeneous, ranging from safe and
leisurely to slightly risky and fast-paced.

Procedure

Overall, the experimental track was the same as mentioned in Section 3.3.2. Before
the test drive, the subjects were informed about the goals and content of the study and
signed an informed consent. Afterwards, they took a 15-min test drive on a rural road

http://www.zerprize.co.nz/FRAM/index.html
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for familiarisation. According to the Wiener driving test [68], an observation period of
about 15 min is necessary before drivers show their everyday normal driving behaviour
and fall into their regular habits, which should ensure a valid investigation of everyday
performance variability. Then the actual test drive began. Besides the recording of driving
data, audio track, and the subject’s behaviour, the glance behaviour was tracked with a
head-mounted eye-tracking system via Dikablis Glasses 3 from Ergoneers in Germany.
This ensured insights, especially into the drivers’ perceptual behaviour, in addition to
executive activities, and to record cognitive processes. The participants drove the four
agent perspectives three times in permutated order, intending to reproduce their everyday
driving behaviour and complete overtaking manoeuvres and driving tasks as quickly as
possible, but as safely as necessary.

Measures and Analysis

To determine performance variability, the driving data and glance behaviour were
evaluated for each run (a total of 90 data sets per agent and function), with each run then
assigned to the different characteristics of the timing and precision phenotypes based on
previously established definitions of the characteristics of the phenotypes per function.
Here, Table 2 exemplifies this for the lane-keeping function.

Table 2. Definition of the timing and precision characteristics using the lane-keeping function as an
example.

Phenotype Characteristic Definition

Timing

Too early If the driver already countersteers although the vehicle is driving in the middle of
the lane.

On time If the driver countersteers in time (the vehicle is approaching the left or right of
the lane boundary) to keep the vehicle in the lane.

Too late If the driver countersteers too late (vehicle has already left the lane) to keep the
vehicle in the lane.

Not at all If the driver does not countersteer at all to keep the vehicle in the lane.

Precision
Precise If the car always drives perfectly along the centre line between the left or right of

the lane boundary.
Acceptable If the car always drives between the left or right of the lane boundary.
Imprecise If the car crosses the left or right of the lane boundary.

Finally, this resulted in a frequency distribution of performance variability for each
function as an average over all runs (e.g., for timing 90% on time and 10% too late and
precision 20% precisely and 80% acceptably). The reason for specifying performance
variability via a frequency distribution is to create as realistic as possible a representation
of actual everyday performance.

Interviews and Survey

Unfortunately, only a few functions’ performance variabilities (mainly functions refer-
ring to actions) could be objectively and reliably determined by observation in the driving
simulator, and a large part of the perceptual and cognitive processes could not be assessed.
Thus, large-scale structured interviews combined with a survey were conducted in a second
step. In general, the following rule applied to determine the variability of performance
per function: If the variability of a function could be objectively recorded in the simulator
study, then these values were used, if not, then the values from the interviews were used.
Since most of the functional variability could only be captured subjectively through the
interviews, the drivers’ self-assessment had a primary role.

Sample

Overall, 30 subjects, who are a mixture of students, scientific employees, and peo-
ple with completely different educational and occupational backgrounds from Germany,
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took part in the interviews. The participants (21 male; 9 female) have an average age of
32.33 years (SD = 12.35 years), with an age range of 21–61 years. All owned a valid driving
licence and drive an average of 17,166 km a year (SD = 8971 km/year). All subjects had
experienced driving skills, with 83% driving daily to weekly. Their driving styles were
heterogeneous, ranging from safe and leisurely to slightly risky and fast-paced.

Structure of Questionnaire and Analysis

Because of the high number of functions, two questionnaires were created using the
online survey tool LimeSurvey. They cover 100 functions and were gone through step by
step in an interview so that queries could be clarified. The first questionnaire determined
all driving tasks of LV, RV, and OV, the second one determined the variability for driving
tasks performed only by EV, with each questionnaire being completed by 15 participants.
Both questionnaires were already reduced by redundant functions, which means functions
that are executed several times, that are in different stages, or by several agents. The
structure of the questions is described in the following, which was inspired by the approach
of Patriarca et al. [45], who conducted the determination of performance variability in
a neuro-surgery healthcare setting via an online survey. The driving tasks were always
queried according to the stages of the scenario and the subjects were informed of the stage
in which the driving task was performed. For each driving task, the name of the driving
task, which agent performs it, a description of the task of the function, and the output of
the same were given. This was followed by the evaluation of variability in timing and
precision. Here, the subjects stated in per cent how often they perform a driving task
in everyday life: too early, on time, too late, or not at all. For this purpose, each of the
sliders was moved in five per cent increments. For better orientation, value ranges were
defined for the frequency categories: never (0%), rarely (1–25%), sometimes (26–50%), often
(51–75%), usually (76–99%) and always (100%). The evaluation of precision was carried
out in the same way, except that here the subjects indicated how precisely they perform
the driving task in everyday life: precisely, acceptably, or unacceptably. The sum of the
individual responses had to add up to 100 per cent in each case. Finally, the performance
variability distribution ratings for each function were averaged for each characteristic over
all participants.

Procedure

The procedure of the interview and the structure of the questionnaires were as follows.
The subjects are first informed about the theme and procedure of the study and signed an
informed consent. The interview lasted about 60 min. After that, the scenario, agents, stages,
and structure of the questionnaire were explained. This was followed by a demographic
questionnaire and a test question so that the subjects could familiarise themselves with the
structure of the questions. Before the actual survey began, the subjects watched a video
that visualised the scenario in real-time. During the survey, questions could be asked to
eliminate misunderstandings.

3.4.2. Identify Performance Variability for Automation

Due to a lack of public data on AD performance and driving behaviour, structured
interviews combined with a survey were also conducted to determine performance variabil-
ity for automation as a generic concept based on the current state-of-the-art of automation
systems and short-term developments.

Sample

Here, twelve experts (10 male, 2 female) participated in the interviews. Most of the
experts came from suppliers or original equipment manufacturers (OEMs) in the German
automotive industry, a few from German universities, and one from an OEM in the USA.
The experts held various positions within the development of automated driving functions
and had extensive practical and theoretical knowledge regarding the performance of
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current series and prototype functions. On average, the experts had been working in their
current function for 5.83 years (SD = 5.34 years) and had already gained experience in
the field of driver assistance or vehicle automation for an average of 8.33 years (SD = 4.79
years). Seven described their general attitude towards vehicle automation as consistently
positive, four as positive but with reserved euphoria because of a clear necessary increase
in reliability, and one was ambivalent, especially about implementing higher levels with
broad application areas.

Procedure and Analysis

The procedure of the interviews as well as the structure of the questionnaires were the
same as for the case of the human driver, as mentioned above. The functions for the EV were
split up into two questionnaires due to the high number, each of which covered 41 driving
tasks or functions. Each survey was completed by six experts. The only difference in the
individual questions was that no frequency distribution concerning the characteristics for
timing and precision had to be given, but only one characteristic per phenotype (single
choice) was to be selected. That was considered the most probable in the analysed scenario
for AD against the background of short-term automation developments. All ratings of
every expert were then combined into a frequency distribution of performance variability
for each function.

3.5. Step 3: Aggregation of Variability

The purpose of the third step is to look at how the variability of the functions aggregate
and propagate through the system in a specific instantiation of the model to determine
potential functional resonance leading to unexpected outcomes arising through interaction
and complexity in the system. Because of the complex scenario and the fact that its qualita-
tive modelling by FRAM was quickly becoming overwhelming, we enhanced the research
by a semi-quantitative approach according to Patriarca et al. [69] and Grabbe et al. [12]. This
was implemented with the help of the software myFRAM 1.0.4 [70], which was developed
in Visual Basic for Applications and interfaced with Microsoft Excel and FMV, enabling the
FRAM model to be converted into a matrix so that a quantitative or numerical calculation
is possible. The structure of the defined metrics is shown in Figure 4. Here, the nodes
represent the respective metrics, and the structure, that is which metrics are composed how,
is marked by arrows and their direction from right to left. The green nodes will later be
used as the main analysis metrics in Section 4.2. In general, the metrics can be divided
into three categories: functional variability, system resonance, and system propagational
variability. The functional variability represents the variability that a function directly
receives and transfers without considering their interaction and effect in the system suf-
ficiently. Therefore, the system resonance tries to reflect the interaction and complexity
of a function in the system, incorporating non-linearity, emergence, and dynamic of the
system. It is a kind of weighting of the impact and affectedness of a function to evaluate
the effect of a function variability system-wide. Combining functional variability and
system resonance results in system propagational variability, which shows the systemwide
impact and affectedness of each function’s variability up to a global system variability
level. The definition and calculation of each metric within the three categories, which were
implemented with myFRAM and MATLAB 2020, are described below.
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3.5.1. Metrics for Functional Variability

The final calculation of functional variability is based on the downlink (DL) and uplink
(UL) coupling variability (CV) of one foreground function (downlink functional coupling
variability DLFCV and uplink functional coupling variability ULFCV). The DLFCV was
used to understand the implications of the coupling variabilities of one entire upstream
function j to associated downstream functions i and the ULFCV was used to comprehend
the impact of the variability of a downstream function i through its incoming coupling
variabilities of upstream functions j. The calculation formula for DLFCV and ULFCV can
be seen in (1) and (2), respectively:

DLFCVj = ∑j
i=1 CVij (1)

ULFCVi = ∑j
i=1 CVij (2)

To keep the paper readable, the formulas of the remaining metrics on which the DLFCV
and ULFCV are based can be found in Appendix A.

