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Abstract: The values of a physiological parameter and its time derivatives, detected at different times
by different sensory receptors, are processed by the sensorimotor system to predict the time evolution
of the parameter and convey appropriate control commands acting with minimum latency (few
milliseconds) from the sensory stimulus. We have derived a power-series expansion (U-expansion)
to simulate the fast prediction strategy of the sensorimotor system. Given a time-function f , a
time-instant t0, and a time-increment τ, the U-expansion enables the calculation of f (t0 + τ) from
f (t0) and the values f (n)(tn) of the derivatives f (n) of f at arbitrarily different times tn (n = 1, 2, . . .),
instead of time t0 as in the Taylor series. For increments τ significantly greater than the maximum
t among the differences |tn − tn−1|, the error associated with truncation of the U-expansion at a
given order closely equalizes the error of the corresponding Taylor series (t = 0) truncated at the
same order. Small values of t and higher values of τ correspond to the high-frequency discharge
of sensory neurons and the need for longer-term prediction, respectively. Taking inspiration from
the sensorimotor system, the U-expansion can potentially provide an analytical background for the
development of algorithms designed for the fast and accurate feedback control of nonlinear systems.

Keywords: nervous system; sensory receptor; sensory information; prediction; feedback; nonlinearity

1. Introduction

One of the main objectives of basic and applied sciences is to predict the time evolution
of a physical system based on its current and previous behavior. This information is
often used to regulate the system (i.e., to direct the system towards a specific behavior)
through appropriate feedback control commands [1,2]. Notably, the human central nervous
system (CNS) integrates and processes a continuous stream of afferent exteroceptive,
proprioceptive, and interoceptive information originating from a vast array of sensory
receptors (mechanoreceptors, chemoreceptors, photoreceptors, and thermoreceptors) to
predict in advance the time evolution of the body’s status and functions (for example, to
predict the effects of external perturbations, the effects of the execution of a voluntary task,
or the development of internal body conditions that might become harmful) and convey
appropriate efferent control commands (for example, to maintain postural equilibrium
and orientation, enable coordinated and precise movement patterns, stabilize the visual
image on the retinas, and restore and maintain homeostasis) [3–6]. In many real situations,
the constitutive equations that govern the dynamics of a physical system are not exactly
known or are too complex to be solved analytically, and approximate numerical methods
are needed to arrive at a reliable assessment and effective control of the time evolution
of the system [7]. For example, most real-world systems, including the great majority
of biological systems, are inherently nonlinear in nature [8,9]. These systems are often
governed by nonlinear differential equations and are generally analyzed with the use of
numerical methods in the time domain [10,11].

The Taylor series provides a powerful analytical tool for the prediction of the evolution
of nonlinear functions. A sufficiently smooth function f of time can usually be expanded
into a Taylor series [12] about a time instant t0, enabling the calculation of the function
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at a later time t0 + τ (τ being the time increment from t0), given the values of f and its
derivatives f (n) (n = 1, 2, . . . ) at time t0:

f (t0 + τ) = f (t0) +
∞

∑
n=1

f (n)(t0)
τn

n!

Truncation of the series at a given order n yields an error in the calculation of
f (t0 + τ) (referred to as the remainder), which is an infinitesimal of order higher than
τn as τ→ 0 [13]. In fact, the CNS seems to use a similar prediction strategy. Indeed, the
sensory receptors of the nervous system can collectively sense the value of a physiological
parameter and its time derivatives (up to the third order) and may be directly connected
with target motor neurons via large-diameter fast-conducting sensory axons and monosy-
naptic spinal reflex pathways [14–19]. As a result, the efferent response elicited by a sensory
stimulus can act with a latency of a few milliseconds [4].

In spite of this close analogy, the Taylor series is not directly usable to simulate the
sensorimotor control system. Indeed, the afferent sensory information originating from
different sensory receptors is not synchronized in time, as it is generally engendered at
different instants from different receptors. Each piece of information originating from a
sensory receptor travels along a specific sensory neural pathway to reach the processing
and integration centers. Thus, the CNS can retrieve a complete map of the receptive fields
where the sensory stimuli originated from, together with the corresponding sets of time
instants when each sensory stimulus was produced in a specific receptive field. None of
the existing models dealing with the control strategy of the sensorimotor system have
specifically addressed the problem of the lack of time synchronization within a discrete set
of sensory information that conveys to the CNS the value of the successive derivatives of a
physiological function [20–23].

The purpose of this study was to develop a computational model that enables a fast
and accurate prediction of the time evolution of a physiological parameter, based on the
value of the parameter and the values of its time derivatives detected at different times.
To accomplish this goal, we have derived a specific power series expansion, hereafter
referred to as the “unsynchronized expansion” (or “U-expansion”, for the sake of brevity).
Specifically, given a time function f , a time instant t0, and a time increment τ, the U-
expansion enables the computation of f (t0 + τ) from the value f (t0) and the values f (n)(tn)
of the derivatives f (n) of f at arbitrarily different times tn (n = 1, 2, . . . ), instead of time t0 as
in the Taylor series. This new series expansion might constitute an analytical background
for the study and simulation of the fast prediction strategies of the sensorimotor system, yet
the demonstration that the sensorimotor system actually relies on this specific algorithm
is beyond the scope of this study. Nevertheless, the U-expansion unveils for the first
time a seminal, plausible sensorimotor prediction strategy, which is based on the afferent
sensory information that conveys to the CNS the unsynchronized values of the successive
derivatives of a physiological function. Most important, the U-expansion can potentially
provide an analytical background for the development of numerical algorithms based
on high-order finite difference methods and designed for the fast and accurate feedback
control of nonlinear systems.

