
biomimetics

Article

Modeling of the Van Der Waals Forces during the Adhesion of
Capsule-Shaped Bacteria to Flat Surfaces

Fathiah Mohamed Zuki 1,*, Robert G. J. Edyvean 2, Hamed Pourzolfaghar 1 and Norherdawati Kasim 3

����������
�������

Citation: Mohamed Zuki, F.;

Edyvean, R.G.J.; Pourzolfaghar, H.;

Kasim, N. Modeling of the Van Der

Waals Forces during the Adhesion

of Capsule-Shaped Bacteria to Flat

Surfaces. Biomimetics 2021, 6, 5.

https://doi.org/10.3390/

biomimetics6010005

Received: 24 November 2020

Accepted: 21 December 2020

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
h_pourzolfaghar@yahoo.com

2 Department of Chemical and Biological Engineering, University of Sheffield, Newcastle Street,
Sheffield S1 3JD, UK; r.edyvean@sheffield.ac.uk

3 Department of Chemistry and Biology, Center for Foundation Studies, National Defence University
of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; herdawati@upnm.edu.my

* Correspondence: fathiahmz@um.edu.my

Abstract: A novel model is developed to evaluate the van der Waals (vdW) interactions between a capsule
shaped bacterium (P. putida) and flat minerals plates in different approach profiles: Vertically and
horizontally. A comparison of the approaches to the well-developed spherical particle to mineral surface
(semi-infinite wall and spherical) approach has been made in this investigation. The van der Waals (vdW)
interaction potentials for a capsule-shaped bacterium are found using Hamaker’s microscopic approach
of sphere to plate and cylinder to plate either vertically or horizontally to the flat surface. The numerical
results show that a horizontal orientated capsule shaped bacterium to mineral surface interaction was
more attractive compared to a capsule shaped bacterium approaching vertically. The orientation of the
bacterial approaching a surface as well as the type and topology of the mineral influence the adhesion of
a bacteria to that surface. Furthermore, the density difference among each type of bacteria shape (capsule,
cylinder, and sphere) require different amounts of energy to adhere to hematite and quartz surfaces.

Keywords: bacterial adhesion; capsule-shaped bacteria; pseudomonas putida; surface energy;
van der Waals forces

1. Introduction

Microbes or microorganisms have a robust propensity to attach to a surface [1]. As soon
as the microbes associate to a surface, a multistep procedure initiates from initial attachment to
eventual formation of a complex community [2]. This complex community (a biofilm) consists
of the microbes, both those initially attached and their offspring, embedded in a secretion of
an extracellular matrix and can eventually include different microbial species and a variety of
solid particles/debris. Biofilms can be either advantageous or have harmful consequences
and disadvantageous properties depending on the environment [3]. A better understanding
of microbial interactions at surfaces offers opportunities for industrial developments, such as
bioremediation [4], treatment of hazardous waste sites [5], bio-filtration [6], and forming
bio-barriers to protect soil and groundwater from contamination [7–9]. Furthermore, novel
cleaning strategies, based on an understanding of how bacteria attach, grow, and detach,
are urgently needed by many industries [10,11]. Introducing bacteria into groundwater
containing minerals may lead to differences in the attachment of the bacteria onto different
mineral surfaces depending on their interaction potentials [12], an aspect that can be used for
both industrial and environmental advantage.

