
Citation: Jeyachandran, S.;

Chellapandian, H.; Ali, N.

Advancements in Composite

Materials and Their Expanding Role

in Biomedical Applications.

Biomimetics 2023, 8, 518. https://doi.

org/10.3390/biomimetics8070518

Academic Editor: Xiang Ge

Received: 14 September 2023

Revised: 18 October 2023

Accepted: 25 October 2023

Published: 1 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Advancements in Composite Materials and Their Expanding
Role in Biomedical Applications
Sivakamavalli Jeyachandran 1,* , Hethesh Chellapandian 1 and Nemat Ali 2

1 Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental
College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University,
Chennai 600077, India

2 Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University,
P.O. Box 2457, Riyadh 11451, Saudi Arabia

* Correspondence: sivakamavalli.sdc@saveetha.com

Abstract: The synthesis of a Ni-doped ZnO nanocomposite incorporating chitosan (CS/Ni-doped
ZnO) was achieved via a precipitation method, followed by annealing at 250 ◦C. This study com-
prehensively examined the nanocomposite’s structural, functional, morphological, and porosity
properties using various analytical techniques, including X-ray diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), transmis-
sion electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) analysis. The presence of
chitosan (CS) and nickel (Ni) within the nanocomposite, along with their influence on reducing
the band gap of ZnO particles and enhancing the generation of electron-hole pairs, was confirmed
using UV-visible near-infrared spectroscopy (UV-vis-NIR). The electrochemical properties of the
CS/Ni-doped ZnO nanocomposite were investigated via electrochemical impedance spectroscopy
(EIS) and cyclic voltammetry (CV) by utilizing a phosphate buffer solution with a pH of 6, which
closely resembled the typical pH of bacterial cell walls. Finally, the prepared CS/Ni-doped ZnO
nanocomposite was evaluated for its antibacterial and anticancer activities. The results demonstrated
the highest inhibition of bacterial growth in P. vulgaris, whereas the lowest inhibition was found in
S. aureus across various concentrations, thus highlighting its potential in antimicrobial applications.
The cytotoxicity of CS/Ni-doped ZnO nanocomposites demonstrated remarkable effects with a
half-maximum inhibitory concentration of approximately 80 ± 0.23 µg mL−1 against MCF-7 breast
cancer cell lines, following a dose-dependent manner.

Keywords: biopolymer; Ni-doped ZnO; nanocomposite; band gap; anticancer activity

1. Introduction

Recently, the construction of hybrid structure-based nanoparticles has become a very
hot topic in the biomedical, material science and engineering fields due to their unique
properties [1]. They consist of organic and inorganic materials with at least one component
in nanodimensions [2]. In the development of hybrid nanostructures, the utilization of
natural organic biopolymers of chitosan is of significant interest as the primary source.
In this regard, inorganic metal oxides such as ZnO, TiO2 and NiO nanoparticles are used
extensively in the fabrication of antibacterial agents to enhance the sterile nature of the
materials [3–5].

Chitosan is a naturally occurring biopolymer, which is deacetylated from chitin soluble
only in weak acids, such as acetic and formic acids [6], and maximum deacetylation (70%
to 98%) is obtained from the exoskeleton and cell walls of crustaceans [7,8]. It contains
high units of hydroxyl and amino functional groups, which provide several side chains
that are stable in the highly hydrophobic natures of both acidic and basic mediums. The
presence of OH and NH2 functional groups are used to stabilize metal oxide nanoparticles
and interact with the bacterial membrane of the negative charge containing phospholipids
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and proteins, which is essential for antibacterial effects in acidic conditions [9] and exhibits
self-imbibed biocompatibility, nontoxicity and eco-friendliness [10–12].