2. Materials and Methods

Let us consider the Taylor series expansion of the time function f about the time
instant t0:

f (t0 + τ) = f (t0) + f (1)(t0)τ+ f (2)(t0)
τ2

2!
+ f (3)(t0)

τ3

3!
+ f (4)(t0)

τ4

4!
+ f (5)(t0)

τ5

5!
+ . . . = f (t0) +

∞

∑
k=1

f (k)(t0)
τk

k!
(1)
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where τ is the time increment from t0. To derive the U-expansion, the derivatives f (n)(t0) in
the right-hand side of Equation (1) will be recursively expanded in the Taylor series about a
set of arbitrary instants tn (n = 1, 2, . . . ), as detailed in the following subsections.

2.1. Expansion of the First-Order Term

In the first order-term f (1)(t0)τ of the Taylor series (1), f (1)(t0) is expressed as the
Taylor series expansion of f (1) about t1 and for a t0 − t1 increment:

f (1)(t0) = f (1)(t1) + f (2)(t1)(t0 − t1) + f (3)(t1)
(t0 − t1)

2

2!
+ f (4)(t1)

(t0 − t1)
3

3!
+ f (5)(t1)

(t0 − t1)
4

4!
+ . . .

In this equation, f (2)(t1) is expressed as the expansion of f (2) about t2 and for a t1− t2
increment:

f (1)(t0) = f (1)(t1) + (t0 − t1)

[
f (2)(t2) + f (3)(t2)(t1 − t2) + f (4)(t2)

(t1−t2)
2

2! + f (5)(t2)
(t1−t2)

3

3! + . . .
]

+ f (3)(t1)
(t0−t1)

2

2! + f (4)(t1)
(t0−t1)

3

3! + f (5)(t1)
(t0−t1)

4

4! + . . .

Here, the two 3rd-order derivatives are expanded in the Taylor series: f (3)(t1) is
expressed as the expansion of f (3) about t3 and for a t1 − t3 increment, while f (3)(t2) is
again expressed as the expansion of f (3) about t3, but for a t2 − t3 increment:

f (1)(t0) = f (1)(t1) +(t0 − t1)

[
f (2)(t2) + f (3)(t3)(t1 − t2 ) + f (4)(t3)(t1 − t2 )(t2 − t3 ) + f (5)(t3)(t1 − t2 )

(t2−t3 )2

2!

+ f (4)(t2 )
(t1−t2 )2

2! + f (5)(t2 )
(t1−t2 )3

3! + . . .
]

+ (t0−t1)
2

2!

[
f (3)(t3) + f (4)(t3)(t1 − t3) + f (5)(t3)

(t1−t3)
2

2! + · · ·
]
+ f (4)(t1)

(t0−t1)
3

3!

+ f (5)(t1)
(t0−t1)

4

4! + . . .

The three 4th-order derivatives f (4)(t1), f (4)(t2), and f (4)(t3) are then expressed as the
expansion of f (4) about t4, for increments given by t1 − t4, t2 − t4, and t3 − t4, respectively:

f (1)(t0) = f (1)(t1) +(t0 − t1)
[

f (2)(t2) + f (3)(t3)(t1 − t2) + f (4)(t4)(t1 − t2)(t2 − t3)

+ f (5)(t4)(t1 − t2)(t2 − t3)(t3 − t4) + f (5)(t3)(t1 − t2)
(t2−t3)

2

2! + f (4)(t4)
(t1−t2)

2

2!

+ f (5)(t4)
(t1−t2)

2

2! (t2 − t4) + f (5)(t2)
(t1−t2)

3

3! + . . .
]

+ (t0−t1)
2

2!

[
f (3)(t3) + f (4)(t4)(t1 − t3) + f (5)(t4)(t1 − t3)(t3 − t4) + f (5)(t3)

(t1−t3)
2

2! + . . .
]

+ (t0−t1)
3

3!

[
f (4)(t4) + f (5)(t4)(t1 − t4)

]
+ f (5)(t1)

(t0−t1)
4

4! + . . .