The initial attachment process of a microbe, such as a bacterium, to a surface is governed
by at least two types of interaction across the aqueous phase. These are the van der Waals
(vdW) and Electrical Double Layer (EDL) interactions [13]. There are numerous publications
focusing on the van der Waals (vdW) interaction [14–18]. The van der Waals (vdW) inter-
actions between a colloidal particle and a solid surface as a function of separation distance
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is important in studying the flow of colloidal emulsions through porous media or fibre fil-
ters [19–21]. This interaction also plays an essential role in problems of bacterial attachment
onto the solid surfaces in biological systems [22]. Furthermore, it plays a critical role in
bacteria attachment and biofilm formation onto mineral surfaces in groundwater [23]. The
computation of the vdW interaction between a spherical particle and a cylindrical surface
had been reported by Yongan and Dongqing [24]. Following the Derjaguin approximation
approach, the interaction of a spherical particle to a cylindrical surface can be calculated by
assuming the interaction is between a sphere and a finite wall. Yongan and Dongqing also
found that the vdW force calculated by this assumption was overestimated due to the large
curvature and finite-size effect of the cylinder [24]. The actual vdW interaction between two
macroscopic bodies is reduced at large distances because the time it takes for electric fields to
propagate from one body to another and back causing the fluctuating electric moments be-
come slightly out of phase, owing to the electromagnetic nature of interaction. The reduction
of the vdW interaction is called the retardation effect due to the finite speed of light [25,26].
Montgomery et. al. [27] developed the expression for the van der Waals adhesion forces for
a variety of particle shapes interacting with an infinite cylinder by a first principle-based
approximate macroscopic model (e.g., sphere to plate interaction). Non-traditional geome-
tries including interactions of spherical shell to infinite cylinder; disk-like particle to infinite
cylinder; disk-like particle oriented edgewise to an infinite cylinder; and a deformed slice to
infinite cylinder were modeled previously. These interaction models were found to have very
high interaction energy and adhesion forces. Many more researchers have contributed to the
development of the van der Waals interaction potential model expressions between two macro-
scopic bodies including Israelachvili [28], Bhattacharjee and Elimielech [29], Tadmor [30], and
Bhattacharjee and Sharma [31].

In order to determine the van der Waals interaction potential between bacteria and
a mineral surface, bacteria which have a wide range of shapes [32], ranging from spheres to
rods and spirals, typically a few micrometers in length, are now being further studied due
to their arbitrary shapes and non-traditional geometry. For spherical bacteria to surface
interactions, the common mathematical van der Waals interaction energy of sphere to
flat surface can be used to calculate the potential energy. However, there are no specific
mathematical models yet developed to calculate the van der Waals interaction energy
between a capsule-shaped bacterium to a flat surface.

In this survey, a capsule-shaped particle to a flat plate surface interaction model
(presenting a bacillus cell and the surface it settles on) is derived from a combination
of spherical particle and cylindrical particle to flat surface interaction potentials. Thus,
in order to develop a model of capsule-shaped interaction, the derivation of interaction
potential for single molecule, spherical particle, and cylindrical particle to flat plate
surface interaction using the ‘Ring approach’ (based on Hamaker’s pairwise interactions)
is presented. The orientation by which the bacterial cell approaches the flat mineral
surface, (horizontally or vertically) is also considered in the van der Waals interaction
potential approximation.

2. Materials and Methods
2.1. Capsule Model

Recently, several researchers have used a well-developed sphere to flat surface inter-
action equation as a comparison to their experimental results by assuming the bacterial
shape is spherical. However, bacteria are found in many different shapes; coccus, rod,
spiral, and bacillus or capsule (rod with hemispherical ends) and every shape has its
own curve and density that affects the interaction potentials between each bacterium
or between bacteria and surfaces. Therefore, the curvature effect developed by Yongan
and Dongqing [24], can be applied for bacteria to mineral adhesion studies. Based on
the sphere to plate and cylinder to plate, a capsule-like bacterial cell to flat plate mineral
surface model can be developed for the two approaching positions; vertical approach and
horizontal approach.
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2.2. Hamaker’s Microscopic Approach

Hamaker [33] determined the van der Waals interaction of two macroscopic bodies
by carrying out an integration of all the intermolecular interactions. First, van der Waals
interactions between two particles were considered as pairwise inter-particle interactions
and tended to be generalized on interactions between large bodies. These large body
“macroscopic body” interactions were developed by Hamaker by summation of pairwise
interactions over all constituent atoms. The Hamaker approach is widely used because of
its simplicity and applicability. General dispersion pair interaction potentials between two
interacting molecules separated by a distance r can be assumed to be of the power-law form:

v(r) = −Cd
rn (1)

where Cd = 3α2I/4(4πε0)2 is the Lifshitz-van der Waals potential coefficient (α = polarizability;
I = certain characteristic potentials of the atom) and n depends on the specific potential model
used for inter-molecular potential, (for r > molecule diameter, d, n = 6) [34].