Additionally, zinc oxide (ZnO~3.3 eV) is a semiconducting metal oxide with trans-
parency in visible light and exhibits superior antibacterial activity [11–17]. Moreover, mate-
rial science researchers suggested that ZnO is highly effective in antibacterial activity with a
pH range of 6-8 [18] and has three features: first, ZnO releases the dissociated Zn2+ [19,20];
second, ZnO interacts with the surface of the bacterial cell wall [21]; third, reactive oxygen
species (ROS) is generated, such as oxygen anions, hydrogen peroxide, hydroperoxides
and hydroxyl radicals [22]. However, some limitations, principally the fast recombination
rate of the generated electron and positive hole, occur in pure ZnO nanoparticles used
as antibacterial agents [23]. To overcome these limitations, ZnO is doped with different
metallic ions such as Ce, Ag, Fe and Ni [13,24–27]. Among the metal ion oxides, nickel oxide
(NiO) is a p-type material with an excitation energy of 110 MeV and favorable electronic
structure and optical properties. It is capable of acting as a good transporting agent that
is nontoxic and eco-friendly [28–30]. Several researchers reported the photodegradation
of organic dyes with the sol–gel process using Ni-doped ZnO nanospheres [31], Ce–ZnO
composites using the microwave irradiation method [32] and the co-precipitation route
using Ni-doped ZnO nanorods [33]. The microwave-assisted synthesis of the Ag–ZnO
nanocomposite was used to examine antibacterial activity against Staphylococcus aureus
and Escherichia coli [34] and the hydrothermal reaction of zinc-doped nickel hydroxide
nanosheets in a nonenzymatic glucose sensor [35]. These results indicate that different metal
ions can be doped with ZnO interstices to improve their properties for various applica-
tions. Other researchers used chitosan-based hybrid nanocomposites of chitosan–ZnO [36],
chitosan/Ni0.2Zn0.2Fe2.6O4 [37], chitosan-Au/Pd/Ag NPs [38], chitosan/Ag/MoS [39],
chitosan–Ni/NiO [40] and Ni/Al/Chitosan [41] for phocatalysis, as well as biomedical and
electrochemical applications. Here, we develop the synthesis of biogenic chitosan incorpo-
rated with Ni-doped ZnO nanocomposites, and its biocompatible properties are checked
using antimicrobial and anticancer activities. In the first step, the Ni-doped Zn(OH)2
nanocomposite was synthesized via a chemical precipitation route, after which chitosan
was functionalized with the Ni-doped Zn(OH)2 nanocomposite using a hydrothermal pro-
cess. The addition of chitosan and Ni doping to the ZnO nanostructure was systematically
studied, and the crystalline, structural, morphological and electrochemical properties were
investigated using various techniques. Further, the microbial inhibitory activity of the
nanocomposite was evaluated against bacterial strains including both Gram-positive and
-negative bacteria, and in vitro anticancer activity was assessed in MCF-7 breast cancer cell
lines.

2. Experiments
2.1. Materials

Chitosan (molecular weight of 310 kDa, degree of deacetylation: 80–95%) was pur-
chased from South India Seafoods, Rameswaram, Tamil Nadu, India. Analytical grade
nickel nitrate hexahydrate [Ni(NO3)2.6H2O, 99%] and zinc nitrate hexahydrate [Zn(NO3)2.6H2O,
99.8%] were purchased from LOBA Chemie (P) Ltd., Mumbai, India. Sodium hydroxide
(NaOH, 98%) was purchased from CDH (P) Ltd. Analytical grade disodium phosphate
(Na2HPO4) and monosodium phosphate(NaH2PO4) were purchased from LOBA Chemie
(P) Ltd., Mumbai, India. Acetic acid (CH3COOH, 99.7%), acetone (CH3CHO, 99.9%) and
ethanol (C2H5OH, 99.8%) were purchased from Fischer Chemic Ltd., India. The chemicals
were of an analytical reagent grade and used without any further purification. Millipore
water was used in all experiments.

