
Citation: Ang, K.M.; Lim, W.H.;

Tiang, S.S.; Sharma, A.; Eid, M.M.;

Tawfeek, S.M.; Khafaga, D.S.; Alharbi,

A.H.; Abdelhamid, A.A. Optimizing

Image Classification: Automated

Deep Learning Architecture Crafting

with Network and Learning

Hyperparameter Tuning. Biomimetics

2023, 8, 525. https://doi.org/

10.3390/biomimetics8070525

Academic Editors: Yongquan Zhou,

Huajuan Huang and Guo Zhou

Received: 1 October 2023

Revised: 1 November 2023

Accepted: 2 November 2023

Published: 4 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Optimizing Image Classification: Automated Deep Learning
Architecture Crafting with Network and Learning
Hyperparameter Tuning
Koon Meng Ang 1 , Wei Hong Lim 1,* , Sew Sun Tiang 1 , Abhishek Sharma 2 , Marwa M. Eid 3,4,
Sayed M. Tawfeek 3,*, Doaa Sami Khafaga 5 , Amal H. Alharbi 5 and Abdelaziz A. Abdelhamid 6,7

1 Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia;
1001436889@ucsiuniversity.edu.my (K.M.A.); tiangss@ucsiuniversity.edu.my (S.S.T.)

2 Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002,
India; abhishek15491@gmail.com

3 Delta Higher Institute for Engineering and Technology, Mansoura 35511, Egypt; mmm@ieee.org
4 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35111, Egypt
5 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; dskhafga@pnu.edu.sa (D.S.K.);
ahalharbi@pnu.edu.sa (A.H.A.)

6 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University,
Cairo 11566, Egypt; abdelaziz@su.edu.sa

7 Department of Computer Science, College of Computing and Information Technology, Shaqra University,
Sahqra 11961, Saudi Arabia

* Correspondence: limwh@ucsiuniversity.edu.my (W.H.L.); profsm@nafsy.net (S.M.T.)

Abstract: This study introduces ETLBOCBL-CNN, an automated approach for optimizing convo-
lutional neural network (CNN) architectures to address classification tasks of varying complexities.
ETLBOCBL-CNN employs an effective encoding scheme to optimize network and learning hyperpa-
rameters, enabling the discovery of innovative CNN structures. To enhance the search process, it
incorporates a competency-based learning concept inspired by mixed-ability classrooms during the
teacher phase. This categorizes learners into competency-based groups, guiding each learner’s search
process by utilizing the knowledge of the predominant peers, the teacher solution, and the popu-
lation mean. This approach fosters diversity within the population and promotes the discovery of
innovative network architectures. During the learner phase, ETLBOCBL-CNN integrates a stochastic
peer interaction scheme that encourages collaborative learning among learners, enhancing the opti-
mization of CNN architectures. To preserve valuable network information and promote long-term
population quality improvement, ETLBOCBL-CNN introduces a tri-criterion selection scheme that
considers fitness, diversity, and learners’ improvement rates. The performance of ETLBOCBL-CNN
is evaluated on nine different image datasets and compared to state-of-the-art methods. Notably,
ELTLBOCBL-CNN achieves outstanding accuracies on various datasets, including MNIST (99.72%),
MNIST-RD (96.67%), MNIST-RB (98.28%), MNIST-BI (97.22%), MNST-RD + BI (83.45%), Rectan-
gles (99.99%), Rectangles-I (97.41%), Convex (98.35%), and MNIST-Fashion (93.70%). These results
highlight the remarkable classification accuracy of ETLBOCBL-CNN, underscoring its potential for
advancing smart device infrastructure development.

Keywords: automatic network design; deep learning architecture; hyperparameter optimization;
image classification; teaching–learning-based optimization

1. Introduction

The rapid rise of machine learning and deep learning methods has captured the atten-
tion of researchers and data science practitioners in diverse industries. These data-driven

Biomimetics 2023, 8, 525. https://doi.org/10.3390/biomimetics8070525 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8070525
https://doi.org/10.3390/biomimetics8070525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-5240-4512
https://orcid.org/0000-0003-1673-8088
https://orcid.org/0000-0001-8433-8663
https://orcid.org/0000-0003-4041-9802
https://orcid.org/0000-0002-9843-6392
https://orcid.org/0000-0001-7080-1979
https://doi.org/10.3390/biomimetics8070525
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8070525?type=check_update&version=3

Biomimetics 2023, 8, 525 2 of 45

approaches have proven highly effective in handling large datasets, leveraging their com-
putational power to extract valuable insights. Among artificial neural networks (ANNs),
including feedforward neural networks (FNNs), recurrent neural networks (RNNs), and
convolutional neural networks (CNNs), CNNs have gained significant popularity due to
their exceptional real-world performance.

CNNs efficiently process input images, eliminating the need for manual data prepro-
cessing by incorporating a feature extraction module and a classifier. The feature extraction
module, consisting of convolution and pooling layers, automatically captures meaning-
ful information from raw input data during rigorous network training. These extracted
features are then used by the classifier, composed of fully connected layers, ensuring con-
sistent and reliable performance for specific tasks. Furthermore, CNNs offer flexibility and
scalability, making them an attractive choice for handling complex and diverse datasets.
As a result, they have found successful applications in various fields, such as action recog-
nition [1,2], medical disease diagnosis [3,4], crack detection [5], and object classification [6].
Other notable computer vision applications of CNNs and other deep learning methods
include measuring crack widths in the construction industry [7,8] and counting fruits in
agriculture [9].

While CNNs have demonstrated remarkable performance and are widely acknowl-
edged as the gold standard for deep learning tasks, designing an efficient CNN architecture
capable of handling diverse datasets with varying complexity remains a challenging under-
taking, often demanding specialized expertise [10]. The CNN architecture design process
entails identifying the most effective combinations of network elements, encompassing
both architectures and hyperparameters. Typically, the performance of CNNs hinges on
two critical factors: trainable parameters and architecture [11]. Gradient descent algorithms
have demonstrated their efficacy in optimizing the trainable parameters (i.e., weights and
biases). However, explicit functions for optimizing the ideal CNN architecture required to
achieve promising outcomes on specific datasets remain elusive [11].

Pretrained models like ResNet, GoogLeNet, MobileNet, AlexNet, and VGGNet have
gained popularity for their exceptional performance in deep learning tasks. Despite dif-
ferences in network architecture, including basic unit blocks, layer count, and intercon-
nections, these pretrained models are manually crafted by human experts relying on their
domain knowledge [12]. In essence, these pretrained CNN architectures are hand-crafted
and lack the ability to autonomously learn the optimal configurations for competitive
dataset solutions. The manual design process involves extensive trial-and-error experi-
mentation, resulting in inefficiencies and time consumption. Moreover, these manually
designed networks often struggle to adapt to various datasets, limiting their generalization
capabilities [11].

As a result, there is an increasing need for automated methods capable of crafting
CNN architectures based on the dataset’s characteristics, reducing the reliance on human
expertise. Creating an automated approach to CNN architecture design that can adjust to
diverse datasets is vital for enhancing CNN efficiency and effectiveness. These automated
methods have the potential to tailor architectures to specific task requirements, ultimately
enhancing the generalization capabilities of CNNs.

1.1. Recent Advances in Automated Network Architecture Design

In recent years, researchers and data scientists have explored various approaches
to mitigate the challenges associated with manually crafting CNN architectures. This
manual process can be laborious and time-consuming. Advancements in automated
network architecture design have given rise to four primary approaches: reinforcement
learning (RL)-based [13–15], gradient descent (GD)-based [16], Bayesian optimization
(BO)-based [17–19], and metaheuristic search algorithm (MSA)-based [20–22] methods.

Progressive Neural Architecture Search (PNAS) [13] introduced an RL-based approach
that showed superior classification performance on CIFAR-10 and ImageNet datasets.
Utilizing a sequential model-based optimization (SMBO) strategy, PNAS evolved network

Biomimetics 2023, 8, 525 3 of 45

structures from simple to complex models, learning from promising models and exploring
feasible regions. PNAS achieved an eight-fold computational efficiency improvement
over its predecessor, NAS [23], in image classification tasks. Efficient Neural Network
Architecture Search (ENAS) [14], another RL-based approach, enhanced PNAS and NAS
by conducting searches in a cell-based search space. ENAS shared parameter information
among child models to discover better network architectures. ENAS delivered a thousand-
fold improvement in computational efficiency compared to standard neural architecture
design methods while achieving superior classification accuracy on CIFAR-10 datasets.
However, RL-based approaches often require substantial computational resources for
effective deep learning tasks.

A GD-based method, introduced as gradient descent NAS [16], outperformed tradi-
tional methods and long short-term memory (LSTM) in estimating remaining useful life.
Importantly, this method consumed only one-third of the computational power required
by RL-based approaches, highlighting its superior efficiency. Differentiable Architecture
Search (DARTS) [24], another popular GD-based method, also exhibited better efficiency
compared to RL-based methods. However, it encountered issues such as unstable archi-
tecture searches due to random channel selection and inefficient memory usage during
network training. Various mechanisms, including cyclic feedback [25], channel atten-
tion [26,27], and self-distillation [28], were introduced to address the limitations of the
original DARTS. Nonetheless, most GD-based methods often depend on domain experts to
enhance their performance in designing effective CNN models.

BO is employed to explore neural architecture solution spaces through sequential
search. NASBOT [17] is a Gaussian process-based BO framework designed for neural
architecture search, utilizing a metric called OTMANN to measure network similarity.
BayesNAS [18] addressed the limitations of one-shot NAS methods by modeling architec-
ture parameters with hierarchical automatic relevance determination. While it reduced
search time for obtaining candidate architectures, it faced computational inefficiency due
to the need to cache all feature maps for Hessian computation. In a different study [19], BO
was utilized to optimize RNN architectures more efficiently, utilizing three fixed-length en-
coding schemes and a mean absolute random sampling method. Bayesian methods include
Bayesian networks offer an interpretable approach to machine learning and optimization
grounded in probability theory [29]. Additionally, a Bayesian framework was applied
to infer the structural composition of biological tendons, coupled with a finite element
model [30].