2.2.1. Molecule-Plate Interaction Potential

According to Hamaker’s microscopic approach, the interaction between a molecule
and a nearby planar surface of a solid is assumed to be purely attractive. Initially, the
volume of the ring containing interacting molecules in the solid is calculated as shown in
Figure 1. The radius of the ring, Rring, and the distance of the ring to the side of the solid, x,
may be extended to infinity during the integration process to cover all the molecules in the
solid slab [35]. Geometrically, the total number of molecules in a circular ring of volume
V = 2πRringdRringdx is n = ρ2πRringdRringdx, where ρ is the number density of the molecule
(molecule/m3). By assuming the sum of the interactions of all molecules present in the
solid body with this single molecule, and approximating this summation process with an
integral, the net interaction for a molecule of the same material at a distance, D, away from
the surface of the solid slab becomes:

V(D) =
∫ ∫

[v(r)]ρ2πRringdRringdx = −πCdρ
∫ x=∞

D

∫ Rring

0

2Rringdring

r6 dx (2)

4 
 

dipoles are neglected; all dispersion force attractions are due to a single dominant fre-
quency; the interactions of molecular electron clouds are instantaneous; and the solid 
body is assumed to have uniform density right to the interface. 

 
Figure 1. Interaction between a molecule and a solid slab. D = distance between the molecule and 
the surface of the solid plane; Rring = radius of the ring; x is the distance of the ring to the side of the 
solid; and r = distance between the molecule and the ring of molecules in the planar surface. 

2.2.2. Sphere-Flat Plate vdW Interaction Potential 
By applying a similar procedure for a sphere particle to flat plate, the interaction po-

tential energy between a large spherical particle with radius, Rsph, and the ring in the plate 
surface (Figure 2) can be calculated. The volume of the circular slice in the sphere is: 𝑉 = 𝜋𝑅௦௟௜௖௘ଶ 𝑑𝑥 (6)

Rslice is related to Rsph by using chord theorem of plane geometry by applying Pythag-
oras’s theorem to all triangles in Figure 3. From the figure, [(AC)2 = (AB)2 + (BC)2] giving 
(AC)2 = [(AD)2 + (BD)2] + [(BD)2 + (CD)2]. After simplification and rearrangement, this 
yields [(2R)2 = (2R − x)2 + 2h2 + x2] giving [h2 = x(2R − x)]. 

 
Figure 2. Interaction between a large sphere and a solid flat surface. 

Figure 1. Interaction between a molecule and a solid slab. D = distance between the molecule and
the surface of the solid plane; Rring = radius of the ring; x is the distance of the ring to the side of the
solid; and r = distance between the molecule and the ring of molecules in the planar surface.
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By applying Pythagoras’s theorem, r2 = (D + x)2 + R2
ringr2 = (D + x)2 + R2

ringr2 =

(D + x)2 + R2
ring, and since 2RringdRring = dR2

ring, .
and by inserting this into Equation (2), we obtain:

V(D) = −πCdρ
∫ x

D

∫ ∞

0

dR2
ring[

(D + x)2 + R2
ring

]3 dx (3)

V(D) = −1
2

πCdρ
∫ ∞

D

1

(D + x)4 dx (4)

VvdW(D) = −πCρ

6D3 (5)

From Equation (5), it is shown that the interaction potential energy of a molecule
and a macroscopic surface decreases proportionally to D−3, instead of D−6 for molecule-
molecule interaction. This integration was simplified by several assumptions used by
Hamaker: The multibody interactions are discounted and the interactions are only pair-
wise; the intervening medium is a vacuum; the molecule and the solid body are not
distorted by the attractive forces; the interactions due to the Coulomb forces and permanent
dipoles are neglected; all dispersion force attractions are due to a single dominant frequency;
the interactions of molecular electron clouds are instantaneous; and the solid body is
assumed to have uniform density right to the interface.

2.2.2. Sphere-Flat Plate vdW Interaction Potential

By applying a similar procedure for a sphere particle to flat plate, the interaction
potential energy between a large spherical particle with radius, Rsph, and the ring in the
plate surface (Figure 2) can be calculated. The volume of the circular slice in the sphere is:

V = πR2
slicedx (6)
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Rslice is related to Rsph by using chord theorem of plane geometry by applying Pythago-
ras’s theorem to all triangles in Figure 3. From the figure, [(AC)2 = (AB)2 + (BC)2] giving
(AC)2 = [(AD)2 + (BD)2] + [(BD)2 + (CD)2]. After simplification and rearrangement, this
yields [(2R)2 = (2R − x)2 + 2h2 + x2] giving [h2 = x(2R − x)].