2.2. Synthesis of Nickel-Doped Zn(OH)2 Composite

The Ni-doped Zn(OH)2 composite was synthesized using a precipitation method, and
the schematic representation is illustrated in Scheme 1a. About 1M of Zn(NO3)2.H2O and
0.25 M of Ni(NO3)2.6H2O were dissolved in 50 mL of deionized water under magnetic
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stirring for 40 min at room temperature. Then, 3M of NaOH was added dropwise into the
above mixture and stirred for 1 h until the complex precipitate was obtained. The obtained
product was rinsed multiple times with deionized water and ethanol. It was designated as
beaker A.
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2.3. Synthesis of CS/Ni-Doped ZnO Nanocomposite

The synthesis of the CS/Ni-doped ZnO nanocomposite was carried out using a
two-step chemical precipitation method, which is illustrated in Scheme 1b. In the first step,
chitosan (25 mg) was dissolved in a 50 mL volume of 3% acetic acid under magnetic stirring
for 1 h at room temperature (28 ◦C) to form a gel phase solution, the pH was adjusted to
8, and the solution was designated as beaker B. Second, the prepared Ni-doped Zn(OH)2
complexes (beaker A) were slowly added into the dispersed chitosan (beaker B). Then, an
ultrasound was used on the reaction mixture for 5 h to form a Ni-doped Zn(OH)2 dispersed
chitosan matrix. During this process, the bulk Ni-doped Zn(OH)2 particles were exfoliated
and bound with the functional group of the chitosan matrix. Finally, the reaction mixture
was heated in an oven at 120 ◦C for 2 h. The ZnO, binary composites of CS/ZnO and
Ni-doped ZnO were synthesized using a similar procedure. Finally, the obtained products
were heated in a hot air oven at 250 ◦C for 3 h with a ramp rate of 10 ◦C min−1. The
synthesis of the CS/Ni-doped ZnO nanocomposite is clearly depicted in Scheme 1.

2.4. Fabrication of CS/Ni-Doped ZnO Nanocomposite Modified GCE

Before modification, the glassy carbon electrode (GCE) was refined using a 0.05µm
alumina slurry and then rinsed thoroughly with distilled water under an ultrasound for
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5 min and dried in the air. The CS/Ni-doped ZnO nanocomposite (1 mg) was dissipated in
2 mL of ethanol under an ultrasound for 30 min, after which 5 µL of the suspension was
dropped onto the surface of the pre-cleaned GCE using the drop-casting method. Finally,
the modified electrode was dried in the air for 2 h at room temperature.

2.5. Characterization

The crystalline behavior of the materials was studied using the X-ray diffraction (XRD)
patterns obtained from an X-ray diffractometer (model XPERT-PRO) (Rigaku diffractor
with CuKα radiation) with ambient conditions over a 2θ region of 20–80◦ at a rate of
2◦/min (40 kV, 20 mA). The morphological studies were obtained via HR-SEM (HR-SEM,
FEI-quanta FEG 250) and TEM (FEG-TEM 300 kV) analyses. The structural properties
were measured using the FT-IR spectrum and recorded on a PerkinElmer 2000 spectropho-
tometer, with a range of 4000–400 cm−1, using KBr pellets at room temperature. The
optical properties of the samples were examined using UV-Vis-NIR spectroscopy (JASCO
spectrophotometer). The specific surface area and pore volume of the synthesized products
were measured using the nitrogen adsorption/desorption isotherm with Gemini model
2380. The electrical properties of the samples were measured using a CH instrument
(Autolab model CHI1102A).

The voltammetric and electrochemical impedance spectroscopy (EIS) studies were
carried out using a three-electrode system containing a 50 mM phosphate buffer solution
(pH = 6) of 5 mM [Fe (CN)6]3−/4− with a potential range from 0.2 to 0.8 V and AC frequency
range from 105 kHz to 0.01 Hz at OCP with an amplitude of 5 mV. Glassy carbon (3 mm
diameter), platinum and saturated calomel electrodes were used as working, counter and
reference electrodes, respectively.

2.6. Antimicrobial Evaluations

The antibacterial activities of the prepared CS/Ni-doped ZnO nanocomposite were
tested against Gram-positive and -negative bacteria, as shown in Table 1. The zone of
inhibition was measured using the well diffusion method, and the effect was compared
with that of a commonly used antibiotic like Ampicillin. The abovementioned bacteria
were grown individually. The nutrient agar medium was used for bacterial growth and
was poured onto Petri plates. Fresh bacterial cultures of both organisms were swabbed
onto the agar medium and incubated at 37 ◦C for 24 h. The antimicrobial activity was
evaluated by measuring the zone of inhibition.

Table 1. The results of the BET analysis for ZnO, CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-doped
ZnO nanocomposites.