MSAs offer an alternative solution for automated neural architecture design with
minimal reliance on human domain expertise. MSAs are population-based algorithms
that utilize search operators inspired by natural phenomena or organism behaviors to
iteratively seek optimal solutions in optimization problems. Over the years, various MSAs
have been proposed, including the artificial bee colony (ABC), the black hole algorithm
(BHA), teaching–learning-based optimization (TLBO), and the whale optimization algo-
rithm (WOA). These algorithms are characterized by their simplicity, independence from
gradient information, and good global search capabilities. Consequently, MSAs have found
widespread use in addressing a variety of real-world problems [31–34].

1.2. Existing Challenges of MSA-Based Automated Network Architecture Design

MSA-based methods hold the potential for automating the design of optimal CNN
architectures for specific datasets. Nevertheless, several fundamental challenges must be
addressed. One key issue is the lack of prior knowledge about optimal CNN architec-
tures, as they involve various network and learning hyperparameters, including network
depth, layer types, kernel size, filter numbers, pooling types, optimizer type, learning rate,
initializer, and L2 regularization. To overcome this, an appropriate encoding strategy is
crucial, enabling the representation of potential CNN architectures with variable network
lengths without incurring unnecessary complexity. It is also vital for the solution encod-
ing scheme used by MSA-based methods to ensure the validity of constructed networks

Biomimetics 2023, 8, 525 4 of 45

while maintaining the ability to discover novel architectures. Moreover, the utilization of
population-based MSA approaches presents a challenge due to the extensive computational
time and resources required for evaluating candidate solutions. Therefore, there is a need
for a fitness evaluation process that improves computational efficiency, making MSAs more
practical for optimizing CNN network and learning hyperparameters.

Despite the introduction of various MSAs inspired by different sources in recent years,
classical MSAs like particle swarm optimization (PSO), differential evolution (DE), and the
genetic algorithm (GA) have predominated in optimizing CNN architectures. However,
in light of the “No Free Lunch Theorem” [35], it is crucial to explore the capabilities of
emerging MSAs, including ABC, BHA, TLBO, and WOA, for addressing complex real-
world optimization problems like automated CNN architecture design. This exploration is
essential for advancing the field and pushing the boundaries of optimization research in
the context of deep learning.

TLBO has recently emerged as a promising automated approach for designing CNN
architectures based on given datasets [36]. However, the search mechanisms primarily draw
inspiration from the original TLBO, which has its limitations. A significant concern is that,
during the teacher phase, all learners rely solely on the guidance provided by the teacher
and population mean. This approach overlooks potentially valuable information possessed
by other learners. The original TLBO demonstrates rapid convergence but is susceptible
to premature convergence if both the teacher and population mean are entrapped in local
optima during the early stage of optimization. Addressing this limitation would involve
incorporating search information from better-performing learners, enabling more tailored
guidance for each learner.

Furthermore, the learner phase of the original TLBO lacks an effective collaborative
learning mechanism, as it restricts each learner to interacting with only one randomly
selected peer. Allowing learners to interact with multiple peers or retain knowledge from
previous learning can enhance the learning process’s efficiency. Lastly, the original TLBO
employs a greedy selection scheme based solely on fitness criteria to determine learner
survival in the next generation. Despite its simplicity, this scheme may overlook potentially
superior learners with temporarily lower fitness values but the long-term potential to
enhance overall population quality. These limitations compromise the delicate balance
between exploitation and exploration, ultimately impacting TLBO’s performance in solving
complex tasks, such as optimizing network and learning hyperparameters for CNNs.

1.3. Research Objectives and Contributions of Current Works

This study presents an enhanced variant, enhanced TLBO with competency-based
learning (ETLBOCBL), which is designed to autonomously search for optimal CNN archi-
tectures, delivering competitive accuracy in image classification tasks of varying complexity
without human intervention. ETLBOCBL incorporates several modifications in the teacher
phase, learner phase, and selection scheme to strike a better balance between exploration
and exploitation, thus improving its effectiveness in discovering novel CNN architectures.
The primary contributions of this study are as follows:

• ETLBOCBL-CNN is an automated network design approach for discovering optimal
CNN architectures for specific classification tasks. It harnesses ETLBOCBL’s opti-
mization capability to identify the best combinations of network hyperparameters
(e.g., network depth, layer types, kernel size, filter numbers, pooling size, pooling
stride, and neuron numbers) and learning hyperparameters (e.g., optimizer type,
learning rate, initializer type, and L2-regularizer) without human intervention.

• ETLBOCBL-CNN incorporates an efficient solution encoding scheme, enabling the
search for CNN architectures of varying lengths for diverse datasets while ensuring
model validity and promoting the discovery of novel architectures. Moreover, it
employs an efficient fitness evaluation process for practicality.

• In ETLBOCBL-CNN, a competency-based learning concept is integrated into the
modified teacher phase to encourage exploration and prevent convergence towards

Biomimetics 2023, 8, 525 5 of 45

local optima. Learners are grouped based on their competency levels, with the more
proficient learners collaborating with the teacher solution and population mean to
provide more effective guidance to those with lower competence, promoting the
discovery of promising CNN architectures.

• To enhance ETLBOCBL-CNN’s robustness against premature convergence, a stochastic
peer interaction scheme is introduced in the modified learner phase. This scheme
emulates collaborative learning dynamics observed in a classroom, enabling each
learner to effectively use available information during the search process by engaging
in knowledge sharing and retention with one or multiple peer learners.

• In ETLBOCBL-CNN, a tri-criterion selection scheme is introduced as an enhanced
alternative to the conventional greedy selection method. This new selection scheme
determines learners’ survival in subsequent iterations by considering their fitness,
diversity, and improvement rates. The proposed scheme preserves valuable network
information and contributes to long-term population quality improvement by favoring
learners with relatively good diversity and commendable fitness improvement, even
if their current fitness levels are temporarily lower.

• Extensive simulation studies are performed on image datasets with varying complex-
ity to assess the effectiveness and feasibility of ETLBOCBL-CNN in autonomously
discovering optimal CNN architectures. The findings reveal that ETLBOCBL-CNN
produces superior CNN architectures, achieving excellent classification performance
with reduced complexity compared to state-of-the-art methods on most datasets.

1.4. Paper Outline

The subsequent sections of this paper are structured as follows: Section 2 reviews
related literature. Section 3 details the workflow of ETLBOCBL-CNN for automating
optimal CNN architecture design. Section 4 presents simulation settings and compares
ETLBOCBL-CNN results with other approaches. Finally, Section 5 provides a brief sum-
mary of conclusions and outlines potential avenues for future research.

2. Related Works
2.1. Original TLBO

TLBO was originally developed to address complex engineering design optimization
tasks by modeling the knowledge acquisition process in classrooms [37]. In its initialization
stage, TLBO randomly generates a group of N learners with D-dimensional size. Each
learner Xn, identified by its learner index n and decision variable index d, is associated with
a position vector Xn.Pos = [Xn.Pos1, . . . , Xn.Pos1, . . . , Xd.PosD], which signifies a potential
solution for the given problem. The learner’s knowledge level is indicated by its fitness
value, Xn.Fit.

TLBO comprises two phases, each employing different learning mechanisms to en-
hance learners’ knowledge levels. In the teacher phase, the n-th learner obtains the latest
knowledge by comparing the most knowledgeable teacher (XTeacher) with the population
mean (X.Mean) that represents the average knowledge level of the population. Specifically,
X.Mean is calculated by averaging the position vectors of all population members.

X.Mean =
1
N

N

∑
n=1

Xn.Pos (1)

Each n-th learner calculates a new position, XNew
n .Pos, using Equation (2), which

involves a randomly generated number r1 ∈ [0, 1] from a uniform distribution and a
teacher factor, FT ∈ {0, 1}, influencing mainstream knowledge during the knowledge
acquisition process.

XNew
n .Pos = Xn.Pos + r1

(
XTeacher.Pos− FTX.Mean

)
(2)

Biomimetics 2023, 8, 525 6 of 45

In the learner phase, each learner, denoted as Xn, can enhance their knowledge through
interactions with a randomly selected peer, Xm, where m 6= n. In minimization problems,
learners with smaller fitness values (Xn.Fit and Xm.Fit) possess higher knowledge levels.
The new position, XNew

n .Pos, is determined using Equation (3) and a randomly generated
number r2 ∈ [0, 1]. Equation (3) illustrates that each learner can either move away from a
peer with inferior fitness to promote exploration or move closer to a peer with superior
fitness to encourage exploitation.

XNew
n .Pos =

{
Xn.Pos + r2(Xn.Pos− Xm.Pos), if Xn.Fit < Xm.Fit

Xn.Pos + r2(Xm.Pos− Xn.Pos), otherwise
(3)

At the end of either the teacher or learner phase, the fitness value corresponding to
each n-th learner’s new position, XNew

n .Fit, is compared with their current value, Xn.Fit.
If XNew

n .Fit < Xn.Fit, the updated position, XNew
n , replaces the current position Xn. The

learning processes for each learner in both phases of TLBO iterate until the termination
criteria are met, and XTeacher is returned to solve the given problem. The workflow of the
original TLBO is depicted in the block diagram presented in Figure 1.