The process continues by expressing the four 5th-order derivatives f (5)(t1), f (5)(t2),
f (5)(t3), and f (5)(t4) as the expansion of f (5) about t5, for increments given by t1 − t5,
t2 − t5, t3 − t5, and t4 − t5, respectively. With the progressive expansion of higher-order
derivatives and grouping together of derivatives of the same order, one gets the following
final equation for f (1)(t0) (where terms up to the 6th order have been included):
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f (1)(t0) = f (1)(t1) + f (2)(t2)(t0 − t1) + f (3)(t3)

[
(t0−t1)

2

2! + (t0 − t1)(t1 − t2)

]
+ f (4)(t4)

[
(t0−t1)

3

3! + (t0 − t1)
(t1−t2)

2

2! + (t0−t1)
2

2! (t1 − t3) + (t0 − t1)(t1 − t2)(t2 − t3)

]
+ f (5)(t5)

[
(t0−t1)

4

4! + (t0 − t1)
(t1−t2)

3

3! + (t0−t1)
2

2!
(t1−t3)

2

2! + (t0−t1)
3

3! (t1 − t4)

+(t0 − t1)(t1 − t2)
(t2−t3)

2

2! + (t0 − t1)
(t1−t2)

2

2! (t2 − t4) +
(t0−t1)

2

2! (t1 − t3)(t3 − t4)
+(t0 − t1)(t1 − t2)(t2 − t3)(t3 − t4)]

+ f (6)(t6)

[
(t0−t1)

5

5! + (t0 − t1)
(t1−t2)

4

4! + (t0−t1)
2

2!
(t1−t3)

3

3! + (t0−t1)
3

3!
(t1−t4)

2

2!

+ (t0−t1)
4

4! (t1 − t5) + (t0 − t1)(t1 − t2)
(t2−t3)

3

3! + (t0 − t1)
(t1−t2)

2

2!
(t2−t4)

2

2!

+(t0 − t1)
(t1−t2)

3

3! (t2 − t5) +
(t0−t1)

2

2! (t1 − t3)
(t3−t4)

2

2! + (t0−t1)
2

2!
(t1−t3)

2

2! (t3 − t5)

+ (t0−t1)
3

3! (t1 − t4)(t4 − t5) + (t0 − t1)(t1 − t2)(t2 − t3)
(t3−t4)

2

2!

+(t0 − t1)(t1 − t2)
(t2−t3)

2

2! (t3 − t5) + (t0 − t1)
(t1−t2)

2

2! (t2 − t4)(t4 − t5)

+ (t0−t1)
2

2! (t1 − t3)(t3 − t4)(t4 − t5) + (t0 − t1)(t1 − t2)(t2 − t3)(t3 − t4)(t4 − t5)

]
+ · · ·

(2)

Each term in this equation is the product of a number of factors equal to the number
of expansions carried out.

2.2. Expansion of the Second-Order Term

The step procedure is repeated for the 2nd-order derivative f (2)(t0) in the Taylor
series (1). Specifically, f (2)(t0) is expressed as the Taylor series expansion of f (2) about t2
and for a t0 − t2 increment:

f (2)(t0) = f (2)(t2) + f (3)(t2)(t0 − t2) + f (4)(t2)
(t0 − t2)

2

2!
+ f (5)(t2)

(t0 − t2)
3

3!
+ f (6)(t2)

(t0 − t2)
4

4!
+ . . .

In this equation, f (3)(t2) is expressed as the Taylor series expansion of f (3) about t3
and for a t2 − t3 increment:

f (2)(t0) = f (2)(t2) +(t0 − t2)

[
f (3)(t3) + f (4)(t3)(t2 − t3) + f (5)(t3)

(t2−t3)
2

2! + f (6)(t3)
(t2−t3)

3

3! · · ·
]

+ f (4)(t2)
(t0−t2)

2

2! + f (5)(t2)
(t0−t2)

3

3! + f (6)(t2)
(t0−t2)

4

4! + · · ·

The two 4th-order derivatives f (4)(t2) and f (4)(t3) are then expressed as the expansion
of f (4) about t4, for increments given by t2 − t4 and t3 − t4, respectively:

f (2)(t0) = f (2)(t2) +(t0 − t2)

[
f (3)(t3) + f (4)(t4)(t2 − t3) + f (5)(t4)(t2 − t3)(t3 − t4) + f (6)(t4)(t2 − t3)

(t3−t4)
2

2!

+ f (5)(t3)
(t2−t3)

2

2! + f (6)(t3)
(t2−t3)

3

3! · · ·
]

+ (t0−t2)
2

2!

[
f (4)(t4) + f (5)(t4)(t2 − t4) + f (6)(t4)

(t2−t4)
2

2 · · ·
]
+ f (5)(t2)

(t0−t2)
3

3!

+ f (6)(t2)
(t0−t2)

4

4! + · · ·

In the next step, the three 5th-order derivatives f (5)(t2), f (5)(t3), and f (5)(t4) are
expressed as the expansion of f (5) about t5, for increments given by t2 − t5, t3 − t5, and
t4 − t5, respectively:
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f (2)(t0) = f (2)(t2) +(t0 − t2)
[

f (3)(t3) + f (4)(t4)(t2 − t3) + f (5)(t5)(t2 − t3)(t3 − t4)

+ f (6)(t5)(t2 − t3)(t3 − t4)(t4 − t5) + f (6)(t4)(t2 − t3)
(t3−t4)

2

2! + f (5)(t5)
(t2−t3)

2

2!

+ f (6)(t3)
(t2−t3)

2

2! (t3 − t5) + f (6)(t3)
(t2−t3)

3

3! · · ·
]

+ (t0−t2)
2

2!

[
f (4)(t4) + f (5)(t5)(t2 − t4) + f (6)(t5)(t2 − t4)(t4 − t5) + f (6)(t4)

(t2−t4)
2

2 · · ·
]

+ (t0−t2)
3

3!