Sample Name Surface Area (m2g−1) Pore Volume (cm3g−1) Pore Size (nm)

ZnO 32.2599 m2/g 0.064018 cm3/g 6.17461 nm
CS/ZnO 45.8004 m2/g 0.163342 cm3/g 8.60041 nm

NiO 17.5387 m2/g 0.013045 cm3/g 3.52548 nm
Ni-doped ZnO 75.7213 m2/g 0.316305 cm3/g 11.67246 nm

CS/Ni-doped ZnO 323.9476 m2/g 1.473482 cm3/g 18.19407 nm

2.7. Cytotoxicity Studies

The cytotoxicity (in vitro) study was conducted with the CS/Ni-doped ZnO nanocom-
posite at different concentrations (0–150 µg mL−1) against Hep G-2 human liver cancer cell
lines based on the methodology adopted by Mosmann et al. (1983) [42]. In the end, the IC50
concentration of the CS/Ni-doped ZnO nanocomposite was calculated using Origin Pro 8
software. Further, the IC50-treated liver cancer cell lines were visualized for morphological
changes using an inverted phase contrast microscope.
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3. Results and Discussion
3.1. XRD Analysis

The crystalline structure of pristine ZnO and NiO, the binary structure of CS/ZnO
and Ni-doped ZnO and the ternary structure of the CS/Ni-doped ZnO nanocomposite are
shown in Figure 1. The pristine ZnO (Figure 1a) displays the characteristic peaks appearing
at 30.83, 33.48, 35.42, 46.30, 55.73, 61.54 and 66.61◦ and corresponding to the planes of
hexagonal wurtzite ZnO (100), (002), (101), (102), (110), (103) and (112), which are consistent
with the JCPDS card numbers 01080-0075, respectively. The CS/ZnO binary composite
(Figure 1b) clearly displays that the plane of (002) decreased in intensity, which indicates
that the ZnO nanoparticles are incorporated with the chitosan matrix [32]. Meanwhile,
the pristine NiO (Figure 1c) exhibits characteristic peaks at 37.11, 43.40, 62.98, 75.31 and
79.43◦ corresponding to the planes of (111), (200), (220), (311), and (222), respectively, which
accord with the cubic crystal structure of NiO nanoparticles [43]. The crystal pattern of the
Ni-doped ZnO (Figure 1d) exhibits a new peak at 2θ = 43.40◦, which corresponds to the
plane of nickel oxide (200), and the intensity of the ZnO planes increases, which may be
attributed to the smaller ionic radius of Ni2+ ions (ionic radius = 0.69 nm) easily substituted
at Zn2+ sites (ionic radius = 0.74 nm). Generally, the replacement of the host metal ion by the
guest metal takes place when the size of the dopant ion is of reduced radius size than that
of the guest lattice ion [44], which suggests that nickel ions are incorporated into the ZnO
lattice. The ternary hybrid nanostructure of the CS/Ni-doped ZnO is shown in Figure 1e.
A narrow peak intensity and a new peak appear at 2θ = 37.11 and 43.40◦ corresponding to
the planes of nickel oxide (111) and (200), which are ascribed to the chitosan and act as a
metal ion chelating agent. Meanwhile, the addition of a lower ionic radius of Ni2+ creates
intrinsic stress on the ZnO lattice sites. The biogenic chitosan and Ni2+ ions altered the
sizes, shapes and microstructures of the ZnO nanoparticles.
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3.2. FTIR Analysis