3.5.2. Metrics for System Resonance

The performance of the overall system, in this case the FRAM model, is more than
the sum of its function’s variabilities, and rather is determined by the interaction and fit of
the individual subsystems (within and between agents as well as between agents and the
environment). However, the metrics mentioned above did not adequately represent this
and are only considered as taken separately without interactions (except for the variability
propagation factors). Therefore, we further defined several metrics, categorised into an
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interaction and complexity dimension, which should represent this inherent complexity,
which incorporates non-linearity, emergence, and dynamic of the system. On the one hand,
the connectivity/interaction of functions was determined with the following metrics in
order to calculate the degree to which a function interacts with other functions or agents in
the system:

• Number of downlinks and uplinks (NDL and NUL) which show how many functions
a function can directly influence and how many functions it is directly influenced
by, respectively.

• Intrarelatedness expresses how many functions a function is linked to within an agent
(e.g., EV) and within the same stage (e.g., Follow) or in different stages (e.g., Follow
and Pass).

• Interrelatedness presents how many functions of other agents (e.g., LV and OV) a
function is linked to and weights it with the number of different agents.

• Feedback loop factor reflects the extent to which a function’s output can influence its
input through direct and indirect feedback loops.

On the other hand, centrality measures from graph theory were used to represent
the complexity of the system. The reason for this choice is that graph theory proved
to be well suited to investigate some emergent non-linear characteristics of systems to
express by other approaches and their used metrics have been already proven to succeed
in explaining many features of complexity [71]. The translation of a FRAM model into a
network by graph theory was already applied by Bellini et al. [72] and Falegnami et al. [71],
showing general good integrability of these approaches to prioritise key functions in a
FRAM model adopting centrality measures in order to reflect a combination of couplings’
weights and connectivity. However, the studies also implied that several centrality indices,
representing the importance of a node/function, exist and that it is difficult for a centrality
measure to be considered the most representative of FRAM characteristics since peripheral
nodes/functions can also be important. Thus, the most appropriate centrality measures
should be identified on a case-by-case basis [73]. Therefore, the authors of this paper
chose a mix of the following three different centrality indices and one own defined metric,
assuming this would be the best way to represent this complexity:

• Katz-centrality depicts the relative degree of influence of a function within the system,
showing the extent of indirect impact.

• Incloseness- and Outcloseness-centrality measure how central a function is located in a
system and thus the more central a function is, the closer it is to all other functions
and therefore has a high potential for functional resonance.

• Betweenness-centrality shows the degree of a function to bridge functions with other
functions, which makes it a critical function for system success.

• Clustered Variability (CTV) shows how much upstream and downstream variability
accumulates around a function to depict where groups of functions with high variabil-
ities exist that are directly coupled.

To keep the paper readable, the formulas of the metrics for the interaction and com-
plexity dimensions can be found in Appendix B. Below the calculation and meaning of the
two main indicators of system resonance, the Weight as Upstream (WaU) and Weight as
Downstream (WaD) of a function f, are explained. The WaU and WaD reflect the system
effect of a function as an upstream and downstream function, respectively. This should
simulate the interaction and fit between functions and their inherent complex interdepen-
dencies. The respective metrics are included in the calculation in a weighted manner. The
assignment of these weighting factors with numerical values was subjective and is reflected
in Table 3. The assignment follows the logic that some metrics weigh more heavily than
others. For example, interrelatedness weighs more heavily than intrarelatedness, since this
considers that influencing other agents has a higher system effect than only influencing
one’s own agent. The WaU and WaD are determined as follows (3) and (4):
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WaU f = β1 ∗ Nrelative
DL f + β2 ∗ Intrarelatednessrelative

f + β3 ∗ Interrelatednessrelative
f + β4

∗FeedackLoopFactorrelative
f + β5 ∗ CTVrelative

f + β6 ∗ Katz− centralityrelative
f + β7

∗ Outcloseness− centralityrelative
f + β8 ∗ Betweenness− centralityrelative

f

(3)

WaD f = β1 ∗ Nrelative
UL f + β2 ∗ Intrarelatednessrelative

f + β3 ∗ Interrelatednessrelative
f + β4

∗FeedackLoopFactorrelative
f + β5 ∗ CTVrelative

f + β6 ∗ Katz− centralityrelative
f + β7

∗ Incloseness− centralityrelative
f + β8 ∗ Betweenness− centralityrelative

f

(4)

Table 3. Allocation of numerical values of the weighting factors for the calculation of WaU and WaD.

Weighting Factor Numerical Score

β1 (NDL/NUL) 4
β2 (Intrarelatedness) 2
β3 (Interrelatedness) 2.5

β4 (FeedbackLoopFactor) 1
β5 (CTV) 1

β6 (Katz− centrality) 4
β7 (In− /Outclosenness− centrality) 2.5

β8 (Betweeness− centrality) 2.5

3.5.3. Metrics for System Propagational Variability

In the final step, the WaU and WaD are offset against the CV values of each function,
resulting in a relative DLFCV (5) and relative ULFCV (6) considering the interaction of one
function’s down- and uplink coupling variability within the whole system, showing how a
function affects the system and is affected by the system, respectively:

DLFCVrelative
j =

j

∑
i=1

CVij ∗WaUj ∗WaDi (5)

ULFCVrelative
i =

i

∑
j=1

CVij ∗WaUj ∗WaDi (6)

Finally, the overall functional coupling variability (OFCV) of a function f could be
determined from this (7):

OFCVf = ULFCVrelative
i + DLFCVrelative

j (7)

This metric identifies critical functions with high potential for functional resonance
offering functional prioritisation of their impact into the system in that, for example, a high
value means that the function has a large systemic effect and/or is largely systemically
affected and/or a high variability accumulates in and around the function.

In the last step, a global system variability (GSV) could be calculated to show the
accumulated variability of all functions and their interactions of the whole system for
one specific condition. This enables, for example, a comparison of system performance
between a system where purely human drivers operate and one where an automated
system operates with human drivers. The GSV is the sum of the OFCVs of n functions
within the whole system (8):

GSV =
n

∑
f=1

OFCVf (8)

3.6. Step 4: Management of Variability

The final step proposes ways to manage performance variability, especially possible
conditions of functional resonance, that have been found by the preceding steps. In this
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work, we proceeded as follows. In general, we are aiming to improve the performance
variability of the entire system for the given scenario by deriving system design recommen-
dations through a well-reasoned function allocation, which will be shown in Section 4.3.
To achieve this, the performance variability of the entire system is analysed by comparing
the contributions between human driver and automation to road safety based on systemic
mechanisms on both an abstract global level (see Sections 4.2.1 and 4.2.2) and a fine grain
level regarding the individual functions (see Sections 4.2.3 and 4.2.4).

4. Results

In this section, the results are presented. First, the resulting overall FRAM model
is described. Further, critical functions are identified and analysed in-depth to compare
the positive and negative contributions of the human driver and automation to system
behaviour. Finally, recommendations for system design as well as the validation process of
AD are derived.

4.1. The Overall FRAM Model

The overall model comprises 285 functions (210 foreground functions (hexagons) and
75 background functions (rectangles)) with 799 couplings and is shown graphically in
Figure 5. All functions within an agent exist only once and are then executed several
times by other functions at different stages of the manoeuvre. The functions are assigned
respectively to the four different agents (EV, LV, RV, and OV) and five temporal stages
during the scenario (Follow, Swerve, Pass, Merge and Get in lane). This is a modification
of the Abstraction/Agency framework by Patriarca et al. [74] into a Space-Time/Agency
framework, which should ensure enhanced knowledge representation combined with a
multi-dimensional approach that is two dimensions: the temporal-spatial levels and the
agency levels. Since it is not effective to analyse an STS according to only one level [74],
this approach makes it easier to with complexity that requires a system to be structured
following different levels of analysis with different resolutions and perspectives [75]. This
is shown by the interactions within an agent and between different agents at different
temporal and spatial occurrences. The stages always refer to the perspective of the EV,
which is the focus of analysis. The functions can only be executed within the assigned
agent and the assigned temporal stage(s) but can be coupled with functions of all other
agents and stages.