[
f (5)(t5) + f (6)(t5)(t2 − t5)

]
+ f (6)(t2)

(t0−t2)
4

4! + · · ·

With the progressive expansion of the higher-order derivatives and grouping together
of derivatives of the same order, one arrives at the following final equation for f (2)(t0)
(where terms up to the 6th order have been included):

f (2)(t0) = f (2)(t2) + f (3)(t3)(t0 − t2) + f (4)(t4)

[
(t0−t2)

2

2! + (t0 − t2)(t2 − t3)

]
+ f (5)(t5)

[
(t0−t2)

3

3! + (t0 − t2)
(t2−t3)

2

2! + (t0−t2)
2

2! (t2 − t4) + (t0 − t2)(t2 − t3)(t3 − t4)

]
+ f (6)(t6)

[
(t0−t2)

4

4! + (t0 − t2)
(t2−t3)

3

3! + (t0−t2)
2

2!
(t2−t4)

2

2! + (t0−t2)
3

3! (t2 − t5)

+(t0 − t2)(t2 − t3)
(t3−t4)

2

2! + (t0 − t2)
(t2−t3)

2

2! (t3 − t5) +
(t0−t2)

2

2! (t2 − t4)(t4 − t5)
+(t0 − t2)(t2 − t3)(t3 − t4)(t4 − t5)] + · · ·

(3)

2.3. Expansion of the Third-Order Term

The procedure progresses with the higher-order derivatives. For example, f (3)(t0) is
expressed as the Taylor series expansion of f (3) about t3 and for a t0 − t3 increment:

f (3)(t0) = f (3)(t3) + f (4)(t3)(t0 − t3) + f (5)(t3)
(t0 − t3)

2

2!
+ f (6)(t3)

(t0 − t3)
3

3!
+ · · ·

f (4)(t3) as the Taylor series expansion of f (4) about t4 and for a t3 − t4 increment:

f (3)(t0) = f (3)(t3) +(t0 − t3)

[
f (4)(t4) + f (5)(t4)(t3 − t4) + f (6)(t4)

(t3−t4)
2

2 + . . .
]
+ f (5)(t3)

(t0−t3)
2

2!

+ f (6)(t3)
(t0−t3)

3

3! + · · ·

f (5)(t3) and f (5)(t4) as the expansion of f (5) about t5, for increments given by t3 − t5 and
t4 − t5, respectively, and so on, to finally get

f (3)(t0) = f (3)(t3) + f (4)(t4)(t0 − t3) + f (5)(t5)

[
(t0−t3)

2

2! + (t0 − t3)(t3 − t4)

]
+ f (6)(t6)

[
(t0−t3)

3

3! + (t0 − t3)
(t3−t4)

2

2 + (t0−t3)
2

2! (t3 − t5) + (t0 − t3)(t3 − t4)(t4 − t5)

]
+ · · ·

(4)

2.4. The U-Expansion

The procedure outlined in the previous sections highlights that each of the deriva-
tives f (k)(t0) in the Taylor series (1) can be expressed in terms of the derivatives f (n)(tn)
(n = k, k + 1, k + 2, . . .) according to the following equation:

f (k)(t0) =
∞

∑
n=k

f (n)(tn)pnk (k = 1, 2, 3, . . .) (5)
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where the pnk coefficients will be readily deduced, in the next section, from Equations (2)–(4).
Replacing the first and the higher-order time derivatives f (k)(t0) in the right-hand side of
the Taylor series (1) with the corresponding expressions given by Equation (5), one gets

f (t0 + τ) = f (t0) +
∞

∑
k=1

(
τk

k!
·

∞

∑
n=k

f (n)(tn)pnk

)

Rearrangement of the indexes k and n gives the final form of the U-expansion:

f (t0 + τ) = f (t0) +
∞

∑
n=1

(
f (n)(tn)·

n

∑
k=1

τk

k!
pnk

)
(6)

2.5. The Coefficients

Comparison of Equation (5) with Equations (2)–(4) highlights that for n = k, all the
pnk coefficients (p11, p22, . . . ) are equal to 1:

pnk = 1 (n = k) (7)

For n = k + 1, the pnk coefficients (p21, p32, . . . ) are equal to t0 − tk, and can be
written as

pnk = t0 − tk =
(t0 − tk)

n−k

(n− k)!
(n = k + 1) (8)

For n = k + 2, k + 3, and k + 4, one has

pnk =
(t0−tk)

2

2! + (t0 − tk)(tk − tk+1) =
(t0−tk)

n−k

(n−k)! +
n−1
∑

i1=k+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

n−i1

(n−i1)!
(n = k + 2)

pnk =
(t0−tk)

3

3! +

(
(t0 − tk)

(tk−tk+1)
2

2! + (t0−tk)
2

2! (tk − tk+2)

)
+ (t0 − tk)(tk − tk+1)(tk+1 − tk+2)

= (t0−tk)
n−k

(n−k)! +
n−1
∑

i1=k+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

n−i1

(n−i1)!