Biomimetics 2023, 8, x FOR PEER REVIEW 6 of 45

Each n-th learner calculates a new position, 𝑋 . 𝑃𝑜𝑠, using Equation (2), which in-
volves a randomly generated number 𝑟 ∈ [0,1] from a uniform distribution and a
teacher factor, 𝐹 ∈ {0,1}, influencing mainstream knowledge during the knowledge ac-
quisition process. 𝑋 . 𝑃𝑜𝑠 = 𝑋 . 𝑃𝑜𝑠 + 𝑟 (𝑋 . 𝑃𝑜𝑠 − 𝐹 𝑋. 𝑀𝑒𝑎𝑛) (2)

In the learner phase, each learner, denoted as 𝑋 , can enhance their knowledge
through interactions with a randomly selected peer, 𝑋 , where 𝑚 𝑛. In minimization
problems, learners with smaller fitness values (𝑋 . 𝐹𝑖𝑡 and 𝑋 . 𝐹𝑖𝑡) possess higher
knowledge levels. The new position, 𝑋 . 𝑃𝑜𝑠, is determined using Equation (3) and a
randomly generated number 𝑟 ∈ [0,1]. Equation (3) illustrates that each learner can ei-
ther move away from a peer with inferior fitness to promote exploration or move closer
to a peer with superior fitness to encourage exploitation. 𝑋 . 𝑃𝑜𝑠 = 𝑋 . 𝑃𝑜𝑠 + 𝑟 (𝑋 . 𝑃𝑜𝑠 − 𝑋 . 𝑃𝑜𝑠), if 𝑋 . 𝐹𝑖𝑡 < 𝑋 . 𝐹𝑖𝑡 𝑋 . 𝑃𝑜𝑠 + 𝑟 (𝑋 . 𝑃𝑜𝑠 − 𝑋 . 𝑃𝑜𝑠), otherwise (3)

At the end of either the teacher or learner phase, the fitness value corresponding to
each n-th learner’s new position, 𝑋 . 𝐹𝑖𝑡, is compared with their current value, 𝑋 . 𝐹𝑖𝑡.
If 𝑋 . 𝐹𝑖𝑡 < 𝑋 . 𝐹𝑖𝑡, the updated position, 𝑋 , replaces the current position 𝑋 . The
learning processes for each learner in both phases of TLBO iterate until the termination
criteria are met, and 𝑋 is returned to solve the given problem. The workflow of the
original TLBO is depicted in the block diagram presented in Figure 1.

Figure 1. The workflow of the original TLBO.

2.2. CNN
CNN architecture has revolutionized deep learning research by seamlessly integrat-

ing a feature extraction module with a classification module. This innovative approach
efficiently extracts crucial information from raw input data, which is then passed to the
classification module for further analysis. This enhances overall efficiency and reduces
potential errors associated with manual preprocessing methods. Figure 2 provides a vis-
ual representation of a typical sequential CNN architecture, featuring a feature extraction

Figure 1. The workflow of the original TLBO.

2.2. CNN

CNN architecture has revolutionized deep learning research by seamlessly integrat-
ing a feature extraction module with a classification module. This innovative approach
efficiently extracts crucial information from raw input data, which is then passed to the
classification module for further analysis. This enhances overall efficiency and reduces
potential errors associated with manual preprocessing methods. Figure 2 provides a visual
representation of a typical sequential CNN architecture, featuring a feature extraction
module with two convolutional blocks and two pooling blocks, alongside a classification
module consisting of three fully connected blocks. Each functional block in a CNN has
specific hyperparameters vital for effective network construction and training. For exam-
ple, convolutional blocks have hyperparameters like kernel size and filter number, while

Biomimetics 2023, 8, 525 7 of 45

pooling blocks encompass hyperparameters like stride size, pooling size, and pooling type.
Similarly, the performance of the classification module depends on hyperparameters such
as the number of fully connected blocks and the associated neuron numbers.

Biomimetics 2023, 8, x FOR PEER REVIEW 7 of 45

module with two convolutional blocks and two pooling blocks, alongside a classification
module consisting of three fully connected blocks. Each functional block in a CNN has
specific hyperparameters vital for effective network construction and training. For exam-
ple, convolutional blocks have hyperparameters like kernel size and filter number, while
pooling blocks encompass hyperparameters like stride size, pooling size, and pooling
type. Similarly, the performance of the classification module depends on hyperparameters
such as the number of fully connected blocks and the associated neuron numbers.

Figure 2. Typical architecture of sequential CNN.

Two types of convolution processes are commonly observed in CNNs, i.e., SAME
and VALID convolutions. SAME convolution employs zero padding to ensure that result-
ing feature maps have the same size as the input data, while VALID convolution produces
smaller feature maps without padding. In each convolutional block, filters with prede-
fined dimensions generate feature maps from the input data. During convolution, the fil-
ter moves horizontally with a specified stride width and, upon reaching the rightmost
position, moves down with a stride height, continuing the sliding process from left to right
to create a complete feature map. Feature map elements are computed by summing the
products of filter elements and the corresponding input data elements captured by the
filter. In addition to hyperparameters such as filter size, number, stride size, feature map
number, and convolution type, connection weights within the filters are adjusted as train-
able parameters during training.

Pooling is a vital component in CNNs to facilitate local translation invariance. Two
common pooling techniques are average pooling, which computes the mean values of el-
ements captured by a kernel to create down-sampled feature maps, and maximum pool-
ing, which identifies the largest values among the captured elements. During pooling, a
predefined kernel is applied to the input data, generating down-sampled feature maps by
moving the kernel from the top left to the bottom right according to specified stride height
and width. Pooling blocks lack trainable parameters such as connection weights, with the
relevant hyperparameters involving pooling type, kernel size, and stride size.

The main objective of CNN training is to minimize the errors between predicted and
actual outputs in the datasets by optimizing the trainable parameters through backprop-
agation and gradient descent, thereby reducing cross-entropy loss. However, training a
CNN from scratch can be time-consuming due to the large number of trainable parame-
ters involved. Moreover, traditional CNN architecture design methods relying on trial-
and-error approaches can be inefficient and require significant expertise. To address these
challenges, automatic network design methods offer a promising alternative to enhance
efficiency in developing optimal CNN architectures for specific deep learning tasks with
minimal human intervention. By automating the design process, these methods allow the
model to swiftly explore and identify the most suitable network architecture and learning

Figure 2. Typical architecture of sequential CNN.

Two types of convolution processes are commonly observed in CNNs, i.e., SAME and
VALID convolutions. SAME convolution employs zero padding to ensure that resulting
feature maps have the same size as the input data, while VALID convolution produces
smaller feature maps without padding. In each convolutional block, filters with predefined
dimensions generate feature maps from the input data. During convolution, the filter
moves horizontally with a specified stride width and, upon reaching the rightmost position,
moves down with a stride height, continuing the sliding process from left to right to create
a complete feature map. Feature map elements are computed by summing the products of
filter elements and the corresponding input data elements captured by the filter. In addition
to hyperparameters such as filter size, number, stride size, feature map number, and
convolution type, connection weights within the filters are adjusted as trainable parameters
during training.

Pooling is a vital component in CNNs to facilitate local translation invariance. Two
common pooling techniques are average pooling, which computes the mean values of
elements captured by a kernel to create down-sampled feature maps, and maximum
pooling, which identifies the largest values among the captured elements. During pooling,
a predefined kernel is applied to the input data, generating down-sampled feature maps by
moving the kernel from the top left to the bottom right according to specified stride height
and width. Pooling blocks lack trainable parameters such as connection weights, with the
relevant hyperparameters involving pooling type, kernel size, and stride size.

The main objective of CNN training is to minimize the errors between predicted and
actual outputs in the datasets by optimizing the trainable parameters through backprop-
agation and gradient descent, thereby reducing cross-entropy loss. However, training a
CNN from scratch can be time-consuming due to the large number of trainable parameters
involved. Moreover, traditional CNN architecture design methods relying on trial-and-
error approaches can be inefficient and require significant expertise. To address these
challenges, automatic network design methods offer a promising alternative to enhance
efficiency in developing optimal CNN architectures for specific deep learning tasks with
minimal human intervention. By automating the design process, these methods allow the
model to swiftly explore and identify the most suitable network architecture and learning
hyperparameters that meet performance criteria, freeing researchers to focus on other
critical aspects of deep learning research.

Biomimetics 2023, 8, 525 8 of 45

2.3. Existing MSA-Based Network Architecture Design Methods

Backpropagation was initially employed in ANNs to train connection weights between
neurons. However, this method often struggled in complex fitness landscapes, becoming
stuck in local optima. To address this, researchers turned to MSAs for training ANNs with
fixed network structures [38,39]. MSAs offered remarkable exploratory search capabilities,
enabling them to find global optima in challenging ANN training problems independently
of gradient information. For example, simulation studies in [39] demonstrated that GA-
trained network architectures produced lower errors (0.207) compared to backpropagation
(0.675) when solving eight test cases. While MSAs excelled in search accuracy, they were
found to require longer computational times for larger networks [40]. In response to the
limitations of backpropagation, Topology and Weight Evolving Artificial Neural Networks
(TWEANNs) were introduced. These neuroevolutionary approaches not only trained
connection weights but also simultaneously constructed optimal network structures. In-
spired by GA, Neuroevolution of Augmenting Topologies (NEAT) [41] aimed to evolve
ANNs from simpler to more complex structures, incorporating a speciation mechanism
to preserve solution diversity during the network’s evolution. NEAT was validated on
pole balancing tasks and was 25 times faster than cellular encoding and 5 times faster than
enforced subpopulation methods. However, NEAT faced high computational costs when
evolving networks with high-dimensional sizes due to the use of a direct encoding scheme.
To address this, Evolutionary Acquisition of Neural Topologies (EANT) [42] proposed a
two-layer optimization approach. The first layer emphasized exploration through mutation
strategies for network structure evolution, while the second layer promoted exploitation
through evolution strategies to identify optimal network weights. During performance
validation with the simulated visual servoing task, EANT consistently outperformed NEAT
and required less parameter tuning. Hypercube-Based NeuroEvolution of Augmenting
Topologies (HyperNEAT) [43] emerged as an improvement over NEAT, mitigating the
drawbacks of its direct encoding scheme. HyperNEAT introduced an indirect encoding
scheme called Connective Compositional Pattern Producing Network (CPPN), significantly
enhancing the computational efficiency required for network construction with millions of
connections. HyperNEAT’s performance was evaluated through visual discrimination and
food gathering tasks at varying resolutions, demonstrating its ability to discover repeating
motifs in neural connectivity.