The structural properties of the synthesized materials were analyzed using the FT-IR
spectra and the results are illustrated in Figure 2. As per this study, pristine ZnO (curve
a) displays have characteristic peaks at 3421, 1640, 1073 and 480 cm−1 representing the
O-H stretching, H-O-H bending, Zn-O-Zn stretching and formation of the Zn-O bond,
respectively [30,33,45]. The chitosan-incorporated ZnO (Figure 2b) exhibits peaks at 3392,
1615, 1413, 1047 and 493 cm−1 corresponding to the O-H stretching, amine group (-NH2)
bending, symmetrical deformation of the CH3 group, C-O-C stretching of saccharide units
and ZnO stretching vibrations, respectively [46,47]. The major characteristic peaks of
pristine NiO (curve c) appear at 1640 and 516 cm−1 corresponding to the H-O-H bending
and Ni-O vibrations, which indicates the presence of NiO [48]. The additional peak
at 1400 cm−1 may be ascribed to the nitrate (NO3-) group, which arises from the source
material of nickel nitrate [49]. When the results of the Ni-doped ZnO (curve d) are compared
with the pristine ZnO (curve a), two distinct broad peaks are seen at around 517 and
455 cm−1 representing Ni-O and Zn-O, respectively, and certain peaks are moved slightly
to lower and higher wave numbers indicating that Ni2+ has been occupied at Zn2+ sites.
The FTIR spectra of CS/Ni-doped ZnO nanocomposite (curve e) have characteristic peaks
at 3392, 1627, 1501, 1375, 1073 and 430 cm−1 corresponding to the O-H stretching, bending
vibration of NH2, C-N vibration, CH3 symmetrical deformation, C-O-C stretching of
saccharide units and Ni-doped ZnO, respectively, which indicates that the lower ionic
radius of guest Ni2+ ions strongly influenced the host ZnO and created a lattice defect in
the chitosan matrix by intrinsically binding a large number of metal oxides into the host
zinc oxide sites. Also, the synergistic effect of the three different units creates shifts in peak
positions.
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3.3. UV-Vis-NIR Analysis

The UV-Vis-NIR spectra of ZnO, CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-doped
ZnO nanocomposite in the wavelength range of 250-2500 nm are shown in Figure 3. All the
samples have strong absorption spectra at the UV region between 250 and 375 nm. The UV-
Vis-NIR spectra peak of ZnO (Figure 3a), CS/ZnO (Figure 3b), NiO (Figure 3c), Ni-doped
ZnO (Figure 3d) and CS/Ni-doped ZnO (Figure 3e) nanocomposites correspond to 343,
348, 349, 353 and 356 nm, respectively. The result of the CS/Ni-doped ZnO nanocomposite
spectrum is slightly red and shifted to a higher wavelength compared to the Ni-doped ZnO.
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Figure 3. The UV-Vis-NIR spectra peak of (a) ZnO, (b) CS/ZnO, (c) NiO, (d) Ni-doped ZnO and
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This may be due to the synergistic effect of organic and inorganic material increasing
the wavelength. In addition, the biosurfactant of the biogenic chitosan polymer was
intrinsically coupled with the metal oxide particles and increased the wavelength. The band
gaps of these absorptions are shown in Figure 4. The band gaps are calculated as described
in previously published papers [50,51]. As shown in Figure 4, the band gap energies for
these samples decreased from 3.17, 3.05, 2.92, 2.86 and 2.79 eV for ZnO (Figure 4a), CS/ZnO
(Figure 4b), NiO (Figure 4c), Ni-doped ZnO (Figure 4d) and CS/Ni-doped ZnO (Figure 4e)
nanocomposites, respectively. It was concluded that the incorporation of biogenic chitosan
led to a decrease in the optical band gap of the CS/Ni-doped ZnO nanocomposite.

Furthermore, the comparable ionic radius of Ni2+ also reduced the band energy, which
is generally attributed to the Burstein–Moss shift and resulted in filled electronic states near
the bottom of the conduction bands [52,53].



Biomimetics 2023, 8, 518 8 of 17

Biomimetics 2023, 8, x FOR PEER REVIEW 8 of 18 
 

 

biogenic chitosan led to a decrease in the optical band gap of the CS/Ni-doped ZnO nano-
composite. 

Furthermore, the comparable ionic radius of Ni2+ also reduced the band energy, 
which is generally attributed to the Burstein–Moss shift and resulted in filled electronic 
states near the bottom of the conduction bands [52,53]. 

 
Figure 3. The UV-Vis-NIR spectra peak of (a) ZnO, (b) CS/ZnO, (c) NiO, (d) Ni-doped ZnO and (e) 
CS/Ni-doped ZnO. 