+
n−2
∑

i1=k+1

n−1
∑

i2=i1+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

n−i2

(n−i2)!
(n = k + 3)

pnk =
(t0−tk)

4

4! +

(
(t0 − tk)

(tk−tk+1)
3

3! + (t0−tk)
2

2!
(tk−tk+2)

2

2! + (t0−tk)
3

3! (tk − tk+3)

)
+((t0 − tk)(tk − tk+1)

(tk+1−tk+2)
2

2! + (t0 − tk)
(tk−tk+1)

2

2! (tk+1 − tk+3) +
(t0−tk)

2

2! (tk
−tk+2)(tk+2 − tk+3)) + (t0 − tk)(tk − tk+1)(tk+1 − tk+2)(tk+2 − tk+3)

= (t0−tk)
n−k

(n−k)! +
n−1
∑

i1=k+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

n−i1

(n−i1)!

+
n−2
∑

i1=k+1

n−1
∑

i2=i1+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

n−i2

(n−i2)!

+
n−3
∑

i1=k+1

n−2
∑

i2=i1+1

n−1
∑

i3=i2+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

i3−i2

(i3−i2)!
(ti2−ti3)

n−i3

(n−i3)!
(n = k + 4)

The other pnk coefficients (n > k + 4) are defined by the following general equation:
pnk

= (t0−tk)
n−k

(n−k)! +
n−1
∑

i1=k+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

n−i1

(n−i1)!
+

n−2
∑

i1=k+1

n−1
∑

i2=i1+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

n−i2

(n−i2)!

+
n−3
∑

i1=k+1

n−2
∑

i2=i1+1

n−1
∑

i3=i2+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

i3−i2

(i3−i2)!
(ti2−ti3)

n−i3

(n−i3)!
+ · · ·

+
n−(n−k−1)

∑
i1=k+1

n−(n−k−2)
∑

i2=i1+1
. . .

n−1
∑

in−k−1=in−k−2+1

(t0−tk)
i1−k

(i1−k)!
(tk−ti1)

i2−i1

(i2−i1)!
(ti1
−ti2)

i3−i2

(i3−i2)!
· · ·

(
tin−k−2

−tin−k−1

)n−in−k−1

(n−in−k−1)!
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Assuming ti−1 ≡ t0, i0 ≡ k, ti0 ≡ tk, ij+1 ≡ n, and t ij+1 ≡ tn, the coefficients pnk with
n ≥ k + 2 can also be reduced to

pnk =
(t0 − tk)

n−k

(n− k)!
+

n−k−1

∑
j=1

 n−j

∑
i1=k+1

n−j+1

∑
i2=i1+1

· · ·
n−1

∑
ij=ij−1+1

(
j

∏
m=0

(
tim−1 − tim

)im+1−im

(im+1 − im)!

) (9)

The Appendix A displays the U-expansion with terms up to the 6th order and explicit
expression of the pnk coefficients (Equation (A1)).

2.6. A Specific Example of U-Expansion

In this section, we consider a specific type of U-expansion defined by the condition
that the derivatives f (n) of f are detected at progressively earlier times tn as the derivative
order n increases. Specifically, given an arbitrary time increment t > 0, the time instants tn
are defined by the following condition:

tn = t0 − nt (n = 1, 2, . . .) (10)

Substitution of Equation (10) into Equations (6)–(9) yields

f (t0 + τ) = f (t0) +
∞

∑
n=1

(
f (n)(t0 − nt)

n

∑
k=1

τk

k!
cnktn−k

)
(11)

with the numerical coefficient cnk given by
(
i−1 = 0, i0 = k, ij+1 = n

)
:

cnk = 1 (k = n) (12)

cnk = k =
k(n−k)

(n− k)!
(k = n− 1) (13)

cnk =
kn−k

(n− k)!
+

n−k−1

∑
j=1

 n−j

∑
i1=k+1

n−j+1

∑
i2=i1+1

· · ·
n−1

∑
ij=ij−1+1

(
j

∏
m=0

(im − im−1)
im+1−im

(im+1 − im)!

) (k ≤ n− 2) (14)

The numerical value of the cnk coefficients can be readily calculated from the above
equations, yielding the final expression of the expansion reported in the Appendix A,
where terms up to the 9th-order time derivative have been included (Equation (A2)).

In the next section, the error related to the truncation of the U-expansions (Equa-
tion (A2)) will be calculated for different values of t and τ and for different orders of
truncation nt, and will also be compared with the truncation error of the corresponding
Taylor series (t = 0).

3. Results

In the following, we assume that time, and consequently the time instant t0, and the
time increments τ and t are normalized to an arbitrary time constant, so that they can be
considered dimensionless quantities. Thus, consistency of notation with Equations (1)–(14)
can be maintained in the Taylor series of the exponential and sine functions:

et0+τ = et0 + et0 · τ
1!