In recent years, there has been a growing trend in using MSAs to optimize complex
neural network structures and parameters. One noteworthy algorithm is ABC, which
draws inspiration from the foraging behavior of bee colonies and has been proposed for
discovering optimal CNN architectures. For example, distributed ABC [44] was introduced
to initialize the pretrained connection weights of a CNN model, with the aim of minimizing
image classification errors. These pretrained connection weights were subsequently refined
using the gradient descent algorithm. Moreover, different random seeds were employed to
generate initial solutions within each subgroup for solution diversity preservation. The
CNN optimized by distributed ABC achieved higher accuracy (97.67%) on the MNIST
dataset compared to SA (96.23%), GA (96.78%), PSO (97.14%), and BA (97.23%). Impor-
tantly, the distributed ABC approach maintains computational efficiency when handling
large datasets through its distributed strategy. In [45], ABC was applied to perform neu-
roevolution on CNNs by optimizing their architecture and training hyperparameters. A
direct encoding scheme represented network information for constructing and evaluating
networks, including details like the number and types of layers, kernel size, pooling size,
connectivity pattern, neuron count, weight regularization, dropout rate, batch size, and
learning rules. Despite demonstrating a promising ability to achieve a low error rate of
0.62% on the MNIST dataset, it was observed that ABC tends to require more time to pro-
duce reliable results. ABC was utilized to optimize the hyperparameters of CNN structures
for human action recognition applications [46]. A direct encoding scheme was employed to
represent over six training hyperparameters, including maximum epochs, minibatch size,
initial learning rate, L2 regularization, shuffle, and momentum. This method successfully

Biomimetics 2023, 8, 525 9 of 45

solved the sign language digit and Thomas Moeslund’s gesture recognition datasets with
accuracy levels of 98.40% and 98.09%, respectively.

WOA is a promising MSA inspired by the hunting behavior of humpback whales and
has demonstrated significant potential in optimizing CNN models. Notably, Dixit et al. [47]
successfully applied WOA to optimize CNN hyperparameters for texture recognition tasks,
including the number of filters, kernel size, weights, and biases. Extensive simulation stud-
ies revealed that this method achieved promising accuracies on datasets like Kylberg [48]
(99.71%), Brodatz [49] (97.43%), and Outex [50] (97.70%). In [51], WOA was combined with
SGD to optimize the connection weights and biases of a deep CNN model for efficient
crowd emotion recognition, covering emotions such as normal, happy, angry, moving,
violence, and fighting. The resulting SGD-WOA deep CNN exhibited superior sensitivity
(96.75%), specificity (99.36%), and accuracy (96.93%) in emotion recognition. During the
COVID-19 pandemic, WOA was applied to optimize the training hyperparameters of the
ResNet-50 model for COVID-19 diagnosis using radiography images [52]. By leveraging
WOA to optimize training hyperparameters such as momentum learning, batch size, epoch,
and validation frequency, the performance of ResNet-50 was significantly enhanced. Sub-
sequently, SGD was employed to train the trainable weights and biases of the optimized
ResNet-50 model. The ResNet-50 optimized by WOA outperformed other optimization
schemes, including the grey wolf optimizer (GWO), PSO, GA, simulated annealing (SA) and
pattern search (PS), in terms of accuracy (98.78%), sensitivity (98.37%), specificity (99.19%),
precision (99.18%), and F1 score (98.37%) when classifying the COVID-CT scan datasets.

In [53], a novel evolutionary NAS method incorporating RepVGG nodes, referred
to as EvoNAS-Rep, was introduced. Initially, an encoding strategy was devised to map
fixed-length encoded individuals to deep learning structures with variable lengths. Sub-
sequently, a GA was employed to search for optimal individuals corresponding to deep
learning models. EvoNAS-Rep has demonstrated its capability by achieving accuracies
of 96.35% on CIFAR-10 and 79.82% on CIFAR-100 datasets. Another GA-based method
with a self-adaptive mutation scheme was proposed in [54] to tackle the CNN architec-
ture design problem using a block-design approach. This approach exhibited improved
exploration through adaptive mutation strategy adjustments during architecture optimiza-
tion. Simulation studies revealed that this method can efficiently tackle CIFAR-10 and
CIFAR-100 datasets, achieving error rates of 3.6% and 20.2%, respectively. Furthermore, an
efficient evolutionary NAS approach featuring a modular inheritable crossover operator
and mutation operator was presented in [55]. The specially designed crossover operator
ensured that modular information from parent architectures could be inherited by offspring
architectures, thus accelerating algorithm convergence. This method reported impressive
results, solving the CIFAR-10 and CIFAR-100 datasets with error rates of 2.62% and 18.46%,
respectively. In [56], an efficient evolutionary NAS method was proposed, evolving CNN
architectures based on a multi-branch and batch-free normalization transformer backbone
for image classification tasks. It introduced a flexible encoding strategy that adaptively
evolved CNN configurations with varying network depths. Both crossover and mutation
operators were incorporated to strike a balance between exploration and exploitation.
Simulation studies demonstrated that this evolutionary NAS method achieved accuracies
of 97.24% on CIFAR-10 and 80.06% on CIFAR-100 datasets.

In addition to the previously mentioned MSAs, various optimization algorithms in-
spired by different natural principles have been effectively applied to address optimization
problems associated with CNNs. In a study conducted by [57], the black hole algorithm
(BHA) was harnessed to seek the optimal connection weights and biases of the classifier
module within a CNN model. Notably, each individual solution employed a direct encod-
ing strategy to represent the classifier module’s weights and biases. The resulting BH-CNN
achieved a classification accuracy of 96.88% when solving the MNIST dataset. Another
notable application involved the development of a brain–computer interface framework
using CNN and BHA to search for the optimal network structure capable of classifying
perception and visual imagination based on non-invasive EEG signals [58]. BHA was used

Biomimetics 2023, 8, 525 10 of 45

to search for the optimal numbers of convolutional layers, filter sizes, neuron numbers, and
types of activation functions employed within the CNN. Experimental studies revealed that
the CNN optimized by BHA could classify imagination and perception into 12 different
classes with an accuracy of close to 30%. The equilibrium optimization (EO) algorithm was
leveraged by EO-CNN [59] to train the connection weights and biases of a CNN model
specifically designed for traffic transportation prediction tasks. EO-CNN utilized a direct
encoding scheme to represent the weights and biases of CNN models. EO-CNN demon-
strated competitive real-time prediction performance when handling real-time traffic data
from the Twin Cities Metro. It achieved smaller mean values of root mean square error
(3.869), mean squared logarithmic error (0.121), and explained variance error (0.389). A
novel approach, the mutation-based Henry gas solubility optimization (MHSGO) [60],
introduced a fresh perspective on optimizing hyperparameters for DenseNet-121 in plant
leaf disease classification. Unlike conventional HSGO, MHSGO incorporated a mutation
scheme to enhance population diversity during hyperparameter optimization, including
factors such as neuron count, batch size, and learning rate. Consequently, the CNN model
optimized by MHSGO outperformed other deep learning models when tested with field
data featuring complex backgrounds, achieving an accuracy of 98.81%, precision of 98.60%,
and recall of 98.75%. In [61], an opposition-based symbiotic organism search (OSOS) algo-
rithm was proposed to perform hyperparameter tuning of learning rate and momentum
when training a ResNet-50 model enhanced with attention residual learning mechanisms
for leaf disease recognition. This optimized attention residual learning network successfully
classified fifteen health conditions of eggplant, mango, guava, and citrus leaves with an
accuracy of 98.20%.

3. Proposed ETLBOCBL-CNN

This study presents ETLBOCBL-CNN, an innovative approach for automatically
designing efficient CNN models for image classification. This proposed method aims
to construct valid and high-performing CNN architectures tailored to specific datasets
with minimal human intervention. A CNN architecture is considered valid if it meets the
following criteria: (a) it starts with a convolutional layer, (b) it ends with a fully connected
layer, (c) it avoids inserting fully connected layers between the feature extraction module
(comprising convolutional and pooling layers) to prevent overfitting and excessive trainable
parameters, and (d) the number of pooling layers is limited based on the input dataset
size; for example, a maximum of three pooling layers is allowed for input datasets sized
at 28 × 28 × 1 [62]. Figure 3 outlines the workflow of the ETLBOCBL-CNN framework.
Detailed explanations of the modifications in the teacher phase, learner phase, and selection
scheme of ETLBOL-CNN will be provided in the following subsections.

3.1. Proposed Solution Encoding Scheme

Constructing optimal CNN models involves determining network hyperparameters,
including network depth, layer types, kernel size, filter numbers, pooling size, pooling
stride, and neuron number. Furthermore, selecting appropriate combinations of learning
hyperparameters, such as optimizer type, learning rate, initializer type, and L2 regular-
ization, is vital for optimizing network training and achieving competitive classification
performance. In light of these considerations, ETLBOCBL-CNN introduces an efficient
solution encoding scheme, which enables each learner to effectively search for optimal
network and learning hyperparameters. This scheme ensures that only valid architectures
are created without limiting ETLBOCBL-CNN’s ability to discover novel and effective
CNN architectures for image classification. As depicted in Figure 4, each ETLBOCBL-
CNN learner, denoted as the n-th learner, is represented by a D-dimensional position
vector, Xn.Pos. Each d-th dimension, Xn.Posd, corresponds to specific network or learning
hyperparameters required for the construction of a unique CNN architecture. These hyper-
parameters are divided into four main sections: convolution, pooling, fully connected, and
network training.

Biomimetics 2023, 8, 525 11 of 45Biomimetics 2023, 8, x FOR PEER REVIEW 11 of 45

Figure 3. Workflow of the ETLBOCBL-CNN framework. Figure 3. Workflow of the ETLBOCBL-CNN framework.

Biomimetics 2023, 8, 525 12 of 45

Biomimetics 2023, 8, x FOR PEER REVIEW 12 of 45

3.1. Proposed Solution Encoding Scheme
Constructing optimal CNN models involves determining network hyperparameters,

including network depth, layer types, kernel size, filter numbers, pooling size, pooling
stride, and neuron number. Furthermore, selecting appropriate combinations of learning
hyperparameters, such as optimizer type, learning rate, initializer type, and L2 regulari-
zation, is vital for optimizing network training and achieving competitive classification
performance. In light of these considerations, ETLBOCBL-CNN introduces an efficient so-
lution encoding scheme, which enables each learner to effectively search for optimal net-
work and learning hyperparameters. This scheme ensures that only valid architectures
are created without limiting ETLBOCBL-CNN’s ability to discover novel and effective
CNN architectures for image classification. As depicted in Figure 4, each ETLBOCBL-
CNN learner, denoted as the n-th learner, is represented by a D-dimensional position vec-
tor, 𝑋 . 𝑃𝑜𝑠. Each d-th dimension, 𝑋 . 𝑃𝑜𝑠 , corresponds to specific network or learning
hyperparameters required for the construction of a unique CNN architecture. These hy-
perparameters are divided into four main sections: convolution, pooling, fully connected,
and network training.