 

Biomimetics 2023, 8, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 4. SEM images: (a) pristine ZnO; (b) aggregated NPs and CS/ZnO; (c) particles that also ex-
hibit agglomerated grain structure; (d) Ni-doped ZnO; (e) ternary structure of CS/Ni-doped ZnO 
nanocomposite; (f) 100 nm magnification of CS/Ni-doped ZnO nanocomposite exhibits a rod-like 
structure. 

3.4. Morphological Analysis 
The surface morphologies of the synthesized materials are displayed in Figure 4. 

From these pictures, it can be seen that pristine ZnO (Figure 4a) nanoparticles have aggre-
gated particles and CS/ZnO (Figure 4b) exhibits a porous structure, where the metal ox-
ides have larger embedded micropores that could be ascribed to the electrostatic interac-
tions between the chitosan backbone and ZnO nanoparticles [54]. Figure 4c displays the 
particles, which also exhibit agglomerated grain structures. The Ni-doped ZnO (Figure 
4d) displays an agglomerated grain structure due to Ni2+ incorporated into ZnO, and the 
defect of lattice distortion is induced by Ni2+ in Zn-O sites [55,56]. Also, it was observed 
that the cubic shape and nonuniform size and agglomeration of secondary NiO particles 
were seen due to the small dimensions and high activation energy of metal oxide particles 
[55,56]. The ternary structure of the CS/Ni-doped ZnO nanocomposite (Figure 4e) depicts 
a rod-like structure, which was assigned to the ZnO nanoparticles and intrinsically dis-
tributed in the chitosan biopolymer, absorbing a large number of comparable ionic radii 
of nickel metal ions that contain metal hydroxides at ZnO sites. Compared to the binary 
structure of the Ni-doped ZnO composite, the ternary structure of the CS/Ni-doped ZnO 

Figure 4. SEM images: (a) pristine ZnO; (b) aggregated NPs and CS/ZnO; (c) particles that also
exhibit agglomerated grain structure; (d) Ni-doped ZnO; (e) ternary structure of CS/Ni-doped ZnO
nanocomposite; (f) 100 nm magnification of CS/Ni-doped ZnO nanocomposite exhibits a rod-like
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3.4. Morphological Analysis

The surface morphologies of the synthesized materials are displayed in Figure 4. From
these pictures, it can be seen that pristine ZnO (Figure 4a) nanoparticles have aggregated
particles and CS/ZnO (Figure 4b) exhibits a porous structure, where the metal oxides have
larger embedded micropores that could be ascribed to the electrostatic interactions between
the chitosan backbone and ZnO nanoparticles [54]. Figure 4c displays the particles, which
also exhibit agglomerated grain structures. The Ni-doped ZnO (Figure 4d) displays an
agglomerated grain structure due to Ni2+ incorporated into ZnO, and the defect of lattice
distortion is induced by Ni2+ in Zn-O sites [55,56]. Also, it was observed that the cubic
shape and nonuniform size and agglomeration of secondary NiO particles were seen due
to the small dimensions and high activation energy of metal oxide particles [55,56]. The
ternary structure of the CS/Ni-doped ZnO nanocomposite (Figure 4e) depicts a rod-like
structure, which was assigned to the ZnO nanoparticles and intrinsically distributed in the
chitosan biopolymer, absorbing a large number of comparable ionic radii of nickel metal
ions that contain metal hydroxides at ZnO sites. Compared to the binary structure of the
Ni-doped ZnO composite, the ternary structure of the CS/Ni-doped ZnO nanocomposite
shows a more packed and well-shaped structure, which may be due to the chitosan polymer
extending the growth rate of metal oxide and producing a rod-shaped structure. Finally,
the ternary structure of the CS/Ni-doped ZnO nanocomposite analyzed using TEM and
displayed in Figure 4f exhibits a rod-like structure with a range of 100 nm, which is
consistent with the SEM results.