+ et0 ·τ
2

2!
+ et0 ·τ

3

3!
+ et0 ·τ

4

4!
+ . . . (15)

sin(t0 + τ) = sin(t0) + cos(t0)·
τ

1!
− sin(t0)·

τ2

2!
− cos(t0)·

τ3

3!
+ sin(t0)·

τ4

4!
+ . . . (16)

and in the corresponding U-expansions (11):
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et0+τ = et0 + e(t0−t) τ
1! + e(t0−2t)

[
τ2

2! + (t)τ
]
+ e(t0−3t)

[
τ3

3! + (2t)τ
2

2! +
( 3

2 t2)τ]
+e(t0−4t)

[
τ4

4! + (3t)τ
3

3! +
(
4t2)τ2

2! +
( 8

3 t3)τ]+ . . .
(17)

sin(t0 + τ) = sin(t0) + cos(t0 − t)· τ1! − sin(t0 − 2t)
[
τ2

2! + (t)τ
]
− cos(t0 − 3t)

[
τ3

3! + (2t)τ
2

2! +
( 3

2 t2)τ]
+ sin(t0 − 4t)

[
τ4

4! + (3t)τ
3

3! +
(
4t2)τ2

2! +
( 8

3 t3)τ]+ . . .
(18)

Figures 1 and 2 display, for different values of t (t = 0.001, 0.01, 0.05, 0.1) and different
orders of truncation nt (nt = 2, 3, 4), the dependence on the increment τ of the error εU,nt

related to the truncation of the exponential U-expansion (Equation (17)) about t0 = 0
(Figures 1a and 2a) and the sine U-expansion (Equation (18)) about t0 = π/4 (Figures 1b
and 2b). For comparison, the figures also display the error εT,nt related to the truncation
(nt = 1, 2, 3, 4) of the corresponding Taylor series expansions (15) and (16) about t0 = 0
and t0 = π/4, respectively.
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for comparison. (b) Dependence on the increment τ of the error εU,nt related to the truncation of the U-expansion of
sin(t0 + τ) (Equation (18)) for t0 = π/4, different values of t (t = 0.001, 0.01, 0.05, 0.1), and different orders of truncation
nt (nt = 2, 3, 4). The error εT,nt related to the truncation (nt = 1, 2, 3, 4) of the corresponding Taylor series (Equation (16))
is also reported for comparison. The error is defined as the difference between the exact value of the function and the value
of the truncated series expansion.

For τ � t, the error of the U-expansion is nearly coincident with the error of the
corresponding Taylor series with the same order of truncation (εU,nt = εT,nt), as long as
t ≤ 0.001 (Figure 1). Conversely, with a gradual increase of t from 0.001 to 0.1, the error of
the U-expansion becomes progressively higher than the error of the corresponding Taylor
series with the same order of truncation (εU,nt > εT,nt). However, still with t = 0.01 and
t = 0.05, the error of the U-expansion truncated at order nt remains considerably smaller
than the error of the corresponding Taylor series truncated at order nt − 1 (εU,nt < εT,nt−1).

For τ ≈ t or τ < t, with a progressive decrease in τ and increase in t, the error εU,nt

tends to drift towards the error of the Taylor series truncated at progressively lower orders
(Figure 2). For example, for the exponential function, εU,3 = εT,2 when t = τ = 0.05,
whereas εU,4 = εT,2 when t = 0.1 and τ = 0.05 (Figure 2a). Nevertheless, for small values
of t (t ≤ 0.01) and 0 < τ ≤ t, the error εU,nt becomes negligible, yet at the second-order
nt of truncation (εU,nt is smaller than about 10−5, 10−7, and 10−9 for nt = 2, 3, and 4,
respectively). A nearly identical trend is displayed by the sine function (Figure 2b).
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Figure 2. (a) Detail of Figure 1a in the range 0 < τ ≤ 0.2; (b) detail of Figure 1b in the range 0 < τ ≤ 0.3.

4. Discussion

We have derived a power series expansion (named the U-expansion) to predict the
time evolution of a function f given the value f (t0) of the function at a time instant t0 and
the values f (n)(tn) of the derivatives f (n) of f at arbitrarily different times tn (n = 1, 2, . . . ).
The U-expansion can potentially constitute the analytical background for the development
of numerical algorithms designed for the fast and accurate feedback control of nonlin-
ear systems. This relies on the possibility that the controlled process variable f and its
derivatives can be directly measured. Indeed, when only the controlled process variable
f is recorded over time with a given sampling period T, all the derivatives f (n) can be
estimated, at the same time instant t0 and at any order of approximation, from the recorded
values of the variable f , by means of backward finite difference approximations [24]. The
standard Taylor series (1) can then be used to estimate the f (t0 + τ) value. However, the
nth-order backward finite difference approximation to the nth-order derivative f (n)(t0)
requires preventive recording of 2n values of the function f at times t0 , t0 − T, t0 − 2T, . . . ,
t0 − (2n− 1)T. With this degree of approximation, prediction of the time evolution of the
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variable f can only be attained after a time lag (2n− 1)T. Moreover, further processing
and delay is needed to avoid noise amplification due to differentiation.

The sensorimotor system is provided by a variety of different sensory receptors that
can directly detect not only the intensity of a stimulus (slow-adapting receptors), but also
its rate of change and the higher-order time derivatives (fast-adapting receptors). The slow-
adapting receptors also exhibit the adaptation phenomenon: the continuous persistence of
a constant stimulus is accompanied by a progressive decrease in the discharge frequency
of the afferent sensory neuron. This reflects the fact that in nature, it is more important to
feel the change of a condition rather than to be continuously informed that the condition
has not changed. Direct measurement of higher-order derivatives, with no delay for their
approximate computation, enables the sensorimotor system to make more accurate and
fast predictions, and ultimately, optimal efferent responses acting with minimum latency.
Nevertheless, the fundamental property of the central nervous system that only relevant
sensory information (including higher-order derivatives) is readily transmitted to the
integration and processing centers has the drawback that afferent information originating
from different sensory receptors is not synchronized in time.