Figure 4. Solution encoding scheme of ETLBOCBL-CNN to represent a potential CNN.

The CNN’s convolution section is characterized by three key hyperparameters, as
illustrated in Figure 4. The first hyperparameter, 𝑁 ∈ {𝑁 , 𝑁 }, represents the
number of convolution layers and is encoded in 𝑋 . 𝑃𝑜𝑠 with 𝑑 = 1, where 𝑁 and 𝑁 define the minimum and maximum allowable convolution layer counts. Each con-
volution layer is identified by an index number, 𝑙 ∈ {1, 𝑁 }. For each l-th convolution
layer, there are two additional hyperparameters: 𝑁 ∈ {𝑁 , 𝑁 }, which signifies the
number of filters, and 𝑆 ∈ {𝑆 , 𝑆 } , which denotes the kernel size of each filter.
These hyperparameters are encoded in 𝑋 . 𝑃𝑜𝑠 , with 𝑑 = 2𝑙 for 𝑁 and 𝑑 = 2𝑙 + 1
for 𝑆 , where 𝑙 = 1, … , 𝑁 . It is worth noting that while all ETLBOCBL-CNN learners
possess position vectors 𝑋 . 𝑃𝑜𝑠 of the same dimension size D, they can generate CNNs
with varying numbers of convolution layers by referring to the value of 𝑁 ∈

Figure 4. Solution encoding scheme of ETLBOCBL-CNN to represent a potential CNN.

The CNN’s convolution section is characterized by three key hyperparameters, as
illustrated in Figure 4. The first hyperparameter, NConv ∈

{
NConv

min , NConv
max

}
, represents the

number of convolution layers and is encoded in Xn.Posd with d = 1, where NConv
min and

NConv
max define the minimum and maximum allowable convolution layer counts. Each con-

volution layer is identified by an index number, l ∈
{

1, NConv
max

}
. For each l-th convolution

layer, there are two additional hyperparameters: NFil
l ∈

{
NFil

min, NFil
max

}
, which signifies

the number of filters, and SKer
l ∈

{
SKer

min, SKer
max
}

, which denotes the kernel size of each filter.
These hyperparameters are encoded in Xn.Posd, with d = 2l for NFil

l and d = 2l + 1 for
SKer

l , where l = 1, . . . , NConv
max . It is worth noting that while all ETLBOCBL-CNN learners

possess position vectors Xn.Pos of the same dimension size D, they can generate CNNs with
varying numbers of convolution layers by referring to the value of NConv ∈

{
NConv

min , NConv
max

}
encoded in Xn.Posd with d = 1. If NConv < NConv

max , only the first NConv values of NFil
l and

SKer
l , encoded into Xn.Posd with d = 2l and d = 2l + 1 for l = 1, . . . , NConv, are utilized

to construct the CNN’s convolution section. Redundant network information stored in
Xn.Posd, with d = 2l and d = 2l + 1 for l = NConv + 1, . . . , NConv

max , is omitted from the
network construction process.

Three hyperparameters are introduced to define the pooling section of the CNN.
The first hyperparameter, PPool

l ∈ [0, 1], is encoded into Xn.Posd, with d = 2NConv
max +

3l − 1 for l = 1, . . . , NConv
max . It signifies the type of pooling layer connected to each l-th

convolution layer according to the following guidelines: (a) no pooling layer is inserted
when 0 ≤ PPool

l < 1/3, (b) maximum pooling is applied when 1/3 ≤ PPool
l < 2/3, and

(c) average pooling is employed when 2/3 ≤ PPool
l ≤ 1. The minimum and maximum

sizes of the pooling layers linked to each l-th convolutional layer are denoted as SPool
min

and SPool
max , while SStr

min and SStr
max represent the minimum and maximum stride sizes of the

pooling layer. Two more hyperparameters, SStr
l ∈

{
SStr

min, SStr
max
}

and SPool
l ∈

{
SPool

min , SPool
max

}
,

represent the kernel size and stride size of the pooling layer associated with the l-th
convolution layer. These hyperparameters are encoded into Xn.Posd, with d = 2NConv

max + 3l
for SStr

l and d = 2NConv
max + 3l + 1 for SPool

l , where l = 1, . . . , NConv
max . Similarly, only relevant

network information of PPool
l , SStr

l , and SPool
l contributes to the construction of the CNN’s

Biomimetics 2023, 8, 525 13 of 45

pooling section. In cases where NConv < NConv
max , only the first NConv values of PPool

l ,
SPool

l , and SStr
l , encoded into Xn.Posd with d = 2NConv

max + 3l − 1, d = 2NConv
max + 3l, and

d = 2NConv
max + 3l + 1, respectively, for l = 1, . . . , NConv, are used for generating the pooling

section of the CNN. Redundant network information of PPool
l , SPool

l , and SStr
l stored in

Xn.Posd with d = 2NConv
max + 3l − 1, d = 2NConv

max + 3l, and d = 2NConv
max + 3l + 1, respectively,

for l = NConv + 1,, NConv
max , is disregarded in network construction. It is essential to note

that the network information of SPool
l and SStr

l is excluded if the corresponding PPool
l falls

within the range of [0, 1/3] since no pooling layer is introduced with the l-th convolution
layer in this scenario.

The fully connected section of a CNN is constructed using two hyperparameters. The
first hyperparameter, NFC ∈

{
NFC

min, NFC
max
}

, represents the number of fully connected layers
in the CNN. It is encoded into Xn.Posd, with d = 5NConv

max + 2, where NFC
min and NFC

max define
the minimum and maximum allowable numbers of fully connected layers, respectively.
Each fully connected layer is identified by an index number, q ∈

{
1, NFC}. The second

hyperparameter, NNeu
q ∈

{
NNeu

min , NNeu
max
}

, indicates the number of neurons in the q-th fully
connected layer. It is encoded into Xn.Posd with d =

(
5NConv

max + 2
)
+ q and q = 1, . . . , NFC

max.
Here, NNeu

min and NNeu
max represent the minimum and maximum numbers of neurons in a fully

connected layer. Similarly to the convolution and pooling sections, only the first NFC values
of NNeu

q encoded into Xn.Posd with d =
(
5NConv

max + 2
)
+ q and q = 1, . . . , NFC are used in

generating the fully connected section of the CNN. Any redundant information of NNeu
q ,

stored in Xn.Posd with d =
(
5NConv

max + 2
)
+ q and q = NFC + 1, . . . , NFC

max, is disregarded
in network construction.

In addition to the network hyperparameters used in constructing the convolution,
pooling, and fully connected sections of the CNN, four learning hyperparameters are
integrated into the position vector of each ETLBOCBL-CNN learner. This integration
enhances the optimization process, allowing ETLBOCBL-CNN to produce more accurate
and effective CNN models. Notably, the optimization of learning hyperparameters in
ETLBOCBL-CNN involves selecting the optimizer type, learning rate, initializer type, and
L2-regularizer. These learning hyperparameters are represented by integer indices within
the ranges of

{
LHOpt

min , LHOpt
max

}
,
{

LHLR
min , LHLR

max
}

,
{

LH Int
min , LH Int

max
}

, and
{

LHL2
min , LHL2

max
}

,
respectively. To optimize the CNN training process for each ETLBOCBL-CNN learner,
the selection of these learning hyperparameters is represented by the integer decision
variables: LHOpt, LHLR, LH Int, and LHL2. These variables are encoded into Xn.Posd
with the dimension indices of d = 5NConv

max + NNeu
max + 3, d = 5NConv

max + NNeu
max + 4, d =

5NConv
max + NNeu

max + 5, and d = 5NConv
max + NNeu

max + 6, respectively.
The process of constructing a CNN architecture from the network and learning hyper-

parameters, decoded from the position vector Xn.Pos of the n-th ETLBOCBL-CNN learner,
is visually represented in Figure 5. Table 1 summarizes the feasible search ranges for all
network and learning hyperparameters based on [62]. Meanwhile, the selection of the
optimizer type, learning rate, initializer type, and L2-regularizer is based on the integer
indices presented in Table 2. In this demonstration, the maximum allowable numbers
of convolution and fully connected layers are defined as NConv

max = 3 and NFC
max = 2, re-

spectively. Consequently, the total dimension size of the position vector Xn.Pos for each
n-th ETLBOCBL-CNN learner is calculated as D = 5NConv

max + NFC
max + 6 = 23. To illustrate,

the values of NConv and NFC encoded into Xn.Posd, with d = 1 and d = 17, respectively,
indicate that the constructed CNN has two convolution layers, up to two pooling layers,
and one fully connected layer. Specifically, the first convolution layer is generated with
values NFil

1 = 64 and SKer
1 = 3× 3, encoded into Xn.Posd with d = 2 and d = 3, respectively.

The second convolutional layer is established using values NFil
2 = 16 and SKer

2 = 7× 7
encoded into Xn.Posd with d = 4 and d = 5. In the pooling section of the CNN, a maximum
pooling layer is inserted into the first convolution layer. This is achieved via the values
of PPool

1 = 0.9, SPool
1 = 2× 2, and SStr

1 = 1× 1 encoded into Xn.Posd with d = 8 to d = 10.
An averaging pooling layer is inserted into the second convolution layer based on values

Biomimetics 2023, 8, 525 14 of 45

PPool
2 = 0.6, SPool

2 = 3× 3, and SStr
2 = 2× 2 encoded into Xn.Posd with d = 11 to d = 13.