3.5. BET Analysis

The synthesized materials of ZnO, CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-doped
ZnO nanocomposite were measured using nitrogen adsorption–desorption isotherms and
are shown in Figure 5, and the results of all samples have type IV characteristics, suggesting
their mesoporous features [57]. Table 1 shows the calculated surface areas, pore volumes
and pore sizes of the materials. From these results, the ternary structure of the CS/Ni-doped
ZnO nanocomposite has a larger surface area due to the doping level of Ni into the ZnO
lattice sites making some changes and defects in the crystalline microstructure, leading to
the enhancement of the porous character [58]. as Additionally, the porous nature of the
chitosan acts as a stabilizing agent, and it could be embedded within the pores present in
the shells of the ZnO particles, thus creating some defects and improving the surface area
and porosity character of the nanocomposites.
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3.6. Electrochemical Impedance Spectroscopy

The electrochemical impedance of ZnO, CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-
doped ZnO nanocomposite modified electrodes were measured using a 50 mM phosphate
buffer solution (PBS) solution containing 5 mM [Fe(CN)6]3−/4− in the frequency range
of 0.1 Hz to 100 KHz, as shown in Figure 6. Generally, the EIS spectrum consists of a
capacitive loop in high frequency and a straight line in low frequency. The capacitive loop
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is the function of an electron transfer process at the electrode/electrolyte interface, and the
straight line in low frequency is associated with the diffusion process. From these results, it
can be observed that a straight line denotes Warburg resistance and the diffusion-limiting
process, which is due to their good conductivities [59]. The charge transfer resistance values
of ZnO, CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-doped ZnO nanocomposite are shown in
Table 2. The charge transfer resistance (Rct) value of the CS/Ni-doped ZnO nanocomposite
modified electrode is smaller than those of all the other modified electrodes, indicating
higher electrical conductivity, which is due to the interactive effect of chitosan and the Ni-
doped ZnO. Meanwhile, the cationic chitosan polymer behaves as an electron-conducting
mediator in the electron transfer process.
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Table 2. The charge transfer resistance values of ZnO, CS/ZnO, NiO, the Ni-doped ZnO and the
CS/Ni-doped ZnO nanocomposites.

Sample Name Rct (Ω)

ZnO 56.64
CS/ZnO 41.14

NiO 57.56
Ni-doped ZnO 29.24

CS/Ni-doped ZnO 18.26

3.7. Cyclic Voltammetry Studies

The cyclic voltammograms of the modified electrodes were performed in the 50 mM
PBS containing 5 mM [Fe(CN)6]3−/4− with potential from −0.2 to 0.8 V at a scan rate of
50 mV/s, and the results are shown in Figure 7. It can be seen that the CV curves of ZnO,
CS/ZnO, NiO, Ni-doped ZnO and CS/Ni-doped ZnO nanocomposite-modified electrodes
exhibiting redox peak currents are (9.30/−5.79 µA), (9.33/−8.86 µA), (9.61/−8.74 µA),
(10.06/−8.86 µA) and (11.43/−8.87 µA), respectively. It is surprising that the CS/Ni-doped
ZnO nanocomposite-modified electrode has a higher redox peak current than those of all
the other modified electrodes, indicating that the integration of biogenic chitosan polymer
with Ni-doped ZnO nanoparticles can move faster in the electron transfer process between
the electrode and electrolyte interface. Also, the synthesized nanocomposite has a higher
surface area and mesoporous core–shell structure, which may expose the large electro-active
surface area with electrolytes [60]. This result is consistent with the previously discussed
BET analysis and EIS studies results.
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(e) CS/Ni-doped ZnO nanocomposite-modified electrodes.

3.8. Antibacterial Activity Mechanism

The proposed antibacterial activity mechanism is explained in Figure 8, where the bio-
genic chitosan and Ni-doped ZnO synergistically contribute to enhancing the antibacterial
and cytotoxicity activities. The antimicrobial activity of the synthesized CS/Ni-doped ZnO
nanocomposite was assessed using materials of different concentrations against the listed
Gram-positive and -negative strains. Table 3 shows that the antimicrobial activity increased
in Gram-positive strains such as S. aureus, L. monocytogens and B. subtilis compared to
Gram-negative strains such as E. coli, P. vulgaris and V. parahaemolyticus along with the zone
of inhibition.
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Table 3. Zone of inhibition of CS/Ni-doped ZnO against Gram-positive and Gram-negative bacteria.