The U-expansion actually allows the prediction of the time evolution of a function
from the values of the function and its time derivatives detected at different times, with
no delay for computation. Thus, the U-expansion can be used to optimize the feedback
control of a physiological parameter f, enabling, at the same time, a high degree of accuracy
and the minimization of the latency of the control response. Ultimately, the U-expansion
constitutes an unanalytical framework to simulate the fast and accurate prediction strategy
of the sensorimotor system.

The U-expansion has been numerically applied to the ideal problem of the calculation
of f (t0 + τ) from the value f (t0) and the values of the derivatives f (n) detected at progres-
sively earlier times tn = t0 − nt (t > 0) as the derivative order n increases (n = 1, 2, . . .).
This particular case is of relevance when accurate values of lower-order derivatives may
be retrieved earlier, compared to higher-order derivatives, which typically require a more
demanding detection process. For sufficiently small values of t and increments of τ sig-
nificantly greater than t, the error εU,nt associated with the truncation of the U-expansion
at a given order nt closely equalizes the error εT,nt of the corresponding Taylor series
(t = 0) truncated at the same order (Figure 1). Small values of the t increment and higher
values of the τ increment actually correspond to the high-frequency discharge of sensory
neurons and the need for longer-term prediction, respectively. With a progressive increase
in t, the error εU,nt associated with the truncation of the U-expansion at order nt drifts
towards the error of the corresponding Taylor series truncated at progressively lower
orders (Figures 1 and 2). Nevertheless, nt can be progressively increased to render εU,nt

equal to the error of the Taylor series truncated at a specific lower order, with no increase
in the delay for the calculation of f (t0 + τ).

Although the previous findings have been derived for a particular regular set of
detection times tn (tn = t0 − nt), they nevertheless have a broad validity. Indeed, the same
findings also result from any arbitrary set of detection times tn, provided t represents the
maximum value among the differences |ti − ti−1| (i = 1, 2, . . .) relative to the detection
times of two successive derivatives. Among these infinite sets of detection times, that
defined by the selected condition (tn = t0− nt) clearly corresponds to the most unfavorable
condition for making predictions.

The present study provides a general analytical algorithm for the simulation of the
fast prediction strategy of the sensorimotor system. Detailed neurophysiological models
are needed when the specific organizational principles and coding mechanisms of the
sensorimotor system are considered. Indeed, the incoming stream of sensory signals in
the CNS is encoded as trains of action potentials; processed in stages in the sequential
relay nuclei of the spinal cord, brain stem, thalamus, and cerebral cortex; and modulated
by superspinal centers through descending pathways, according to its current (context-
dependent) functional relevance [4,18,25,26]. The rigorous experimental investigation
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of the neuronal mechanisms underlying the fast prediction strategy of the sensorimotor
system was beyond the scope of this study. Nonetheless, this study unveils, for the
first time, a seminal plausible algorithm (U-expansion) that enables fast and accurate
sensorimotor predictions and accounts for the experimental evidence that the sensory
receptors can collectively sense the unsynchronized values of a physiological parameter
and its time derivatives.

5. Conclusions

The U-expansion derived in this paper determines the time evolution of a physio-
logical parameter from the value of the parameter and the values of its successive time
derivatives detected at different times by different sensory receptors. This new series
expansion constitutes a generalization of the Taylor series that potentially provides an
analytical background for the study of the fast prediction strategies of the sensorimotor
system, as well as for the development of numerical algorithms designed for the feedback
control of nonlinear systems.
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Appendix A

The following equation constitutes the explicit expression of the U-expansion, includ-
ing terms up to the 6th order:

f (t0 + τ) = f (t0) + f (1)(t1)τ+ f (2)(t2)
{

τ2

2! + τ(t0 − t1)
}

+ f (3)(t3)

{
τ3

3! +
τ2

2! (t0 − t2) + τ

[
(t0−t1)

2

2! + (t0 − t1)(t1 − t2)

]}
+ f (4)(t4)

{
τ4

4! +
τ3

3! (t0 − t3) +
τ2

2!

[
(t0−t2)

2

2! + (t0 − t2)(t2 − t3)

]
+τ

[
(t0−t1)

3

3! +

(
(t0 − t1)

(t1−t2)
2

2! + (t0−t1)
2

2! (t1 − t3)

)
+ (t0 − t1)(t1 − t2)(t2 − t3)

]}
+ f (5)(t5)

{
τ5

5! +
τ4

4! (t0 − t4) +
τ3

3!

[
(t0−t3)

2

2! + (t0 − t3)(t3 − t4)

]
+τ2

2!