To make the model clearer, the functions have also been colour-coded according to the
following pattern to specify the type of functions in more detail:

• Driving functions:

# Yellow→ perception driving tasks (e.g., to monitor road layout ahead of LV)
# Blue→ cognition driving tasks (e.g., to assess the opportunity to overtake safely)
# Green→ action driving tasks (e.g., to decrease speed)
# Orange→main manoeuvre tasks (e.g., to follow LV)

• Functions affecting driving:

# Red→ characteristics of the infrastructure (e.g., to provide road signs)
# White→ characteristics of the environment (e.g., to enable clear view on the

road ahead (weather conditions, etc.)
# Grey→ technical functions of the vehicle (e.g., to provide steering wheel)
# Purple→ information by the policy (e.g., to provide safe braking distances by

Highway Code)

The driving functions are classified into three levels of information processing (i.e., per-
ception, cognition, and action) adopting the framework of types and levels of automation
regarding the four-stage model of human information processing provided by Parasura-
man et al. [76]. This facilitates function allocation between humans and automation, that is,
the design decision of which system functions are to be performed by humans and which
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should be automated and to what extent to improve system safety. Thereby, main manoeu-
vre functions bundle several driving functions, which are intended to improve clarity.
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It should be noted that the model is the same for the human driver or the automation
because of the assumption that there is no change in the functions of the system that have to
be accomplished by the human driver or the automation. This is ensured by an appropriate
resolution or abstraction of the functions. The difference between the two agents is only
the variable performance of each function. The reason is that a FRAM model should treat
humans and automation systems as equivalent producers of functions to compare the joint
performance of both systems as the net result of the functional resonances as depicted by
the GSV.

Due to the complexity of the model, we cannot represent and describe the actual
structure and content of the whole model (the entire model can be viewed as an FMV data
file in the Supplementary Materials S1). Therefore, we roughly describe the major functions
per each agent and stage represented by the main manoeuvre functions in Appendix C
in Table A3. Additionally, the driving behaviour of to follow by EV in the Follow stage
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(see Appendix C in Figure A1) is explained in detail to improve the comprehension of the
remaining parts of the model.

4.2. Comparison of the Contributions between Human Driver and Automation to Road Safety
Based on Systemic Mechanisms

In this subsection, the analysis process follows the hierarchical structure of the metrics
depicted in Figure 4, moving from the abstract (left) to the detailed (right) focussing
primarily on the main analysis metrics (green nodes). First, the abstract global analysis is
accomplished through prioritising risk functions and analysing them in comparison across
stages and function types between human driver and automation. Additionally, the global
system variability is investigated. Second, the individual functional analysis is represented
by distinguishing the interaction and variability of system functions to identify potential
critical functional resonance, but also success factors, and finally analysing critical paths
and their interactions in the system.

In general, a comparison of all system functions cannot be presented, so the following
is an analysis of essential functions serving as examples to assist with comprehension of
the derivation of system design recommendations in Section 4.3.

4.2.1. Prioritisation and Analysis of Risk Functions

The risk functions for human drivers and automation were identified through the
analysis of the OFCV since this metric shows the criticality of a function measured by the
system-wide impact of the function’s variability. Here, the OFCV of each function was
prioritised and ranked using the scree test (see Figure 6) according to Falegnami et al. [71].
Usually, the first knee is chosen to prioritise functions that lie left to the curve knee (that
in our case filters only five functions, which are largely more critical than the following
ones). However, as we are interested in focusing on a larger portion of risk functions, we
needed a tool to help us decide which curve knee to use. Thus, we enhanced the scree
test by a regression line. The rightmost curve knee, which lies above the first intersection
point of the regression line (i.e., functions that lie above the average linear slope and
thus differ significantly from functions below the average linear slope), is ultimately
used as the decision criterion. Thus, we selected the third knee, allowing us to consider
23 risk functions for the human driver. The selection process for the automation was the
same, resulting in 22 risk functions. A list of risk functions is shown in Appendix D in
Table A4. The risk functions are not only related to the agent EV, but also the other agents.
Considering a function allocation for the system design (which will be explained in more
detail in Section 4.3.1), the following should be taken into account. If a function is only an
automation risk, it is recommended that it should be performed by humans, and vice versa.
However, if a function poses a risk to both, it is necessary to analyse thoroughly which
control mode seems to be the best.

As seen in Figure 7, the most risk functions are in the Follow stage, which also includes
significantly more functions, however. In the other stages, the distribution is about the
same, except for the Swerve/pass/merge stage, in which humans have six times more risk
functions than automation. However, the risk functions in this stage are all performed by
other agents than EV, so it can be interpreted that the other agents are more negatively
influenced by the human driver of EV than by the automation. However, this would need
to be verified since the other agents are only influenced by action functions and these are
predominantly performed worse by the human. Furthermore, the data from other agents
are only based on experiences with human drivers and not with automation. Moreover, the
Get in lane stage is the only stage without a risk function.

Figure 8 shows that the risk functions for automation are mainly loaded by perception
and cognition. Merely one third relates to action and main manoeuvre functions. In
humans, on the other hand, mainly action functions and the main manoeuvre functions
are considered risk functions, whereby the main manoeuvre functions are predominantly
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action-intensive. Only one fifth is accounted for by cognition functions, and perceptual
functions do not pose any risks at all.
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4.2.2. Analysis of Global System Variability

Finally, the GSV of each stage between human and automation is compared, as well as
the function types for the EV in each stage. Figure 9 shows the comparison of GSV between
humans and automation, where the variability is calculated in relation to the number of
functions in the stage so that they can be compared relatively. The highest variability for
both is found in the Pass stage and the largest difference between humans and automation
occurs in the Follow stage, where the automation’s variability is much larger than for
humans. The other stages are relatively balanced, although the variability in automation is
slightly lower. In general, automation has a higher overall variability.
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4.2.3. Distinguishing the Interaction and Variability of System Functions for Potential
Critical Functional Resonance

The previous analysis was very focused on the OFCV of risk functions and the GSV,
which reflect the criticality of the functional variabilities in the system in an aggregated,
abstract and simplified form. However, this criticality is composed of two dimensions:
the variability a function receives (ULFCV) and transfers (DLFCV), which represent the
functional variability, and the system resonance of a function, which reflects the interaction
in the system, is how the functional variability is affected by the system (WaD) and how
it influences the system itself (WaU). Therefore, these two dimensions were analysed sep-
arately for the system functions as well as risk functions in the following to get a deeper
understanding. This is proposed by a matrix that represents the criticality of functions and
their potential for functional resonance along the two dimensions functional variability
and system resonance, which make up Functional Variability-System Resonance Matrix
(FVSRM) (see Figure 10), a modification of the Variability Impact Matrix presented by
Patriarca et al. [45]. For each function, the FVSRM considers in the system resonance
dimension the sum of the WaU and WaD: low system resonance if it is lower than 5% of
the maximum of the sum of WaU and WaD, medium system resonance if it is between
5%-30% of the maximum, and high system resonance if it is higher than 30% of the maxi-
mum. The functional variability dimension is considered by the sum of the DLFCV and
ULFCV, where the three thresholds are analogous to the first dimension. The thresholds
for both dimensions were determined subjectively by SMEs, inspired by the procedure of
Patriarca et al. [45].
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Figure 10. The Functional Variability-System Resonance Matrix (FVSRM), left for the human driver
and right for the automation.

The FVSRM shows different areas: green (C-C, C-B, B-C) for uncritical functions, blue
(A-C) for high variable functions with low system resonance, yellow (B-B) for medium
variable functions with medium system resonance that are between uncritical and critical
functions, orange (C-A) for low variable functions with high system resonance and red
(B-A, A-A, A-B) for critical functions. Here, the orange and blue areas refer to functions that
must be viewed with caution due to their special features. Functions in the blue area are
functions that are typically error-prone but usually remain without adverse consequences
(i.e., accidents) because they have a low systemic resonance. Functions in the orange area
are functions where errors rarely occur, but when they happen, a strong systemic effect and
consequently a high probability of accidents must be expected. In general, the functions
in the orange area pose a greater hazard than the blue ones and are thus to be assessed as
more critical. Below the FVSRM, the sum of functions per area is presented. Furthermore,
the sum of functions per row and column is given to reflect the number of functions per
dimension category.

The distribution of the functions in the FVSRM in Figure 10 shows that the system for
the human driver is generally stable in terms of variability as five functions are above 30%
functional variability but is affected by several interrelated functions with great system
resonance impacts as 40 functions are above 30% system resonance. Instead, the distribution
of the functions in the FVSRM for the automation is significantly more unstable in terms of
variability as 25 functions have a functional variability of greater than 30%. Overall, the
automation shows higher variable and medium system resonance functions. The number
of uncritical functions is nearly the same for both at about 40%, with critical functions
outweighing humans (19%) for automation (26%).