Thus, corresponding to Figure 3:

R2
slice = x

(
2Rsph − x

)
(7)
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Then the total volume of the thin circular slice in the sphere becomes:

V = πR2
slicedx = π

(
2Rsph − x

)
xdx (8)

5 
 

 
Figure 3. Right-angled triangle used in the proof of the chord theorem of plane geometry. 
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Therefore, the total number of molecules in this slice is πρ
(

2Rsph − x
)

xdx. Since all
the molecules in this sphere are at a distance of (D + x) from the flat surface, the total sphere
to surface dispersion interaction potential can be found by multiplying the number of
molecules within the spherical particle and the dispersion interaction potential of a single
molecule to a flat surface (Equation (8)) and becomes:

V(D) = −π2Cdρcρm

6

∫ x=2Rsph

x=0

(
2Rsph − x

)
x

(D + x)3 dx (9)

Therefore, by derivation of this equation (Equation (9)), the van der Waals, vdW
interaction potential of a large spherical particle can be calculated. This equation can then
be applied into the calculation of the vdW interaction potential for the capsule-shaped
particle to flat plate interaction. The capsule model is defined by the combination of
a spherical and a cylindrical-shaped particle.

2.2.3. Cylinder to Flat Plate vdW Interaction Potential

Once the spherical particle to flat surface van der Waals, vdW interaction potential
has been derived, the vdW interaction potential for a cylindrical particle to flat plate
interaction can be derived in order to justify and satisfy the suggested capsule model. The
vdW interaction between a cylindrical particle and a flat plate can be both horizontal and
vertical. By considering these geometrical orientations, it can be shown that the effective
area of interaction for sphere to flat surface is the ring of molecule’s element inside the
interacting bodies.

A Horizontal Cylindrical Particle Approach

As referred to Figure 4, the van der Waals interaction potential between a horizontal
cylinder and a flat surface is the sum of all molecule elements in a cylinder of radius Rc and
length L. For an infinitesimal differential volume element of cross-sectional area, rdφdr, and
vertical height dz, the element volume is rsdφdrsdz and the total number of molecules in the
element is ρrsdφdrsdz where ρ is the number density of molecules in the cylinder. Thus, this
enables us to calculate the overall interaction potential of molecules within the cylindrical
particle. Geometrically, the distance between a differential volume element (the blue cube
in Figure 4) and any molecule in ring in the flat surface is equal to:

r = z2 + (D + Rc + rs cos ϕ)2 − rs
2 sin2 ϕ (10)
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First, the interaction potential between the cylindrical particle (summation of overall
molecules in the cylinder) to a molecule in ring in the flat surface will be:

v(D) = −4Cdρcρsur f

∫ π

0

∫ Rc

0

∫ L/2

0

 dz[(
z2 + (D + Rc + r cos ϕ)2

)
± r2 sin2 ϕ

]3

rdrdϕ (11)

Second, to calculate the total van der Waals interaction potential between a horizontal
cylinder and the ring in the flat surface as shown in Figure 4, the interaction of a cylinder
and the circular element ring of cross-sectional area πRring

2 and thickness dx in the surface
is considered. The volume of the ring is πRring

2dx and the number of molecules in this
volume element is ρsurfπRring

2dx, where ρsurf is the number density of molecules in the flat
surface. Since all the molecules in the ring are at the same separation distance (D + x) away
from the cylinder surface, the overall van der Waals interaction potential between this
element ring and the cylinder is v(D + x)ρsurf πRring

2dx, where v(D) is given in Equation (11).
Thus, the total interaction potential between the horizontal cylindrical particle and the flat
surface is equal to:

VvdW(D + x) = −4πCdρcρsur f

∫ x=x

x=0
[v(D)]R2

ringxdx (12)

A Vertical Cylindrical Particle Approach

The total dispersion interaction for a vertical cylinder can be found in the same way
as that for the spherical particle interaction, using the ring of elements from a slice of the
cylindrical particle’s cross-sectional area (Figure 5). Except for dx, where x is changed from
0 to the cylinder length, L. From the volume of the cylinder, V = πRc

2L; the total dispersion
interaction potential for a vertical cylinder can be given as:

V(D) = −
π2Cdρcρsur f L

6

∫ x=L

x=0

(
2Rcyl − x

)
x

(D + x)3 dx (13)
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2.2.4. Retardation Effect in van der Waals Interaction