The fully connected layer of the CNN comprises 18 neurons, as indicated by the value
of NNeu

1 encoded into Xn.Posd with d = 18. The trainable parameters of the constructed
CNN are initialized using He Normal and optimized using Adagrad with a learning rate
of 0.01 and an L2-regularization value of 0.001. This information is revealed through the
integer indices of LHOpt, LHLR, LH Int, and LHL2 encoded into Xn.Posd with d = 20 to
d = 23. It is important to note that certain network information, specifically related to the
third convolutional layer, the third pooling layer, and the second fully connected layer, is
excluded from the network construction.

Biomimetics 2023, 8, x FOR PEER REVIEW 14 of 45

The process of constructing a CNN architecture from the network and learning hy-
perparameters, decoded from the position vector 𝑋 . 𝑃𝑜𝑠 of the n-th ETLBOCBL-CNN
learner, is visually represented in Figure 5. Table 1 summarizes the feasible search ranges
for all network and learning hyperparameters based on [62]. Meanwhile, the selection of
the optimizer type, learning rate, initializer type, and L2-regularizer is based on the inte-
ger indices presented in Table 2. In this demonstration, the maximum allowable numbers
of convolution and fully connected layers are defined as 𝑁 = 3 and 𝑁 = 2 , re-
spectively. Consequently, the total dimension size of the position vector 𝑋 . 𝑃𝑜𝑠 for each
n-th ETLBOCBL-CNN learner is calculated as 𝐷 = 5𝑁 + 𝑁 + 6 = 23. To illustrate,
the values of 𝑁 and 𝑁 encoded into 𝑋 . 𝑃𝑜𝑠 , with 𝑑 = 1 and 𝑑 = 17 , respec-
tively, indicate that the constructed CNN has two convolution layers, up to two pooling
layers, and one fully connected layer. Specifically, the first convolution layer is generated
with values 𝑁 = 64 and 𝑆 = 3 × 3 , encoded into 𝑋 . 𝑃𝑜𝑠 with 𝑑 = 2 and 𝑑 = 3 ,
respectively. The second convolutional layer is established using values 𝑁 = 16 and 𝑆 = 7 × 7 encoded into 𝑋 ∙ 𝑃𝑜𝑠 with 𝑑 = 4 and 𝑑 = 5. In the pooling section of the
CNN, a maximum pooling layer is inserted into the first convolution layer. This is
achieved via the values of 𝑃 = 0.9 , 𝑆 = 2 × 2 , and 𝑆 = 1 × 1 encoded into 𝑋 . 𝑃𝑜𝑠 with 𝑑 = 8 to 𝑑 = 10 . An averaging pooling layer is inserted into the second
convolution layer based on values 𝑃 = 0.6, 𝑆 = 3 × 3, and 𝑆 = 2 × 2 encoded
into 𝑋 ∙ 𝑃𝑜𝑠 with 𝑑 = 11 to 𝑑 = 13. The fully connected layer of the CNN comprises
18 neurons, as indicated by the value of 𝑁 encoded into 𝑋 . 𝑃𝑜𝑠 with 𝑑 = 18. The
trainable parameters of the constructed CNN are initialized using He Normal and opti-
mized using Adagrad with a learning rate of 0.01 and an L2-regularization value of 0.001.
This information is revealed through the integer indices of 𝐿𝐻 , 𝐿𝐻 , 𝐿𝐻 , and 𝐿𝐻
encoded into 𝑋 ∙ 𝑃𝑜𝑠 with 𝑑 = 20 to 𝑑 = 23. It is important to note that certain net-
work information, specifically related to the third convolutional layer, the third pooling
layer, and the second fully connected layer, is excluded from the network construction.

Figure 5. Decoding of network and learning hyperparameters for CNN construction.

Table 1. Upper and lower boundary limits of network and learning hyperparameters.

Section Hyperparameter Value
Convolution Lower limit of convolutional layers, 𝑁 1

 Upper limit of convolutional layers, 𝑁 3
 Lower limit of filter numbers, 𝑁 3
 Upper limit of filter numbers, 𝑁 256
 Lower limit of kernel size, 𝑆 3 × 3
 Upper limit of kernel size, 𝑆 9 × 9

Pooling Lower limit of pooling size, 𝑆 1 × 1
 Upper limit of pooling size, 𝑆 3 × 3
 Lower limit of stride size, 𝑆 1 × 1
 Upper limit of stride size, 𝑆 2 × 2

Figure 5. Decoding of network and learning hyperparameters for CNN construction.

Table 1. Upper and lower boundary limits of network and learning hyperparameters.

Section Hyperparameter Value

Convolution Lower limit of convolutional layers, NConv
min 1

Upper limit of convolutional layers, NConv
max 3

Lower limit of filter numbers, NFil
min 3

Upper limit of filter numbers, NFil
max 256

Lower limit of kernel size, SKer
min 3× 3

Upper limit of kernel size, SKer
max 9 × 9

Pooling Lower limit of pooling size, SPool
min 1 × 1

Upper limit of pooling size, SPool
max 3× 3

Lower limit of stride size, SStr
min 1 × 1

Upper limit of stride size, SStr
max 2 × 2

Fully connected Lower limit of fully connected layer number, NFC
min 1

Upper limit of fully connected layer number, NFC
max 2

Lower limit of neuron numbers, NNeu
min 1

Upper limit of neuron numbers, NNeu
max 300

Training Lower limit of integer indices to select optimizer type, LHOpt
min

1

Upper limit of integer indices to select optimizer type, LHOpt
max 5

Lower limit of integer indices to select learning rate, LHLR
min 1

Upper limit of integer indices to select learning rate, LHLR
max 5

Lower limit of integer indices to select initializer type, LH Int
min 1

Upper limit of integer indices to select initializer type, LH Int
max 5

Lower limit of integer indices to select L2-regularizer, LHL2
min 1

Upper limit of integer indices to select L2-regularizer, LHL2
max 5

Biomimetics 2023, 8, 525 15 of 45

Table 2. Integer indices assigned for the selection of training hyperparameters.

Integer Index
Types of Training Hyperparameters

Optimizer Type LHOpt
Learning Rate

LHLR
Initializer Type

LHInt L2-Regularizer LHL2

1 Adadelta [63] 0.0001 Glorot Normal [64] 0.001
2 Adagrad [65] 0.0005 Glorot Uniform [64] 0.005
3 Adam [66] 0.001 He Normal [67] 0.01
4 Adamax [68] 0.005 He Uniform [67] 0.05
5 SGD [69] 0.01 Random Uniform 0.1

3.2. Population Initialization of ETLBOCBL-CNN

Algorithm 1 outlines the procedure for initializing the ETLBOCBL-CNN population.
This initialization step serves to create a diverse set of CNN architecture candidates by
generating random position vectors, denoted as Xn.Pos, for N learners, with n = 1, . . . , N.
The total dimension size of each Xn.Pos is computed as D = 5NConv

max + NFC
max + 6. For every

CNN architecture built by the n-th learner, the corresponding network hyperparameters
(NConv, NFil

l , SKer
l , PPool

l , SPool
l , SStr

l , NFC, and NNeu
q) and learning hyperparameters (LHOpt,

LHLR, LH Int, and LHL2) are randomly generated within their predefined feasible ranges,
as summarized in Table 1. These hyperparameters are then encoded into the respective
Xn.Posd, where d = 1, . . . , D, based on Algorithm 1.

Following the initialization of the position vector, denoted as Xn.Pos, for each n-th
learner, the fitness evaluation process, as elaborated in the subsequent section, computes
the learner’s fitness with respect to the classification error, indicated as Xn.Err. This
initialization procedure is iteratively applied to all N learners, yielding an initial population
denoted as P = [X1, . . . , Xn,, XN]. The teacher is selected among these learners based
on their fitness value, aiming for the lowest classification error. The position vector and
fitness value of the teacher are denoted as XTeacher.Pos and XTeacher.Err, respectively.

3.3. Fitness Evaluation of ETLBOCBL-CNN

To assess each ETLBOCBL-CNN learner’s fitness, a two-step process is employed as
detailed in Algorithm 2. In the first step, a potential CNN architecture is constructed and
trained using the training set. The second step evaluates this trained CNN architecture
using the validation set. The fitness of each learner is quantified by measuring the classifi-
cation error of its respective CNN architecture, where lower error values indicate superior
fitness. In this paper, ETLBOCBL-CNN’s objective is to discover the CNN model capable
of achieving the minimum classification errors when solving given datasets.

The CNN model’s configuration is determined by the network and learning hyperpa-
rameters decoded from its corresponding position vector, Xn.Pos. These hyperparameters
encompass NConv, NFil

l , SKer
l , PPool

l , SPool
l , SStr

l , NFC, NNeu
q , LHOpt, LHLR, LH Int and LHL2,

with l = 1, . . . , NConv and q = 1, . . . , NFC. Additionally, the CNN architecture is inserted
with a fully connected layer containing an output neuron number matching the number of
classes, denoted as Cnum, for classification purposes.