The risk functions for human drivers and automation were also analysed in a more
differentiated way concerning the two dimensions of functional variability and system
resonance, see Figures 11 and 12. Figure 11 shows the functional variability (DLFCV and
ULFCV as stacked columns, left y-axis) and system resonance (WaU and WaD as stacked
line markers, right y-axis) of risk functions (x-axis) for the human driver and Figure 12 for
automation. Additionally, the thresholds for high functional variability and high system
resonance are marked by the two dashed red lines. Some risk functions for the human
driver are highlighted and explained below. The red highlighted functions are most critical
because they have a high functional variability combined with high system resonance.
Here, < maintain headway separation (EV) > and < follow LV (EV) >, in particular, stand
out, with high variability and system resonance values, whereby they transfer variability
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for the most part and receive very little. In addition, each critical risk function is an action
task. The orange highlighted functions are risk functions that have relatively low variability
but combined with a strong system resonance. It can be argued that these functions are
success factors demonstrating resilience because, despite their strong system effect and
affectedness, they have little variability and are therefore stable. In particular, < driving
free (OV) > and < driving free (LV) > with very high system resonances are noteworthy
here. These functions must nevertheless be viewed with caution, especially under different
scenario conditions, as a sudden increase in variability in these functions may have a large
systemic effect. The function < assess opportunity to overtake safely (EV) > is also special
because it is strongly influenced by the system and receives a relatively large amount of
variability, but transfers very little variability into the system. Further, the functions < assess
opportunity to overtake safely (EV) > and < merge back into starting lane (EV) > exhibit
fairly high system resonances, but with relatively low variability. So, errors rarely occur
here, but if they do, then they often result in accidents. Risk functions, either high variability
combined with low system resonance or low variability joined with low system resonance,
do not exist. By contrast, the latter is logical, otherwise, they would not be considered as
risk functions.

Compared to the automation in Figure 12, it can be seen that humans have significantly
lower variability values and that overall, significantly more risk functions in automation
have high functional variability. However, the values of the system resonance are slightly
higher for the human risk functions than for automation ones.
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Several risk functions are also colour-coded in the automation (see Figure 12). This
results in seven critical functions (red), with < observe oncoming traffic (EV) > standing
out. Conspicuous compared to the human driver is the distribution of critical functions
among the function types: five cognitive tasks, one perceptual task, and only two action
tasks. Furthermore, four risk functions can be identified as success factors (orange), for
example < follow LV (EV) > and < keep in lane (LV) >, each with high systemic resonance
and low variability. In addition, there are risk functions in automation that have a relatively
low systemic impact but are highly variable (blue), especially < watch for hazards located
at roadside environment (EV) > or < assess road conditions (EV) >. It can be argued that
these high functional variabilities are somewhat irrelevant because of their low system
resonance, and therefore, they rarely lead to adverse events. Nevertheless, this variability
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should not be underestimated, especially if the scenario conditions change and thus the
system resonance may change.
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4.2.4. Analysis of Critical Paths

The quantitative evaluations shown previously were used to obtain an overview of
the influence of system functions and their variabilities and interactions in the system
in comparison between human driver and automation. Finally, this information was
qualitatively reflected in the model to enable the mechanisms to be fully understood. In
the following, this is exemplified by one critical path each for the human driver and the
automation. In this work, a critical path is defined as the direct couplings between a risk
function and its upstream and downstream functions, which is why all indirect couplings
are hidden, except the couplings between the direct upstream and downstream functions.

Figure 13 shows the critical path of the function < maintain headway separation (EV)
>, which is highlighted in light blue and will be referred to in the following as function
in focus 1 (FiF1), for the human driver with respective agents and stages. The upstream
couplings are highlighted in orange and the downstream couplings in blue. Additionally,
every function’s hexagon belonging to the orange or red area according to the FVSRM is
marked with a sine curve indicating critical functions. Additionally, the types of functions
are labelled by the respective colours, as mentioned in Section 4.1.

The FiF1 has five uplinks with little incoming variability and twelve downlinks trans-
ferring a high variability output, solely in the Follow stage. The uplinks come from four EV
functions and one LV function, which are all action functions. Interestingly, four of the five
upstream functions are critical, since they receive a relatively large amount of variability,
which, however, is not transferred to very much. In addition, it is noticeable that < keep in
lane (EV) > is temporally connected with FiF1 and thus two critical functions are executed
simultaneously, inducing a potential higher workload. The downlinks go predominantly
to RV (9), so RV is strongly influenced by FiF1. Otherwise, this offers great potential for
resilient system behaviour, in that RV can dampen the received variability through adapted
behaviour. Only one downlink goes to LV and two to EV itself, whereby a direct feedback
loop between < increase speed (EV) > and FiF1 is created, so the two functions can mutually
resonate. Moreover, the downlinks are predominantly associated with action functions
(7) and few with perceptual (3) or cognitive functions (2). In general, the FiF1 has low
intrarelatedness but high interrelatedness (3rd highest); in particular, the upstream function
< keep in lane (EV) > and downstream function < follow LV (EV) > also have very high
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interrelatedness, so they form a “strongly interacting function triangle” here. It can be said
that overall, the critical path of FiF1 is very action-heavy, has high interaction with other
agents, a lot of variability accumulates in and around FiF1 (due to high CTV), and FiF1 has
a strong system effect but is relatively little affected.

Safety 2022, 8, x FOR PEER REVIEW 25 of 44 
 

 

and low variability. In addition, there are risk functions in automation that have a rela-
tively low systemic impact but are highly variable (blue), especially < watch for hazards 
located at roadside environment (EV) > or < assess road conditions (EV) >. It can be argued 
that these high functional variabilities are somewhat irrelevant because of their low sys-
tem resonance, and therefore, they rarely lead to adverse events. Nevertheless, this varia-
bility should not be underestimated, especially if the scenario conditions change and thus 
the system resonance may change. 

4.2.4. Analysis of Critical Paths 
The quantitative evaluations shown previously were used to obtain an overview of 

the influence of system functions and their variabilities and interactions in the system in 
comparison between human driver and automation. Finally, this information was quali-
tatively reflected in the model to enable the mechanisms to be fully understood. In the 
following, this is exemplified by one critical path each for the human driver and the auto-
mation. In this work, a critical path is defined as the direct couplings between a risk func-
tion and its upstream and downstream functions, which is why all indirect couplings are 
hidden, except the couplings between the direct upstream and downstream functions. 

Figure 13 shows the critical path of the function < maintain headway separation (EV) 
>, which is highlighted in light blue and will be referred to in the following as function in 
focus 1 (FiF1), for the human driver with respective agents and stages. The upstream cou-
plings are highlighted in orange and the downstream couplings in blue. Additionally, 
every function’s hexagon belonging to the orange or red area according to the FVSRM is 
marked with a sine curve indicating critical functions. Additionally, the types of functions 
are labelled by the respective colours, as mentioned in Section 4.1. 

 
Figure 13. The critical path of the function < maintain headway separation (EV) > for the human 
driver. 

The FiF1 has five uplinks with little incoming variability and twelve downlinks trans-
ferring a high variability output, solely in the Follow stage. The uplinks come from four 
EV functions and one LV function, which are all action functions. Interestingly, four of the 
five upstream functions are critical, since they receive a relatively large amount of varia-
bility, which, however, is not transferred to very much. In addition, it is noticeable that < 

Figure 13. The critical path of the function < maintain headway separation (EV) > for the hu-
man driver.

Figure 14 depicts the critical path of the function < observe oncoming traffic (EV)
>, which is highlighted in light blue and will be referred to in the following as function
in focus 2 (FiF2), for the automation with respective agents and stages. The FiF2 has six
uplinks with high incoming variability and eleven downlinks transferring a high variability
output, mostly in the Follow stage and less in the swerve and merge stages. The uplinks
come from five EV functions and one OV function, which are four cognitive functions, one
perception, and one action function. Interestingly, the distribution of upstream variability
is very different with 60% coming from < determine pass can be completed (EV) > and
< observe for lurkers behind OV (EV) > (30% each), and the rest coming from < judge
available passing time (EV) > (18%), < judge LV’s relative speed to OV (EV) > (11%), <
judge distance from first OV (EV) > (10%), and < driving free (OV) > (1%). The downlinks
go merely to EV’s functions and predominantly to the Follow stage (7), only two downlinks
go to each of the swerve and merge stages. In particular, the FiF2 is temporally coupled
with five downstream functions, that is < assess road conditions (EV) >, < check LV is
not about to change speed (EV) >, < assess gap ahead of LV (EV) >, < anticipate course
of LV (EV) >, and < judge speed and performance of EV (EV) >, and thus six functions
are executed simultaneously. In particular, most of these downstream functions also have
a highly variable output and they are all received as an input in < assess opportunity
to overtake safely (EV) >, which in total offers great potential for functional resonance.
Moreover, the downlinks are predominantly associated with cognition functions (8) and
few with perceptual functions (3). In general, the FiF2 is mainly connected to critical
functions (except two functions) with high intrarelatedness but low interrelatedness. It can be
said that overall, the critical path of FiF2 is very cognition- and perception-heavy, has high
interaction within an agent over different stages, a lot of variability accumulates in and
around FiF2 (due to high CTV), and FiF2 has a strong system effect and also high system
affectedness, making it a highly critical function within EV’s operations by automation.
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4.3. Recommendations for System Design and Validation

Based on the previous analyses, this subsection deals with recommendations for
system design concerning the EV functions to improve the safety of the overall traffic
system, as well as for validation focus of automation to reduce the test effort. First, a
function allocation between human driver and automation is presented, followed by
recommendations for automation’s validation process.