The derived van der Waals interaction potential equations for the geometrical shapes
described earlier are unretarded (without retardation effect) interaction equations for sphere,
cylinder, and rod-to-solid flat surfaces and are derived based on an implicit assumption
that the speed of light is infinite. “Retardation effect” is the correction factor that must be
made because of the reduction in the van der Waals interaction potential due to the finite
speed of light [26,36]. Owing to the electromagnetic nature of the interaction, the actual van
der Waals potential between two interacting bodies is reduced at large separation distances
because the time it takes for the electric field to propagate from one body to another and
back is such that the fluctuating electric moments become slightly out of phase. Such an
effect may become very pronounced for macroscopic bodies at separation distances larger
than about 5 nm [24]. For a large particle with diameter of 1 µm or greater, omission of the
retardation has proved to lead to a serious overestimate of the van der Waals interaction[19].
In principle, the Hamaker approach can be modified to account for this retardation by
multiplying the unretarded vdW interaction potential by a correction factor:

v(r) = − C
rn f (p) (14)

Where the correction factor, f (p), depends on the reduced distance, p = 2πr
λ , and λ is the

“London characteristic wavelength” of the interaction. λ is assumed to be about 100 nm for
most materials and the retardation only becomes significant when the separation distance
between particles is of the same order as the characteristic wavelength [19] as shown in
Figure 6. Since the rod particles are so much smaller than the flat plate, the existing correction
factor for the sphere-plate interaction potential may be most suitable to account for the
retardation effect on the rod-flat plate interaction system. The correction factor given by [37]
as reported by [19] is as follows:

f (D, λ) =
λ

λ − sD
(15)

where, λ is a retardation parameter and “s” is a constant (s = 11.116). Multiplying the
unretarded van der Waals interaction potentials by f (D, λ) yields the approximate retarded
van der Waals interaction potential. When using a bacterium as the macroscopic body,
there is only a small difference (up to 10–30J) between retarded and non-retarded vdW
forces, and therefore will be ignored in this study.
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2.3. Modeling Method and Software

The van der Waals interaction potentials for the interaction between bacteria and min-
erals can now be modeled for different geometrical conditions as a function of separation
distance in producing a prediction of bacteria-mineral interaction.

The four geometrical conditions studied are:

1. Spherical shell bacteria to spherical mineral particle;
2. Horizontal capsule shaped bacteria to flat-plate mineral surface;
3. Vertical capsule shaped bacteria to flat-plate mineral surface;
4. Spherical shell bacteria to semi-infinite mineral wall.

EvdW =
AR1R2

6(R1 + R2)

(
1

d + h1 + h2
− 1

d + h2
− 1

d + h1
+

1
d

)
− A

6
ln
(

d(d + h1 + h2)

(d + h1)(d + h2)

)
(16)

EvdW =
AR
6

(
1
d
− 1

d + h

)
− A

6
ln
(

d
(d + h)

)
(17)

The value of Hamaker constant, A, for different mineral interactions with bacteria are
the values obtained from our previous investigation (Table 1) [38]. The calculations are
made for both expressions at various separation distances, D, between 0 and 10 nm.

Table 1. The Hamaker constants and the estimated geometric parameters for the bacteria and minerals.

Surface Pseudomonas putida Hematite Quartz

Hamaker Constant, A N/A 9.91 × 10−20 1.22 × 10−19

Sphere radius, Rsphere 0.5 µm - -
Cylinder radius, Rcylinder 0.5 µm - -

Shell thickness, hc 0.2 µm - -
Length of cylinder, L 2.0 µm - -

Mineral Radius:
Radius of ring, RRing - 0.5 cm 0.5 cm

Separation Distance, D - 0.5–10 nm

3. Results and Discussion
3.1. Capsule-Flat Plate Interaction Potential

As the van der Waals, vdW, interaction potentials of spherical and cylindrical particles
to the flat plate have now been derived, the interaction potential between a capsule-like
particle and a flat plate can be calculated by combining those two particle shapes interaction
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potentials. What follows describes the derived equations for the van der Walls interactions
in vertical and horizontal approaches of a capsule-shaped particle.