Referring to the learning hyperparameter LH Int, which is decoded from Xn.Posd with
d = 5NConv

max + NFC
max + 5, a weight initializer is selected. This initializer is responsible for

initializing the trainable parameters of all the convolutional and fully connected layers
within the CNN. These weight parameters are denoted as v = {v1, v2, . . .}. DefineRtrain

as the training dataset, which contains
∣∣Rtrain

∣∣ samples and is used to train the potential
CNN architecture constructed by every learner. To train each CNN architecture, multiple
training steps of τtrain are executed with a predefined batch size of Sbatch. During these
training steps, the training data are input into the network in batches, i.e.,

τtrain =

∣∣Rtrain
∣∣

Sbatch (4)

Biomimetics 2023, 8, 525 16 of 45

Algorithm 1: Population Initialization of ETLBOCBL-CNN

Input: N, NConv
min , NConv

max , NFil
min, NFil

max, SKer
min, SKer

max, SPool
min , SPool

max , SStr
min, SStr

max, NFC
min, NFC

max, NNeu
min , NNeu

max , LHOpt
min , LHLR

min, LH Int
min, LHL2

min,

LHOpt
max, LHLR

max, LH Int
max, LHL2

max
01: Compute the dimensional size as D = 5NConv

max + NFC
max + 6;

02: Initialize teacher solution as XTeacher.Pos← ∅ and XTeacher.Err ← ∞ ;
03: for n = 1 to N do
04: Initialize Xn.Pos← ∅ ;
05: for d = 1 to D do
06: if d == 1 then
07: Assign Xn.Posd with NConv ∈

{
NConv

min , NConv
max

}
;

08: else if d == 2l then
09: Assign Xn.Posd with NFil

l ∈
{

NFil
min, NFil

max

}
for l = 1, . . . , NConv

max ;

10: else if d == 2l + 1 then
11: Assign Xn.Posd with SKer

l ∈
{

SKer
min, SKer

max
}

for l = 1, . . . , NConv
max ;

12: else if d == 2NConv
max + 3l − 1 then

13: Assign Xn.Posd with PPool
l ∈ [0, 1] for l = 1, . . . , NConv

max ;
14: else if d == 2NConv

max + 3l then
15: Assign Xn.Posd with SPool

l ∈
{

SPool
min , SPool

max

}
for l = 1, . . . , NConv

max ;

16: else if d == 2NConv
max + 3l + 1 then

17: Assign Xn.Posd with SStr
l ∈

{
SStr

min, SStr
max
}

for l = 1, . . . , NConv
max ;

18: else if d == 5NConv
max + 2 then

19: Assign Xn.Posd with NFC ∈
{

NFC
min, NFC

max
}

;
20: else if d ==

(
5NConv

max + 2
)
+ q then

21: Assign Xn.Posd with NNeu
q ∈

{
NNeu

min , NNeu
max

}
for q = 1, . . . , NFC

max;
22: else if d == 5NConv

max + NFC
max + 3 then

23: Assign Xn.Posd with LHOpt ∈
{

LHOpt
min , LHOpt

max

}
;

24: else if d == 5NConv
max + NFC

max + 4 then
25: Assign Xn.Posd with LHLR ∈

{
LHLR

min, LHLR
max
}

;
26: else if d == 5NConv

max + NFC
max + 5 then

27: Assign Xn.Posd with LH Int ∈
{

LH Int
min, LH Int

max
}

;
28: else if d == 5NConv

max + NFC
max + 6 then

29: Assign Xn.Posd with LHL2 ∈
{

LHL2
min, LHL2

max
}

;
30: end if
31: end for
32: Fitness evaluation of Xn.Pos as Xn.Er using Algorithm 2;
33: if Xn.Err < XTeacher.Err then
34: XTeacher.Pos← Xn.Pos , XTeacher.Err ← Xn.Err ;
35: end if
36: end for
Output: P = [X1, . . . , Xn,, XN], XTeacher

Next, an optimizer is chosen based on the learning hyperparameter LHOpt decoded
from Xn.Posd with d = 5NConv

max + NFC
max + 3. This optimizer is employed to train the

compiled CNN across a predetermined epoch number εtrain, performed on τtrain batches
of data obtained from Rtrain. At each i-th training step, where i = 1, . . . , τtrain, the cross-
entropy loss function of CNN is obtained as f

(
v,Rtrain

i
)

based on the current weight
parameters v = {v1, v2, . . .} and the i-th batch of data, Rtrain

i . Let RL represents the
learning rate determined based on the learning hyperparameter LHLR decoded from
Xn.Posd with d = 5NConv

max + NFC
max + 4. Additionally, ∇ f

(
v,Rtrain

i
)

refers to the gradient
of cross-entropy loss. The new weight parameters vnew =

{
vnew

1 , vnew
2 , . . .

}
for the CNN

model are then updated as follows:

vnew = v− RL∇ f
(

v,Rtrain
i

)
(5)

Biomimetics 2023, 8, 525 17 of 45

The performance of a CNN is assessed with a validation datasetRvalid of size
∣∣∣Rvalid

∣∣∣
after the training. This evaluation process is carried out in τvalid steps, i.e.,

τvalid =

∣∣∣Rvalid
∣∣∣

Sbatch (6)

In every j-th step of evaluation, various batches from the validation dataset, Rvalid
j ,

are utilized to assess the trained CNN models. This results in distinct classification errors,
denoted as Err_Batchj, where j = 1, . . . , τvalid. The mean classification error of the trained
CNN model, considering all τvalid batches of data in Rvalid, is calculated to derive the
fitness value of each n-th learner, i.e., Xn.Err, as follows:

Xn.Err =
1

τvalid

τvalid

∑
j=1

Err_Batchj (7)

Finding the best CNN architecture for a given dataset with ETLBOCBL-CNN poses
a considerable challenge given the time-consuming nature of exhaustive training and
evaluation for each potential solution. While exploring numerous alternatives is crucial
for enhancing solutions in MSA-based methods like ETLBOCBL-CNN, the exhaustive
training of each learner on Rtrain with a large εtrain is often impractical due to the sub-
stantial computational load involved. To address this challenge, a fitness approximation
method is employed. It involves training the potential CNN architecture represented by
each learner using a reduced training epoch (e.g., εtrain = 1) during fitness evaluation. This
approach, while potentially leading to less precise evaluations, significantly alleviates the
computational burden. The primary aim of the selection operator is to identify the next
generation of the population through fair comparisons among the learners, rather than
achieving precise fitness evaluations for each learner. Additionally, a potential CNN archi-
tecture demonstrating superior performance in the initial epochs is more likely to exhibit
a competitive classification error in the final stage. Upon completing the search process
with ETLBOCBL-CNN, the optimal CNN architecture, constructed based on network and
learning hyperparameters decoded from the teacher solution, can be thoroughly trained
with a higher εtrain to obtain its final classification error.

Algorithm 2: Fitness Evaluation of ETLBOCBL-CNN

Inputs: Xn.Pos,Rtrain,Rvalid, Sbatch, εtrain, RL, Cnum

01:
Construct a candidate CNN architecture based on the network and learning hyperparameters decoded from Xn.Pos and
insert a fully connected layer with Cnum output neurons;

02: Compute τtrain and τvalid using Equations (4) and (6), respectively;
03: Generate the initial weights of the CNN model as v = {v1, v2, . . .} using the selected weight initializer;
04: for ε = 1 to εtrain do
05: for i = 1 to τtrain do
06: Calculate f

(
v,Rtrain

i

)
of CNN model;

07: Update the weights vnew =
{

vnew
1 , vnew

2 , . . .
}

based on Equation (5);
08: end for
09: end for
10: for j = 1 to τvalid do
11: Classify theRvalid

j dataset using the trained CNN model;
12: Record the classification errors for solving theRvalid

j dataset as Err_Batchj;
13: end for
14: Calculate Xn, Err of the candidate CNN architecture built from Xn.Pos with Equation (7);
Output: Xn.Err

Biomimetics 2023, 8, 525 18 of 45

3.4. Modified Teacher Phase of ETLBOCBL-CNN

The original TLBO’s teacher phase leverages both the teacher solution and the popu-
lation mean to guide learners towards the global optimum, as expressed in Equation (1).
Although this guidance is beneficial in the initial stages of optimization, it can lead to
stagnation in later generations as diversity among exemplars diminishes. Consequently,
when confronted with intricate tasks, TLBO may yield suboptimal results due to premature
convergence. To address these issues, the modified teacher phase in ETLBOCBL-CNN
introduces the concept of competency-based learning. This approach involves categorizing
learners based on their competence levels and employing various predominant learners,
alongside the teacher solution and population mean, to direct their search processes. Con-
sequently, the modified teacher phase in ETLBOCBL-CNN can preserve swarm diversity
while enhancing guidance to the population during the quest for the global optimum.

3.4.1. Construction of Mean Network Architecture Represented by Population Mean

The initial step of ETLBOCBL-CNN’s modified teacher phase involves computing the
population mean, denoted as X.Mean. This population mean encompasses the network
and learning hyperparameters of the mean network architecture based on the position
vectors of all learners within the population, represented as P = [X1, . . . , Xn,, XN].
Specifically, each dimension d of the population mean, which corresponds to network or
learning hyperparameters, is calculated by averaging the position vectors of all learners
along that dimension, as follows:

X.Meand =
1
N

N

∑
n=1

Xn.Posd (8)

To quantize the network and learning hyperparameters into integer values, a round-
ing operator, denoted as Round(·), is applied to all dimensional components of X.Mean.
Notably, this operation excludes hyperparameters stored in d = 2NConv

max + 3l − 1, where
l = 1, . . . , NConv

max , as these values signify the selection probability of the pooling layer con-
nected to the l-th convolutional layer. For a visual illustration of the X.Mean calculation
using Equation (8), with N = 5, NConv

max = 3 and NFC
max = 2, please refer to Figure 6. Detailed

pseudocode for computing the mean network architecture, as represented by X.Mean, is
provided in Algorithm 3.

Biomimetics 2023, 8, x FOR PEER REVIEW 19 of 45

Figure 6. Visual representation of calculating 𝑋. 𝑀𝑒𝑎𝑛 in ETLBOCBL-CNN.

Algorithm 3: Computation of Mean Network Architecture Represented by Population Mean
Input: 𝐏 = [𝑋 , … , 𝑋 , … . , 𝑋], 𝑁, 𝐷
01: 𝑋. 𝑀𝑒𝑎𝑛 ← ∅;
02: for 𝑑 = 1 to D do
03: Compute 𝑋. 𝑀𝑒𝑎𝑛 using Equation (8);
04: if 𝑑 ≠ 2𝑁 + 3𝑙 − 1 with 𝑙 = 1, … , 𝑁 do
05: 𝑋. 𝑀𝑒𝑎𝑛 ← 𝑅𝑜𝑢𝑛𝑑(𝑋. 𝑀𝑒𝑎𝑛);
06: end if
07: end for
Output: 𝑋. 𝑀𝑒𝑎𝑛

3.4.2. Construction of New CNN Architecture Using Competency-Based Learning
When dealing with complex optimization problems like automatic network architec-

ture design using MSAs, it is vital to maintain diversity within the population to prevent
premature convergence and becoming stuck in local optima. Simultaneously, achieving
rapid convergence to the global optimum with limited computational resources is equally
important. Balancing these conflicting requirements poses a significant challenge. To ad-
dress this challenge, competency-based learning is introduced into the modified teacher
phase of ETLBOCBL-CNN. This strategy aims to strike a balance between exploration and
exploitation searches for optimal performance in solving automatic network architecture
design problems. It draws inspiration from mixed-ability classrooms in modern educa-
tion, where teaching is tailored to students with varying cognitive abilities. Similarly, the
proposed competency-based learning recognizes that different learners have diverse po-
tentials for exploring and exploiting the search space. Therefore, they are categorized into
groups based on their competency levels, quantified through fitness values.