4.3.1. Function Allocation between Human Driver and Automation

Automation of the entire scenario is not recommended, as automation is significantly
more variable than humans in global system variability. However, the individual stages
where automation is less variable could be automated in the sense of an authority transfer.
The Follow and Pass stages would then be carried out by humans, and the Swerve, Merge
and Get in lane stages by automation. With this approach, however, the individual functions
are not considered and the automation of certain functions per stage would represent a
more differentiated approach based on the compensatory design principle for automation
according to Fitts [77], see Figure 15. Here, the function allocation for EV between humans
and automation is shown. The driving tasks are divided according to stages and function
types within the stages. The driving tasks are performed by the human (blue), by the
automation (orange), or by both in the sense of shared control (grey), which is depicted
both as a percentage and as an absolute value. In this paper, shared control means that
the human and the automation work in collaboration simultaneously to achieve a single
function [78] as an extension, that is, the capabilities of the human are extended by the
automation or vice versa [79].
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The decision about the assignment of the functions is based on the previous quantita-
tive as well as qualitative analyses and the comparison of the functional variability and
system resonance of each EV’s function between humans and automation. If there was
no clear and significant difference regarding the main performance indicators in a specific
function between the human and automation, further metrics from Section 3.5, as well as
the interaction with other functions and their performance indicators (see Section 4.2.4),
were used.

First of all, it is noticeable that in the Follow and Pass stage, most of the functions
are executed by humans and in the other three stages, the majority are executed by au-
tomation. The last stage in particular is performed exclusively by automation. Only 12%
of all functions are executed as shared control, whereby this can take place at all three
information processing levels. With the types of function, it is noticeable that humans
perform significantly more perception and cognitive functions than automation, except
in the Swerve or Get in lane stage, respectively. Action functions, on the other hand, are
carried out significantly more by automation. Two of the five main manoeuvre functions
should primarily be carried out by the human driver. These are the decision to overtake
and the overtaking manoeuvre itself. The other three (following the lead vehicle, adopting
the overtaking position, and completing the overtaking manoeuvre) are primarily related
to automation.

The presented design recommendations for function allocation between human driver
and automation can be seen as a joint cognitive system (JCS) [80] that regards human and
machine as equal partners collaborating in the sense of a human-machine coagency “by
shifting the focus from human and machine as two separate units to the JCS as a single
unit” [80] (p. 67). This coagency is expressed in terms of function-centeredness [81] where
system functions of the EV needed to accomplish the overtaking manoeuvre are distributed
between the human driver and/or the automation in consideration of the interactions and
dynamics in the system (reflected by system resonance) and the functional variabilities. In
terms of SAE 3016, the resulting concept could also be realised as a highly assisted driving
system instead of automated driving.
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4.3.2. Validation Focus of AD

For the automation validation process of AD with the assumption of automating the
whole scenario and its associated functions, particular attention should be paid to the risk
functions for automation (see Appendix D in Table A4). This especially applies to functions
in the Follow and Pass stages, as well as those that are declared perceptual and cognitive
tasks. In addition, the validation focus can be expanded to include the critical functions
in the red and orange areas of the FVSRM in Figure 10. The validation process can likely
be reduced to the testing of these functions, such as criteria for exclusion, to reduce the
test effort. This has to be fulfilled by AD. Otherwise, we do not even need to carry out
further tests.

Otherwise, the function allocation shown in Figure 15 could be used to validate merely
the functions in which automation is responsible alone or together with humans, and thus
in turn reduce the validation effort to a level similar to current advanced driver assistance
systems or SAE-Level 2 vehicles, where humans are completely responsible for the safety
of the driving task. The only difference is that humans are not responsible for all functions,
but only those allocated to them, and thus, automation takes responsibility for several
other functions.

5. Discussion

This paper aims to identify and compare road traffic mechanisms in an overtaking
scenario between a human driver and a highly automated vehicle, using FRAM. Based
on this, the contributions of both agents regarding the safety of the overall system can be
evaluated in order to derive system design recommendations for AD and insights to reduce
the effort involved in the validation process. Thus, the results have to be interpreted and
reflected upon, and the methodological application of FRAM must be discussed.

The results of the system design recommendations, including the function allocation
between human driver and automation, suggest that complete automation of the overtaking
scenario as a generic concept is currently unrealistic and inadvisable. Rather, humans
must be more or less engaged in the driving task, especially for perception and cognition
functions, until reliable full automation is implemented. This recognition is emphasised by
Zhang et al. [82], who recommend not pursuing a narrow role for the human driver as a
passenger or, at most, a fallback at an operational level according to the three control levels
of driving by Michon [83], but rather holistically exploring other opportunities and roles
for human drivers such, as a “commander role” at strategic and tactical levels, e.g., [84–87].
This is also in line with the design and effect space of shared control and human-machine
cooperation conceptualised by Flemisch et al. [88], or the multi-level cooperation proposed
by Pacaux-Lemoine and Flemisch [89]. Therefore, the short- and midterm strategy for
automation in the overtaking scenario on rural roads to improve traffic safety should
be to pursue a JCS approach for the traffic system [90] realising a human-automation
collaboration and coagency throughout the driving scenario to achieve their common goal,
which is to overtake safely. Thus, a differentiated approach must be taken that is centred on
functions [81], whereby the functions of the JCS are divided according to different function
types [76] and then functions are allocated to the agents, based on the FRAM analysis in
Section 4, in the sense of “who does what”. This is in contrast to the six rigid levels of
driving automation (LoDA) of the SAE and rather prefers as design decision of automation
the view of the ten levels of automation (LoA) according to Sheridan [78] in combination
with the four functional types by Parasuraman et al. [76]. This is also in line with the critique
of the SAE’s LoDA definitions, especially conditional driving automation, by Inagaki and
Sheridan [91]. In this paper, the function allocation between the two agents is a mix of
shared control [78] and “static” trading of control [78], where static trading of control means
that either the human or the automation is responsible for a function, and their role does
not change from one occasion to another, or in different scenario conditions. Additionally,
for reasons of simplicity, the extent of automation according to the LoAs is not considered.
Unfortunately, this does not fit the real system behaviour perfectly, as technological changes
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lead to dynamics and adaptations in the functions by the human in collaboration with
the automation. This can sometimes result in negative effects, such as the out-of-the-
loop performance problem, loss of situational awareness, complacency or overtrust, or
automation surprises, e.g., [92–96], so that there are eventually no positive changes as a
net effect. A good example of this is the introduction of better brakes in the vehicle to
increase road safety, assuming that the driver continues to drive as usual. However, his
or her driving behaviour changes with the better brakes in that the driver drives faster
because he/she can brake harder [80], which can be explained by the risk homeostasis of
Wilde [97]. Maybe too strong an allocation or fragmentation of the functions makes little
sense, since individual functions have to be carried out as a whole, sometimes well trained
unit by one agent, otherwise too much information is missing or the information cannot
be efficiently and effectively transferred at the interface between humans and automation.
Thus, for the future, it would be more appropriate to implement an adaptive automation
system [79] or a function-congruence [98] in the sense of “who does what and when”,
where functions can be shared or traded between humans and automation in response to
changes in situations or human performance [79]. However, it must also be considered
that drivers are usually not well trained, and such a complex function allocation could
lead to confusion besides advantages. Therefore, in future research, the FRAM model for
the overtaking scenario and the current design recommendations should be checked by
“what-if analyses” [99,100] as various instantiations of the FRAM model in other scenarios
(for example in curves or bad weather conditions) on the one hand, and on the other hand
for dynamic performance changes over time, such as by Hirose et al. [57]. Furthermore, it
is not only the performance variability that can change but also new functions will emerge
through the collaboration between humans and automation, which is why an adaptation
of the FRAM model in relation to the context conditions is necessary. For this purpose,
in the future, the performance indicators per function must also be recalculated for the
system with the new allocation of functions and iteratively adjusted because of the effect of
contextual factors. Overall, the current design concept fits the basic scenario analysed well
and is a good starting point but is not generally applicable and has to be adapted in further
iterative analyses, both in theory and in practice.