CS/Ni Doped ZnO Zone of Inhibition

Samples S. aureus L. monocytogens B. subtilis E. coli P. vulgaris V. parahemolyticus

25 µl 16 mm 16 mm 17 mm 16 mm 17 mm 12 mm
50 µl 15 mm 17 mm 16 mm 17 mm 16 mm 14 mm
75 µl 15 mm 17 mm 17 mm 17 mm 19 mm 16 mm
100 µl 16 mm 18 mm 18 mm 18 mm 19 mm 17 mm

3.9. In Vitro Cytotoxicity

The toxic effect of the CS/Ni-doped ZnO nanocomposite exhibits impressive cytotox-
icity with a half-maximum inhibitory concentration of about 80 ± 0.23 µg mL−1 against
MCF-7 breast cancer cell lines in a dose-dependent manner in an MTT assay (Figure 9).
However, the exact mechanism of the CS/Ni-doped ZnO nanocomposite involved in
the inhibitory action of MCF-7 breast cancer cell lines is not well understood. Further,
the morphology of the MCF-7 breast cancer cells was monitored when treated with the
IC50 concentration of the CS/Ni-doped ZnO nanocomposite. In the control experiment,
MCF-7 breast cancer cells appeared to have cell blebbing and shrinkage(Figure 10). The
primary mechanism is a generation of reactive oxygen species (ROS) on the surface of the
nanoparticles, which allows the release of Ni2+ and Zn2+ ions from the CS/Ni-doped ZnO
nanocomposite. When the CS/Ni-doped ZnO nanocomposites are irradiated with light
having high photon energy or energy equal to the band gap, they cause the transfer of
electrons from the valence band to the conduction band of the synthesized material. The
shrinkage of the band gap is caused by nickel doping, which results in an enhancement in
the photogeneration of electron-hole pairs [61]. The ability of biogenic chitosan to retard
the recombination of photogenerated electron-hole pairs is by readily accepting the free
electrons from the conduction band and transporting them quickly through the carbon
backbone of biogenic chitosan polysaccharide, which is spread underneath the particles.
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Figure 9. MTT assay of the CS/Ni-doped ZnO nanocomposite in MCF-7 breast cancer cell lines.
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Figure 10. The cytotoxicity effect of the CS/Ni-doped ZnO nanocomposite in MCF-7 breast cancer
cell lines. (A) control (B) treated.

It leads to the generation of holes in the valence band, which can react with hydroxyl
groups and absorb water to create hydroxyl radicals (−OH) and superoxide anion radicals
(O2-). The Ni-doped ZnO nanoparticles penetrate through the cell membranes of the bacte-
ria in contact with them [62,63]. The generation of ROS may lead to cell wall dysfunction
and rupture due to membrane lipid oxidation [64]. The cationic biopolymer of the chitosan-
generated NH3+ group (pronoted) electrostatically interacts with the negatively charged
pathogenic bacteria cell wall, where positively charged amine groups cause changes in
the cell wall membrane structure and produce internal osmotic imbalances to cause cell
death [65].

4. Conclusions

In this study, we explored the antimicrobial properties of the hybrid CS/Ni-doped ZnO
nanocomposite in terms of inhibiting bacterial cell wall growth and inactivating bacterial
cells. The characteristics of the CS/ZnO nanocomposite underwent significant changes
upon the introduction of Ni particles. The resulting material displayed a uniform rod-like
morphology, a well-defined crystal structure, and a specific surface area of 323.9476 m2/g.
We observed increased UV absorption and reduced band-gap energy, contributing to
enhanced antibacterial and anticancer activities.

In comparison to the CS/ZnO nanocomposite, the CS/Ni-doped ZnO nanocomposite
exhibited significantly higher antibacterial activity. This difference can be attributed to the
alteration of the basal spacing of ZnO caused by the introduction of Ni, resulting in the
generation of a higher number of reactive oxygen species. Notably, the CS/Ni-doped ZnO
nanocomposite demonstrated pronounced cytotoxicity with a half-maximum inhibitory
concentration of approximately 80 ± 0.23 µg mL−1 against MCF-7 breast cancer cell lines,
highlighting its potential applications across various fields.
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