3.1.1. A Vertical Capsule-shaped Particle Approach

As observed from Figure 7, for the interaction between a capsular particle and a flat
plate, it is assumed that the particle is built from a combination of spherical and cylindrical
particles with the same radius, (Rc = Rs). So that, for the vertical orientation capsule
particle to the flat plate interaction as shown in Figure 7, the total van der Waals interaction
potential becomes:

VvdW(H.Rod) = −
π2Cρcρsur f

6

∫ 2Rsph

0

(
2Rsph − x

)
x

(D + x)3 dx + L
∫ L

0

(2Rc − x)x

(D + x)3 dx

 (18)
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3.1.2. A Horizontal Capsule-shaped Particle Approach

When a capsule particle is horizontally positioned to the solid flat plate (Figure 8), the
van der Waals interaction can be expressed as the combination between horizontal cylinder
and the spherical particle as shown in Figure 8. Therefore, the total interaction potential is:

VvdW(Rod) = −
π2Cdρcρsur f

6

∫ 2Rsph

0

(
2Rsph − x

)
x

(D + x)3 dx +−4πCdρcρsur f

∫ x=Rc

x=0
[v(D)]R2

ringxdx (19)
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In order to obtain the van der Waals interaction potential, Equations (18) and (19)
were used to calculate the van der Waals potential numerically using Maple software for
both horizontal and vertical capsule shaped bacteria interactions to a mineral plate with
a function of separation difference. The results will be compared with the conventional
geometries applied for the van der Waals interaction between a particle and a surface.

3.2. Hamaker Interaction Constant for the Capsule-Shaped Particle

The Hamaker constant for interaction between two bodies is defined as [25,28]:

Acs = π2Cdρcρs. (20)

where Acs is the effective Hamaker constant for the interaction between phases (bacteria
and a mineral surface) in vacuum. The parameter Cd is the interaction coefficient and are
the density of both interaction bodies. By inserting the Hamaker constant into each of the
rod interaction equations, the new expressions become:

VvdW(H.Rod) = − A
6

∫ 2Rsph

0

(
2Rsph − x

)
x

(D + x)3 dx + L
∫ L

0

(2Rc − x)x

(D + x)3 dx

 (21)

And,

VvdW(Rod) = − A
6

∫ 2Rsph

0

(
2Rsph − x

)
x

(D + x)3 dx +−4
A
π

∫ x=Rc

x=0
[v(D)]R2

ringxdx (22)

The value of Hamaker constant, A, for different mineral interactions with bacteria are
the values obtained in Table 1. The calculations are made for both expressions at various
separation distances, D, between 0 and 10 nm.

3.3. The van der Waals Interaction Potential of P. Putida to Hematite and Quartz

The van der Waals interaction potential of different shaped (geometry) and positioned
bacteria to hematite and quartz flat plate surfaces have been calculated and plotted in
Figures 9–12. Results for each case of bacteria to the hematite and quartz were calcu-
lated from equations of vdW interaction potential for the spherical shell-spherical particle
(sphere-sphere) interaction, and for the spherical shell-semi-infinite wall (sphere-plate)
interaction (Table 1) and are plotted in Figures 9 and 10 respectively. Figure 9 represents
the plot of the van der Waals, (vdW) interaction potential for a spherical shell bacterium
approaching a spherical mineral particle from a 10 nm to 0 nm separation distance. The
vdW interaction potential of quartz-P. putida is higher than that of hematite, indicating
a slightly more attractive potential of about 10 × 10−17 J between the two curves.
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From Figure 10, at a separation distance from 10 nm to 0 nm, the vdW interaction
potential curve is observed for the spherical shell bacteria to semi-infinite mineral wall.
Similar to the spherical shell to spherical particle results, the attractive interaction between
quartz and P. putida was more than hematite-P. putida interaction. However, compared
to Figure 9, the vdW interaction potential of spherical shell-semi-infinite wall (at 0.5 nm,
VvdW(D) for quartz is −18.7 × 10−17 J) is far smaller than that of the interaction between
the spherical shell and spherical particle (at 0.05 nm, VvdW(D) for quartz is −85 × 10−17 J).

The interaction potential plots for a horizontal capsule bacterium to a flat plate mineral
are given in Figure 11. Low potential is evident for both mineral types with the vdW
interaction potential value of −16.2 (10−17 J) for hematite-P putida, and −18.3 (10−17 J) for
quartz-P. putida interactions at a separation distance of 0.5 nm.

A much less negative and much smaller vdW attraction interaction potential is found
for the interaction of vertical capsule shaped bacteria to a flat mineral plate (Figure 12). The
maximum attraction potential for vertical capsule shaped P. putida to hematite interaction
is about −1.64 × 10−17 J, while the quartz-P putida interaction is −2.0 × 10−17 J at a 0.5 nm
separation distance.