Furthermore, the results as positive and negative contributions of the human driver
and automation to system safety, as described in Section 4.2, need a comparison with the
state-of-the-art knowledge regarding this issue. A thorough review would go beyond
the scope of this paper, which is why only a comparison of the fundamental facts is
described below. Unfortunately, the comparison will predominantly focus on the negative
contributions of the human driver, as this is where large data have been analysed in the
past. Whereas no substantial knowledge about the positive contributions of the human
driver exists because data collections in the past and also currently focus on rare, critical,
or even more rarely occurring accidents [13]. Therefore, the total number of successfully
completed situations and the accidents currently successfully prevented by drivers is
unknown, which is why ultimately information on uncritical situations cannot be found in
the literature. This also coincides with the strong focus of the safety-I perspective in road
traffic, as mentioned in the introduction. No comparison can be made for the automation
either, as Level 4 vehicles have not been approved yet and only test drives are carried
out in California. The data collected during the test drives have already been analysed,
e.g., [101–103], but only on a relatively abstract level in the sense of defining causal reasons
for disengagements or accidents such as system failures, road infrastructure, other road
users, weather, etc., but not on a specific task level that would be required. Regarding the
negative contributions of the human driver, the following can be found in the literature.
According to Durth and Habermehl [104], most overtaking accidents occur in the Pass
stage, with a proportion of 48%. This is in line with the calculated GSV, since the Pass
stage has the highest variability and, therefore the greatest risk of accidents. According to
Richter and Ruhl [62], the most common cause of overtaking accidents on rural roads in
terms of fatalities is overtaking despite oncoming traffic, at 42%. The second most common
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cause of accidents is overtaking despite unclear traffic conditions (19%) and the third
most common cause is errors when re-joining the right lane (14%). Interestingly, the first
and third common causes of accidents can be identified by the critical functions < assess
opportunity to overtake safely (EV) >, and < merge back into starting lane (EV) > which
exhibit fairly high system resonances, but with relatively low variability. So, errors rarely
occur here, but if they do, then they often result in accidents. The second most common
cause of accidents could not be acknowledged by the results as < observe oncoming traffic
(EV) > or < assess road conditions (EV) > do not pose a high risk for the human driver in the
FRAM model. In addition, inappropriate speed, insufficient distances, and lack of attention
are often contributing factors to accidents [13,105]. These factors can also be reflected by
the critical functions < maintain headway separation (EV) > and < follow LV (EV) > which
represent a mix of high speeds and low distances. However, the lack of attention cannot
be confirmed because it is not explicitly stored as a function in the model and is rather
implicitly included in other functions. These examples predominantly provide further
evidence of the confirmability of the study by practising reflexivity, which in part increases
the confidence in the validity of the FRAM model. If we set the former comparisons in
relation to the results for the contributions of automation in this work, the following is
noticeable. First, the high variability in the Pass stage also applies to the automation, even
to a greater extent, which is why the automation does not provide support in this case.
Second, the common accident causes of overtaking despite oncoming traffic or unclear
traffic conditions, and errors when re-joining the right lane cannot be addressed by the
automation either because of high variabilities in the functions < assess opportunity to
overtake safely (EV) >, < observe oncoming traffic (EV) > or < assess road conditions
(EV) >, and < merge back into starting lane (EV) >. Instead, the problem of inappropriate
speeds and insufficient distances can be effectively tackled through automation, as the
corresponding functions show low variability for the automation. As a result, it can be
concluded that some known accident black spots are reflected in the results of the negative
contributions by the human driver, many of which, however, cannot currently be improved
by automation.

The results for the validation process of AD reveal insights for the potential reduction
of test effort in two directions: First, assuming full automation, the identified risk functions
for automation can be used as criteria for exclusion, or second, assuming a function
allocation between human and automation, the validation process can be reduced to the
allocated functions for automation. This change of perspective based on a safety-II and RE
analysis opens up completely new possibilities for solving the approval trap [106]. This
approval trap arose since current test methods are not economically or practically feasible
for AD [107]. Here, research is being undertaken to create new test methods, paradoxically
the safety assessment of common alternative approaches, e.g., [108,109] follows solely a
safety-I perspective. This view, which is currently too one-sided, will probably lead to
automation surprises, as already mentioned in the introduction. However, it is precisely
here that this paper uses the safety II perspective with a holistic socio-technical approach
to show solutions for identifying as many additional automation risks as possible in order
to avoid this issue.

Ultimately, the methodological application of FRAM and potential limitations are
discussed. The resulting FRAM model confirms both the large-scale complexity of the
overtaking scenario and its interwoven interactions, as well as the inherent overwhelming
complexity of the traditional FRAM. Here, the application of the Space-Time/Agency
framework and the semi-quantitative approach supports the complex safety analysis and
facilitates the identification of criticalities based on functional variability and their systemic
interactions highlighting the contributions of human drivers and potential automation in
order to derive system design recommendations for systemic corrective measures. More-
over, the FRAM model enhances the understanding of the systemic mechanisms by, for
example, explicitly showing the space-time structure with which specific agent or agents
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interact and how they behave, as well as how this can ultimately result in positive and
negative consequences.

The FRAM model is very profound, based on various sources and a calibration by
peers, which makes a reliable behavioural model of the socio-technical system of the
overtaking scenario for the intended analytical purposes. Nonetheless, the model does
not claim to be complete, especially not for other analysis purposes, but it is a good basic
model to use when further analysing, for instance, the influence of other environmental
and scenario conditions or changes over time.

The peer workshop for the validation of the FRAM model generally works well, but
lessons learned for future research include that the calibration process can be enhanced by
the peers developing a FRAM model themselves and comparing it with the original one to
achieve a deeper understanding. In addition, real accidents could be modelled as “Mini
FRAMs” according to Bridges et al. [110], based on accident reports that also serve as a
comparison about the logic of the overall model.

The variability was also determined based on two different sources to map reality as
closely as possible. It should be noted regarding the human driver that the driving simulator
study is well suited to assessing action functions at the operational level, such as lane-
keeping or keeping safety distances, but that perception and cognitive functions are difficult
to determine even with the support of eye-tracking. Structured interviews, as in Section 3.4,
are more appropriate for this. Nevertheless, given the limited self-awareness of humans
about their performance limits the usefulness of this approach. Further, the narrowed
sample does not represent the entire driver population, which is why the comparison of
performance variability between humans and automation in the paper is only valid to a
limited extent. Whereby the sample size is generally sufficient for the narrower population,
since, for example, a sample size of 20 test drivers is sufficient for testing the controllability
of driver assistance systems according to ISO 26262 [111]. Concerning automation, too little
data is currently available, which is why there are no alternatives to expert assessment.
In the future, it could also be interesting to use cross-linked driving simulator studies to
explicitly observe the interactions between multiple human drivers, automation, and/or
joint human-automation and their resulting variabilities within one simulation.

The function identification process and the creation of the FRAM model, as well
as the gathering of variability data, is very time- and resource-consuming. This raises
some practical limitations for FRAM, which must definitely be improved in the future in
order to overcome the current research-practice gap of systemic models and methods [112],
especially FRAM. Here, on the one hand, researchers are currently applying systemic
methods due to the current state-of-the-art and, on the other hand, many practitioners
continue to apply sequential or epidemiological methods because of their ease of use
or popularity despite known limitations. Frequently mentioned reasons for this are a
difficult and time-consuming application [113], reduced model validation and usability,
and a potential analyst bias [112]. One solution could be the IT framework for sharp-end
operators’ WAD data gathering through a mobile app proposed by Constantino et al. [114].
Overall, the practical applicability of FRAM, in general, has to be researched and improved,
as claimed by [115]. Instead, the analysis of results runs relatively quickly due to matured
software support.

The new metrics for the semi-quantitative approach introduced in Section 3.5 to better
calculate and visualise each function’s interactivity in the system, as well as its complex
emergence effects in the system, served their purpose. However, their significance as an
influencing parameter, especially concerning the composition of the weighting factors WaU
and WaD, is currently a theoretical concept that has to be empirically validated in the
future. Thus, their usefulness as a weight for system influence of functional variabilities to
incorporate complex and dynamic behaviour is limited.

Moreover, the various aspects of the couplings were currently treated in the same
way in the calculations, except for the propagation factor in Appendix A in Table A2. For
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the future, a more differentiated approach can be considered, showing potential different
effects because of aspects not only qualitatively but also quantitatively.

6. Conclusions

This paper shows how FRAM can be used for a systemic function allocation between
humans and automation considering the interactions and complex dynamics of functional
variabilities in a space-time continuum within and between agents in the system based on
an enhancement of quantitative outputs of FRAM. The analysis reveals that human drivers
currently make a better overall contribution to the safety of the overall system in the simple
overtaking scenario on a rural road than AD could. However, individual functions are
emerging at each overtaking stage that offer great potential for increasing safety through
automation, collaboration, or assistance. In particular, as long as no reliable full automation
has been implemented, this means that the future automation strategy of the vehicle aiming
to improve traffic safety should be more differentiated based on a JCS approach combined
with function-centeredness aiming to incorporate the strengths of both the human driver
and the automation according to adaptive automation of human-automation coagency.
This contrasts with the current, inflexible approach to automate everything as much as
feasible based on the six LoDAs by the SAE. In particular, this change in perspective may
also simplify the validation problems of AD.

In the future, however, more research will have to be undertaken on how the results
can be transferred to other driving scenarios and situations, how adaptive automation
for overtaking can be explicitly implemented in practice, and what potential effects result
from changes in scenario conditions or performance over time. Additionally, in this
work, the traffic system in the overtaking situation and its performance are analysed
from a single perspective, which is safety. However, AD should help to make driving
not only safer but also more efficient and comfortable [116]. In addition, people as active
passengers in the vehicle or passive interaction partners outside with the vehicle must be
able to trust the automation and accept the new technology. Unfortunately, these different
perspectives of the system performance are frequently viewed in isolation, also called siloed
thinking, revealing only a part of what goes on [117]. However, these different views are
mutually dependent, so in the future, their analysis will have to be synthesised according
to Synesis [117], which involves the unification of different perspectives (safety, efficiency,
and comfort, among others) into one analysis.