[
(t0−t2)

3

3! +

(
(t0 − t2)

(t2−t3)
2

2! + (t0−t2)
2

2! (t2 − t4)

)
+ (t0 − t2)(t2 − t3)(t3 − t4)

]
+τ

[
(t0−t1)

4

4! +

(
(t0 − t1)

(t1−t2)
3

3! + (t0−t1)
2

2!
(t1−t3)

2

2! + (t0−t1)
3

3! (t1 − t4)

)
+

(
(t0 − t1)(t1 − t2)

(t2−t3)
2

2! + (t0 − t1)
(t1−t2)

2

2! (t2 − t4) +
(t0−t1)

2

2! (t1 − t3)(t3 − t4)

)
+(t0 − t1)(t1 − t2)(t2 − t3)(t3 − t4)]}

+ f (6)(t6)

{
τ6

6! +
τ5

5! (t0 − t5) +
τ4

4!

[
(t0−t4)

2

2! + (t0 − t4)(t4 − t5)

]
+τ3

3!

[
(t0−t3)

3

3! +

(
(t0 − t3)

(t3−t4)
2

2 + (t0−t3)
2

2! (t3 − t5)

)
+ (t0 − t3)(t3 − t4)(t4 − t5)

]
+τ2

2!

[
(t0−t2)

4

4! +

(
(t0 − t2)

(t2−t3)
3

3! + (t0−t2)
2

2!
(t2−t4)

2

2! + (t0−t2)
3

3! (t2 − t5)

)
+

(
(t0 − t2)(t2 − t3)

(t3−t4)
2

2! + (t0 − t2)
(t2−t3)

2

2! (t3 − t5) +
(t0−t2)

2

2! (t2 − t4)(t4 − t5)

)
+(t0 − t2)(t2 − t3)(t3 − t4)(t4 − t5)]

+τ

[
(t0−t1)

5

5!

+

(
(t0 − t1)

(t1−t2)
4

4! + (t0−t1)
2

2!
(t1−t3)

3

3! + (t0−t1)
3

3!
(t1−t4)

2

2! + (t0−t1)
4

4! (t1 − t5)

)
+((t0 − t1)(t1 − t2)

(t2−t3)
3

3! + (t0 − t1)
(t1−t2)

2

2!
(t2−t4)

2

2! + (t0 − t1)
(t1−t2)

3

3! (t3 − t5)

+ (t0−t1)
2

2! (t1 − t3)
(t3−t4)

2

2! + (t0−t1)
2

2!
(t1−t3)

2

2! (t3 − t5) +
(t0−t1)

3

3! (t1 − t4)(t4 − t5))

+((t0 − t1)(t1 − t2)(t2 − t3)
(t3−t4)

2

2! + (t0 − t1)(t1 − t2)
(t2−t3)

2

2! (t3 − t5)

+(t0 − t1)
(t1−t2)

2

2! (t2 − t4)(t4 − t5) +
(t0−t1)

2

2! (t1 − t3)(t3 − t4)(t4 − t5))
+(t0 − t1)(t1 − t2)(t2 − t3)(t3 − t4)(t4 − t5)]}+ · · ·

(A1)
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Under the ideal condition that the derivatives f (n) are detected at regularly earlier
times tn = t0 − nt as the derivative order n increases (t > 0), Equation (A1) becomes

f (t0 + τ) = f (t0) + f (1)(t0 − t)τ+ f (2)(t0 − 2t)
[
τ2

2! + (t)τ
]
+ f (3)(t0 − 3t)

[
τ3

3! + (2t)τ
2

2! +
( 3

2 t2)τ]
+ f (4)(t0 − 4t)

[
τ4

4! + (3t)τ
3

3! +
(
4t2)τ2

2! +
( 8

3 t3)τ]
+ f (5)(t0 − 5t)

[
τ5

5! + (4t)τ
4

4! +
(

15
2 t2
)
τ3

3! +
( 25

3 t3)τ2

2! +
(

125
24 t4

)
τ
]

+ f (6)(t0 − 6t)
[
τ6

6! + (5t)τ
5

5! +
(
12t2)τ4

4! +
(
18t3)τ3

3! +
(
18t4)τ2

2! +
(

54
4 t5
)
τ
]

+ f (7)(t0 − 7t)
[
τ7

7! + (6t)τ
6

6! +
( 35

2 t2)τ5

5! +
( 98

3 t3)τ4

4! +
(

343
8 t4

)
τ3

3! +
(

2401
60 t5

)
τ2

2! +
(

16807
720 t6

)
τ
]

+ f (8)(t0 − 8t)
[
τ8

8! + (7t)τ
7

7! +
(
24t2)τ6

6! +
(

160
3 t3

)
τ5

5! +
( 256

3 t4)τ4

4! +
(

512
5 t5

)
τ3

3! +
(

4096
45 t6

)
τ2

2!

+
(

16384
315 t7

)
τ
]

+ f (9)(t0 − 9t)
[
τ9

9! + (8t)τ
8

8! +
( 63

2 t2)τ7

7! +
(
81t3)τ6

6! +
(

1215
8 t4

)
τ5

5! +
(

2187
10 t5

)
τ4

4! +
(

19683
80 t6

)
τ3

3!

+
(

59049
280 t7

)
τ2

2! +
(

531441
4480 t8

)
τ
]
+ · · ·

(A2)
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