From all four geometrical condition plots, it can be concluded that the vdW interaction
potential of interactions between P. Putida and quartz is larger in magnitude than that of
hematite-P. putida interactions. This indicates that P. putida is more attractive to quartz
surface due to the current van der Waals interaction potential (but only for van der Waals
interaction energy).

3.4. The Effect of Geometrical Shape to the van der Waals Interaction Potentials

As a verification of the validity of the developed model, a comparison between the
results obtained for horizontal and vertical capsule shaped bacteria are plotted along
with the van der Waals expressions for spherical shell to semi-infinite wall developed by
Tadmor [30]. Two plots for hematite and quartz as a function of separation distance are
shown in Figures 13 and 14 respectively. For these comparisons, the spherical shell bacteria
to a spherical particle interaction are not included for the moment. The plots indicate
the sensitivity of the van der Waals interaction potential to the geometrical shape of the
bacteria. As the bacteria approach the mineral surface, the vdW becomes more negative
indicating an attraction interaction between the bacteria and mineral surface. The geometry
of the vertical capsule shaped bacteria to flat plate mineral shows the least change while
the horizontal capsule-shaped bacteria to flat plate mineral and spherical shell bacteria to
semi-infinite mineral surface give similar van der Waals interaction potentials at very short
distances but a slightly higher potential (more negative) at distances more than 1 nm.
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Given the relative size of the bacteria (1 µm diameter) to the distance over which the
potentials have been calculated (1 nm), it is most likely that a capsule shaped bacteria
will be in either a horizontal or vertical position when approaching the surface, and
from general SEM and other microscopical observations of bacteria on surface it is most
likely to be in the horizontal position (the long axis of the bacterial body being parallel to
the surface).

When the spherical shell bacteria to spherical mineral calculations are included in
the comparison, the shape of the mineral surface has a far greater effect than the shape of
the bacteria (Figures 15 and 16). The spherical shell bacteria to spherical mineral shows
maximum negative (i.e., attraction) potential values over the whole distance range. As the
bacterium moves closer to the surface, increasing negative potential (increasing difference)
is observed. At the closest distance calculated (0.5 nm), the van der Waals, vdW interaction
potential is −74.9 × 10−17 J, rather than a maximum value of −18.3 × 10−17 J for the
other calculations.
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Thus, even when there is a large difference in size (bacterium as a sphere with radius
of 0.5 µm, and mineral sphere is 0.5 cm radius, i.e., 1000× difference), a greater effect
is obtained due to the spherical nature of the surface rather than the capsular shape of
the bacteria.
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Figure 16. The van der Waals interaction energies of bacteria dispersed to quartz for different bacterial
geometrical approach.

Different minerals have different crystal shapes according to their atomic structure.
Thus, when they exist as finely divided particles (e.g., in soils, water or on surfaces), they
will present in a variety of shape forms to approaching bacteria. While a few will tend to
crack as infinite flat plates (mica, etc.), most will have some form of angularity. Thus, it is
most likely that the shape of the particle will dominate the van der Waals effect.

4. Conclusions

A general method is developed in this study to evaluate the van der Waals (vdW)
interactions between a capsular particle (capsule shaped bacterium) to a flat plate in
different approach profiles: Vertically and horizontally. A comparison of these approaches
to the well-developed spherical particle to mineral surface (semi-infinite wall and spherical)
approach was made. The van der Waals, vdW, interaction potentials for capsule-shaped
bacterium were obtained using Hamaker’s microscopic approach of sphere-to-plate and
cylinder-to-plate either vertically or horizontally to the flat surface. The numerical results
show that a horizontal orientated capsule shaped bacterium to mineral surface interaction
was more attractive compared to a capsule shaped bacterium approaching vertically.
However, the vdW interaction potential obtained for spherical shell-sphere was very much
more attractive (more negative) compared to the other three cases. From the study, it can be
concluded that the effect of these conditions on the van der Waals interaction energy are:

1. The density difference between each type of bacterial shape (capsule, cylinder, and
sphere) require different amounts of energy to adhere to hematite and quartz surfaces;

2. The orientations of bacteria approaching the mineral surface influences the adhesion
of the cells to the mineral surface;

3. The type of mineral has an effect. In the case of P. putida, adherence is stronger to
quartz than hematite;

4. The geometrical shape and curvature effect of the bacterial and mineral surfaces shows
a greater interaction between spheres and spherical shell than other geometries and
thus particle surface topography will have a considerable influence on the settlement
of bacteria.
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