In conclusion, this paper confirms that RE, in particular FRAM, can be applied to
the road traffic system to design automated driving functions proactively and holisti-
cally, or rather the joint driver-vehicle system, demonstrating the potential for supporting
decision-makers to enhance safety enriched by the identification of non-linear, complex,
and emergent risks rather than the linear cause–effect-related risks that are frequently the
sole focus of safety and risk assessments at present.
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Appendix A

In the following, the formulas for the remaining metrics from Section 3.5.1 are provided:
In the first step, a numerical score was assigned to each performance variability

characteristic (see Table A1). The higher the score, the more variable the output. The
variability of the upstream output j, OVj was the product of these two scores (A1):

OVj = VT
j ·VP

j (A1)

where:
VT

j represents the upstream output j score in terms of timing

VP
j represents the upstream output j score in terms of precision

Table A1. Assignment of numerical values to the linguistic description of variability manifestation of
the phenotypes timing and precision.

Variability Phenotype Variability Manifestation VT
j or VP

j

Timing

Too early 2
On time 1
Too late 4

Not at all 5

Precision
Imprecise 5

Acceptable 3
Precise 1

However, the upstream outputs VT
j and VP

j must be calculated as a frequency distri-
bution since they were collected as a distribution in the study. The reason for this is that
a static behaviour of a system function does not adequately reflect a real case, and thus
should rather be dynamic. Therefore, PTE, POT , PTL, PNAA, PPR, PA and PI represent the
percentage distribution of subjects of the variability values too early (TE), on time (OT),
too late (TL), not at all (NAA), precise (PR), acceptable (A), and imprecise (I), respectively.
The percentage values are between 0 and 1. These are then weighted by the numerical
variability values from Table A1. The calculation was thus as follows (A2) and (A3):

VT
j = PTE·VT

j ( TE) + POT ·VT
j (OT) + PTL·VT

j (TL) + PNAA· VT
j (NAA) (A2)

VP
j = PPR·VP

j (PR) + PA·VP
j (A) + PI ·VP

j (I) (A3)

Once assigned the variability score for the upstream output, the coupling variability
(CV) of the upstream output j and the downstream function i (A4) as well as associated
variability propagation factors aT

ij and aP
ij had to be specified (A5):

CVij = OVj·aT
ij ·aP

ij (A4)

where:
aT

ij represents the propagation factor for the upstream output j and the downstream
function i in terms of timing
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aP
ij represents the propagation factor for the upstream output j and the downstream

function i in terms of precision
Note that aT

ij or aP
ij may assume the following values:

2 if the upstream output has an amplifying effect on the downstream function
1 if the upstream output does not affect the downstream function

0.5 if the upstream output has a damping effect on the downstream function
(A5)

The specification of the propagation factor was based on Table A2. As before, for
upstream output, percentage distributions were also considered for propagation factors aT

ij

and aP
ij. The calculation was thus as follows (A6) and (A7):

aT
ij = PTE ∗ aT

ij(TE) + POT ∗ aT
ij(OT) + PTL ∗ aT

ij(TL) + PNAA ∗ aT
ij(NAA) (A6)

aP
ij = PPR ∗ aP

ij(PR) + PA ∗ aP
ij(A) + PI ∗ aP

ij(I) (A7)

Table A2. Upstream/downstream propagation of variability, according to Patriarca et al. [118].

Upstream Output Variability Input Precondition Resource Control Time

Timing
variability of

output

Too early A/NE A NE/D A A
On time D D D D D
Too late A A A A A

Not at all A A A A A

Precision
variability of

output

Imprecise A A A A A
Acceptable NE NE NE NE NE

Precise D D D D D
A = Amplifying, NE = No Effect, D = Damping.

Appendix B

In the following, the formulas for the remaining metrics from Section 3.5.2 are pro-
vided:

The number of downlinks of an upstream function j (N j
DL) and the number of uplinks

of a downstream function i (Ni
UL) specifies the number of links of an upstream function to

downstream functions or vice versa. N j
DL is the sum of downlinks of an upstream function

j (A8) and Ni
UL is the sum of uplinks of a downstream function i (A9):

N j
DL = ∑j

i=1 DLij (A8)

Ni
UL = ∑i

j=1 DLji (A9)

It should be mentioned that only the downlinks or uplinks between two foreground
functions and not between two background functions or between a foreground and a
background function were counted, as background functions are stable and not variable
and represent the system boundary, which are therefore not included in the analysis.

Intra-stage links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are in the same stage St and executed by
the same agent Ag (A10):

Intra− stage links f = [∑
f
i=1 i f ((Ag f = Agi && St f = Sti) then 1, else 0)+

∑
f
j=1 i f ((Ag f = Agj && St f = Stj) then 1, else 0)]

(A10)
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Intra-agent links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are in different stages St but executed by
the same agent Ag (A11):

Intra− agent links f = [∑
f
i=1 i f ((Ag f = Agi && St f 6= Sti) then 1, else 0)+

∑
f
j=1 i f ((Ag f = Agj && St f 6= Stj) then 1, else 0)]

(A11)

Intrarelatedness calculates the interaction within an agent and results from the sum of
the intra-stage links and the intra-agent links of a function f (A12):

Intrarelatedness f = Intra− stage links f + ss·Intra− agent links f (A12)

where the intra-agent links were additionally weighted by a factor β, since a link of a function
to another stage has a higher system effect, and thus must be weighted more heavily. The
chosen value for β in this work is 2.

Inter-agent links calculates the number of downlinks and uplinks of a function f where
the linked upstream j and downstream functions i are executed by different agents Ag
(A13):

Inter− agent links f = [∑ f
i=1 i f ((Ag f 6= Agi) then 1, else 0) + ∑ f

j=1 i f ((Ag f 6= Agj) then 1, else 0)] (A13)

Moreover, the sum of the intra-stage links, intra-agent links, and inter-agent links is equal
to the sum of the N j

DL and Ni
UL for each function.

Different-linked agents calculates with how many different agents k a function f is
directly connected through its upstream j and downstream functions i (A14):

Di f f erent linked agents f = [∑4
k=1 i f (∑

f
i=1 i f ((Ag f 6= Agi && Agi = Agk) then 1, else 0))+

(∑
f
j=1 i f ((Ag f 6= Agj && Agj = Agk) then 1, else 0))]

(A14)

The interrelatedness of a function f calculates the interaction between agents and is the
result of the product of inter-agent links and different linked agents (A15):

Interrelatedness f = Inter− agent links f ·Di f f erent linked agents f (A15)

Direct feedback loops mean that a downstream function i of a function f is also an
upstream function j of the function f and vice versa. This results in a loop between these
two functions, in which only two functions are involved. The calculation is as follows (A16):

Direct f eedback loops f = [∑
f
i=1 i f (Coupling( f , i) && Coupling(i, f )) then 1, else 0)+

∑
f
j=1 i f (Coupling( f , j) && Coupling(j, f )) then 1, else 0)]

(A16)

where Coupling is a function that gives as result 1 if there is a direct connection between
function f and its upstream function j or its downstream function i.

Indirect feedback loops involve more than two functions. For example, function A calls
function B, which in turn is connected to function C, which again calls function A, closing
the loop. The function (Loops calculates all cycles in the model that contain the function f
and are not direct (feedback loops of function f (A17):

Indirect f eedback loops f = ∑ Loops f (A17)

Mean feedback loops indicates how many functions occur in the mean of the indirect
feedback loops from the function f and is calculated as follows (A18):

Mean f eedback loops f =
∑ Length (Loops f )

Indirect f eedback loops f
(A18)
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where Length calculates the number of functions per cycle, that is, the length of the cycle of
function f.

The last three metrics mentioned are then integrated into the feedback loop factor (A19):

Feedback loop f actor f = Direct f eedback loops f + Indirect f eedback loops f · Mean f eedback loops f (A19)

The CTV was used to calculate how much variability accumulates around a function
f. To do this, the ULFCV of the coupled upstream functions j, the DLFCV of the cou-
pled downstream functions i, and the DLFCV and ULFCV of the function f were added
together (A20):

CTVf = DLFCVf + ULFCVf + ∑ f
i=1 DLFCVi + ∑ f

j=1 ULFCVj (A20)

The Katz-centrality calculates the relative influence of a function. According to Faleg-
nami et al. [71], this metric is the most suitable metric for function prioritisation in a FRAM
model analysis. For all connections that are reachable both upstream and downstream by
the function f, the CVs of the upstream function of the respective connections are added
together. To mitigate the indirect influence of the functions, that is the farther away a
function is located, the lower its influence, the distances to the individual couplings are
considered and weighted with a factor α. It should be noted here that a direct connection
has zero distance. The diif gives the distance of a downstream connection to function f,
where ii denotes direct and indirect downstream functions. The djjf reflects the distance
of an upstream connection to function f, where jj denotes direct and indirect upstream
functions. The weight factor α and Katz-centrality are calculated as follows (A21)–(A23):

αii f =
1

dii f + 1
(A21)

αjj f =
1

djj f + 1
(A22)

Katz− centrality f =
f

∑
ii=1

CVij ∗ αii f +
f

∑
jj=1

CVij ∗ αjj f (A23)

Incloseness- and Outcloseness-centrality indicate how centrally a node (i.e., a function) is
located within a network. They each form the sum of the reciprocal distances to reachable
functions, weighted by the CV of the respective upstream functions. Incloseness-Centrality
only considers upstream functions j of function f. The number of upstream functions
reachable from function f are represented by n. Incloseness-Centrality was calculated as
follows (A24):

Incloseness− centrality f =
n− 1

∑
f
jj=1 (CVij × djj f )

(A24)

In contrast, the Outcloseness-centrality only considers downstream functions i of func-
tion f and is calculated as follows (A25):

Outcloseness− centrality f =
n− 1

∑
f
ii=1 (CVij × dii f )

(A25)

Betweenness-centrality shows how often a function f occurs as the shortest distance
between two other functions in the model (A26):

Betweenness− centrality f = ∑
ii 6=jj 6= f∈V

σiijj( f )
σiijj

(A26)
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where σiijj and σiijj( f ) represent the number of the shortest distances between a function i
and j and the number of the shortest distances between a function i and j, in which function
f occurs, respectively. The V indicates the quantity of all functions in the model, and ii and
jj define that indirect downstream and upstream functions were also considered.

The metrics N j
DL , Ni

UL , Intrarelatedness, Interrelatedness, Feedback loop factor, CTV,
Katz-, Incloseness-, Outcloseness- and Betweenness-centrality were then transformed into
relative metrics (Metrelative), which reflect the effect of a function compared to all other
functions within a metric in percentage. This ensures that all metrics can be used as an
equal weight in further calculations. Here, Metf, a specific value of one metric of a function
f, is divided by the sum of all values of one metric for all functions k. However, this would
lead to values below 1. This is problematic because, with further calculations, comprising
multiplications, the amount would decrease. For this reason, the percentage values are
divided by the inverse of all functions N in the model in order to always ensure a value
above 1. This ensures that the values are magnified in further calculations and the influence
of a function thus becomes apparent. The calculation for Metrelative was the following (A27):

Metrelative
f =

Met f

∑N
k=1 Metk

1
N

(A27)

Finally, these relative metrics were integrated into the Weight as Upstream (WaU) and
Weight as Downstream (WaD) as shown in Section 3.5.2.

Appendix C

Table A3. A rough description of the main functions of the overall FRAM model per each agent
and stage.

Stage EV LV RV OV

Follow

to follow LV through recognising the
following situation, keeping the lane, and

maintaining headway separation;
to decide to overtake or not, which is

mainly based on assessing the opportunity
to overtake safely, judging whether

overtaking is permitted, and evaluating the
reasonableness for overtaking

to drive free by keeping the lane
and adjusting adequate speed;

to react to being followed by EV
through observing EV’s intention

to overtake as well as its following
distance

to follow EV through
recognising the following

situation, keeping the lane,
and maintaining headway

separation

to drive free by keeping the
lane and adjusting

adequate speed

Swerve

to adopt the overtaking position by lane
keeping, reducing headway from the

normal following, and adjusting the speed
to that of LV;

to swerve completely to the oncoming lane
afterwards checking any hazards behind or

in front, assessing the overtaking
opportunity is still safe and using the left

indicator

to detect EV’s swerving into the
oncoming lane;

to maintain speed;
to react to being passed by

responding to potential passing
problems of EV (optional)

to detect EV’s swerving into
the oncoming lane;

to react to being passed by
responding to potential
passing problems of EV

(optional)

to detect EV’s swerving
into the oncoming lane;

to maintain speed;
to react to being passed by

responding to potential
passing problems of EV

(optional)

Pass

to perform the overtaking through
accelerating LV decisively or merging back

into starting lane if the manoeuvre is unsafe
and abandoning the manoeuvre

to detect the passing vehicle in
peripheral vision;

to react to being passed by
responding to potential passing

problems of EV (optional)

to react to being passed by
responding to potential
passing problems of EV

(optional)

to react to being passed by
responding to potential
passing problems of EV

(optional)

Merge

to merge progressively into the starting lane
by adjusting EV’s speed in relation to other
traffic, assessing the situation to enter safely,

and using the right indicator

to prepare to provide a larger
opening for EV to merge back;

to react to being passed by
responding to potential passing

problems of EV (optional)

to prepare to provide larger
space to LV in case of EV’s

manoeuvre abandoning or to
catch up to LV;

to react to being passed by
responding to potential
passing problems of EV

(optional)

to prepare for braking;
to react to being passed by

responding to potential
passing problems of EV

(optional)

Get in lane

to complete the overtaking through
positioning into the starting lane evaluating
the driving situation, and resuming at the

desired speed

to follow EV;
to react to being followed by RV to follow LV to drive free

The wording “(optional)” means that this function or task is not necessarily fixed to the assigned stage and rather
can be executed in the Swerve, Pass, or Merge stage or not at all if not required.
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In Figure A1, the driving behaviour of to follow by EV in the Follow stage is ex-
plained in detail. Only foreground functions, as well as the couplings between the func-
tions within EV and within the Follow stage, are explained and not connections to func-
tions in other stages or agents. The explanation follows a reading of Figure A1 from right 
to left. The EV has to follow LV through recognising the following situation and keeping 
the lane and maintaining headway separation simultaneously. The headway separation 
is ensured by decreasing, maintaining, or increasing the speed, which are also regulated 
in compliance with the speed limit and headway separation. The driver complies with the 
speed limit by monitoring the speed limit as well as checking the speedometer. The speed 
regulation is further influenced by watching for hazards located at the road side, antici-
pating changes in LV velocity (based on monitoring traffic rules, road layout ahead and 
junctions ahead, and checking for vehicles in front of LV), checking indications of the re-
duced speed of LV (based on observing LV’s brake lights and indicators as well as gauging 
the closure of headway) and estimating a safe following distance (based on using 
knowledge of safe braking distances and evaluating a required increase in separation dis-
tance beyond 2 s that is enabled by checking vehicles in front stopping frequently or 
whether LV is driving erratically). Furthermore, some functions are coupled with other 
agents or stages (not depicted in Figure A1). For example, keeping the lane or maintaining 
headway separation are influenced by the longitudinal and lateral driving behaviour of 
LV, and following LV is affected by LV’s driving free performance or can also be influ-
enced in the way if the assessment to overtake safely was judged as unsafe, then the fol-
lowing performance can be worsened through impatience. 

  

Figure A1. Illustration of the following process of EV in the Follow stage of the overall FRAM model.

In Figure A1, the driving behaviour of to follow by EV in the Follow stage is explained
in detail. Only foreground functions, as well as the couplings between the functions within
EV and within the Follow stage, are explained and not connections to functions in other
stages or agents. The explanation follows a reading of Figure A1 from right to left. The
EV has to follow LV through recognising the following situation and keeping the lane and
maintaining headway separation simultaneously. The headway separation is ensured by
decreasing, maintaining, or increasing the speed, which are also regulated in compliance
with the speed limit and headway separation. The driver complies with the speed limit by
monitoring the speed limit as well as checking the speedometer. The speed regulation is
further influenced by watching for hazards located at the road side, anticipating changes
in LV velocity (based on monitoring traffic rules, road layout ahead and junctions ahead,
and checking for vehicles in front of LV), checking indications of the reduced speed of
LV (based on observing LV’s brake lights and indicators as well as gauging the closure
of headway) and estimating a safe following distance (based on using knowledge of safe
braking distances and evaluating a required increase in separation distance beyond 2 s
that is enabled by checking vehicles in front stopping frequently or whether LV is driving
erratically). Furthermore, some functions are coupled with other agents or stages (not
depicted in Figure A1). For example, keeping the lane or maintaining headway separation
are influenced by the longitudinal and lateral driving behaviour of LV, and following LV
is affected by LV’s driving free performance or can also be influenced in the way if the
assessment to overtake safely was judged as unsafe, then the following performance can be
worsened through impatience.
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Appendix D

Table A4. Risk functions for human driver and automation.

Risk Function Human Automation

Follow LV (EV) x x

Maintain headway separation (EV) x

Perform overtaking (EV) x x

Assess opportunity to overtake safely (EV) x x

Check LV is not about to change speed (EV) x

Follow EV (RV) x x

React to being passed (LV) x x

Assess road conditions (EV) x

Adopt overtaking position (EV) x

Assess gap ahead of LV (EV) x

Driving free (OV) x

Keep in lane (LV) x x

Keep in lane (EV) x

Recheck road ahead (EV) x

Abandon manoeuvre (EV) x

Assess any new info for safety of manoeuvre again (EV) x x

Respond to EV’s passing problems (LV) x

Adjust to adequate speed (LV) x

Respond to EV’s passing problems (RV) x

Merge back into starting lane (EV) x x

Assess situation to enter safely (EV) x x

Continue observing road ahead (EV) x

Driving free (LV) x

Keep in lane (OV) x

Respond to EV’s passing problems (OV) x

Assess availability of safety margin in case of abort (EV) x

Re-recheck road ahead (EV) x

React to EV’s overtaking (RV) x

Anticipate course of LV (EV) x

Recognise that EV is experiencing problems passing (LV) x

Increase speed (EV) x

Assess overtaking opportunity again (EV) x

Assess any new info for safety of manoeuvre (EV) x x

Watch for hazards located at roadside environment (EV) x
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