After calculating the population mean (𝑋. 𝑀𝑒𝑎𝑛), ETLBOCBL-CNN learners are
sorted based on their fitness values, 𝑋 . 𝐸𝑟𝑟, in ascending order for 𝑛 = 1, … , 𝑁. All learn-
ers in the sorted 𝐏 = [𝑋 , … , 𝑋 , … . , 𝑋] are then divided into G groups. Each learner’s
group index, g, is stored in 𝑋 . 𝐺𝑟𝑝 , where 1 ≤ 𝑔 ≤ 𝐺 . Define 𝑆 as the maximum
number of learners assigned to each group (i.e., group size), and the group index g for
each n-th learner is calculated as follows:

Figure 6. Visual representation of calculating X.Mean in ETLBOCBL-CNN.

Biomimetics 2023, 8, 525 19 of 45

Algorithm 3: Computation of Mean Network Architecture Represented by Population Mean

Input: P = [X1, . . . , Xn,, XN], N, D
01: X.Mean← ∅ ;
02: for d = 1 to D do
03: Compute X.Meand using Equation (8);
04: if d 6= 2NConv

max + 3l − 1 with l = 1, . . . , NConv
max do

05: X.Meand ← Round
(
X.Meand

)
;

06: end if
07: end for
Output: X.Mean

3.4.2. Construction of New CNN Architecture Using Competency-Based Learning

When dealing with complex optimization problems like automatic network architec-
ture design using MSAs, it is vital to maintain diversity within the population to prevent
premature convergence and becoming stuck in local optima. Simultaneously, achieving
rapid convergence to the global optimum with limited computational resources is equally
important. Balancing these conflicting requirements poses a significant challenge. To
address this challenge, competency-based learning is introduced into the modified teacher
phase of ETLBOCBL-CNN. This strategy aims to strike a balance between exploration and
exploitation searches for optimal performance in solving automatic network architecture
design problems. It draws inspiration from mixed-ability classrooms in modern education,
where teaching is tailored to students with varying cognitive abilities. Similarly, the pro-
posed competency-based learning recognizes that different learners have diverse potentials
for exploring and exploiting the search space. Therefore, they are categorized into groups
based on their competency levels, quantified through fitness values.

After calculating the population mean (X.Mean), ETLBOCBL-CNN learners are sorted
based on their fitness values, Xn.Err, in ascending order for n = 1, . . . , N. All learners in
the sorted P = [X1, . . . , Xn,, XN] are then divided into G groups. Each learner’s group
index, g, is stored in Xn.Grp, where 1 ≤ g ≤ G. Define SGroup as the maximum number
of learners assigned to each group (i.e., group size), and the group index g for each n-th
learner is calculated as follows:

Xn.Grp = g = ceil
(

n
SGroup

)
(9)

where ceil(·) is a ceiling operator that rounds up a value to the nearest integer. In Equation
(9), the group index g of each n-th learner is explicitly assigned to Xn.Grp based on n and
SGroup. The calculation of Xn.Grp is as follows:

Xn.Grp =

1 if 1 ≤ n ≤ SGroup

2 i f SGroup + 1 ≤ n ≤ 2SGroup

3 i f 2SGroup + 1 ≤ n ≤ 3SGroup

...
...

g i f (g− 1)SGroup + 1 ≤ n ≤ gSGroup

...
...

G− 1, i f (G− 2)SGroup + 1 ≤ n ≤ (G− 1)SGroup

G, i f (G− 1)SGroup + 1 ≤ n ≤ GSGroup

(10)

Equation (10) indicates that learners with better fitness values (i.e., lower Xn.Err) are
assigned smaller group indices g to their Xn.Grp. For instance, the top-performing SGroup

learners with population indices in the range of n = 1, . . . , SGroup have group index g = 1
assigned to their Xn.Grp, while the bottom-performing SGroup learners with population in-
dices of n = (G− 1)SGroup, . . . , GSGroup have group index g = G assigned to their Xn.Grp.
Learners in superior groups with smaller indices are assumed to possess more valuable

Biomimetics 2023, 8, 525 20 of 45

information for guiding the population towards the global optimum. Conversely, learners
in inferior groups with larger indices play a crucial role in exploring the search space and
diverting learners away from local optima. In other words, learners in different groups
exhibit varying levels of exploration and exploitation capabilities, with smaller g values
indicating a more exploitative nature and larger g values indicating a stronger inclination
towards exploration. Figure 7 visually represents the concept of competency-based learn-
ing within the modified teacher phase of ETLBOCBL-CNN. It highlights how learners in
worse groups with larger g values are encouraged to learn from those predominant ones in
better groups with smaller g values, thereby achieving a balance between exploration and
exploitation searches.

Biomimetics 2023, 8, x FOR PEER REVIEW 20 of 45

𝑋 . 𝐺𝑟𝑝 = 𝑔 = 𝑐𝑒𝑖𝑙 𝑛𝑆 (9)

where 𝑐𝑒𝑖𝑙(∙) is a ceiling operator that rounds up a value to the nearest integer. In Equa-
tion (9), the group index g of each n-th learner is explicitly assigned to 𝑋 . 𝐺𝑟𝑝 based on
n and 𝑆 . The calculation of 𝑋 . 𝐺𝑟𝑝 is as follows:

𝑋 . 𝐺𝑟𝑝 =
⎩⎪⎪
⎨⎪
⎪⎧ 1,2,3,⋮𝑔⋮𝐺 − 1,𝐺,

if 1 ≤ 𝑛 ≤ 𝑆if 𝑆 + 1 ≤ 𝑛 ≤ 2𝑆if 2𝑆 + 1 ≤ 𝑛 ≤ 3𝑆⋮if (𝑔 − 1)𝑆 + 1 ≤ 𝑛 ≤ 𝑔𝑆⋮if (𝐺 − 2)𝑆 + 1 ≤ 𝑛 ≤ (𝐺 − 1)𝑆if (𝐺 − 1)𝑆 + 1 ≤ 𝑛 ≤ 𝐺𝑆

(10)

Equation (10) indicates that learners with better fitness values (i.e., lower 𝑋 . 𝐸𝑟𝑟) are
assigned smaller group indices g to their 𝑋 . 𝐺𝑟𝑝. For instance, the top-performing 𝑆
learners with population indices in the range of 𝑛 = 1, … , 𝑆 have group index 𝑔 = 1
assigned to their 𝑋 . 𝐺𝑟𝑝, while the bottom-performing 𝑆 learners with population
indices of 𝑛 = (𝐺 − 1)𝑆 , … , 𝐺𝑆 have group index 𝑔 = 𝐺 assigned to their 𝑋 . 𝐺𝑟𝑝. Learners in superior groups with smaller indices are assumed to possess more
valuable information for guiding the population towards the global optimum. Con-
versely, learners in inferior groups with larger indices play a crucial role in exploring the
search space and diverting learners away from local optima. In other words, learners in
different groups exhibit varying levels of exploration and exploitation capabilities, with
smaller g values indicating a more exploitative nature and larger g values indicating a
stronger inclination towards exploration. Figure 7 visually represents the concept of com-
petency-based learning within the modified teacher phase of ETLBOCBL-CNN. It high-
lights how learners in worse groups with larger g values are encouraged to learn from
those predominant ones in better groups with smaller g values, thereby achieving a bal-
ance between exploration and exploitation searches.

Figure 7. Visualization of the idea of competency-based learning introduced into the ETLOCBL-
CNN’s modified teacher phase. Color dots refer to learners assigned to different groups.

• Competency-based learning entails selecting predominant learners to guide the
search process of learners within the solution space, in addition to the teacher solu-
tion and population mean. This selection process depends on the group index g

Figure 7. Visualization of the idea of competency-based learning introduced into the ETLOCBL-
CNN’s modified teacher phase. Color dots refer to learners assigned to different groups.

Competency-based learning entails selecting predominant learners to guide the search
process of learners within the solution space, in addition to the teacher solution and
population mean. This selection process depends on the group index g assigned to each
n-th learner in Xn.Grp, where n = 1, . . . , N and g = 1, . . . , G. Based on Equation (10) and
Figure 7, three distinct scenarios can be identified in this learning process:

• Scenario 1: When Xn.Grp is assigned to a group index of g ≥ 3 for any n-th learner
with n = 2SGroup, . . . , GSGroup, at least two groups of learners perform better than Xn.

• Scenario 2: When Xn.Grp is assigned to a group index of g = 2 for any n-th learner
with n = SGroup, . . . , 2SGroup, only one group of learners perform better than Xn.

• Scenario 3: When Xn.Grp is assigned to a group index of g = 1 for any n-th learner
with n = 1, . . . , SGroup, no learners from any other group perform better than Xn.

In scenario 1, each n-th learner assigned to the g-th group (i.e., Xn.Grp = g) has the
opportunity to learn from two predominant learners randomly selected from two superior
groups (Xn

gr1
r1

.Grp = gr1 and Xngr2
r2

.Grp = gr2), where gr1, gr2 ∈ {1, g− 1} and gr1 <

gr2 < g. The population indices for these two predominant learners can be determined
as ngr1

r1 ∈
{
(gr1 − 1)SGroup, gr1SGroup} and ngr2

r2 ∈
{
(gr2 − 1)SGroup, gr2SGroup}, respectively.

For any n-th learner categorized under scenario 1, where n = 2SGroup, . . . , GSGroup and
g = 3,, G, a position vector Xo f f

n .Pos, representing a potential new CNN architecture,
can be derived through the modified teacher phase of EETLBOCBL-CNN, as follows:

Biomimetics 2023, 8, 525 21 of 45

Xo f f
n .Pos = Xn.Pos + r3

(
XTeacher.Pos− FTX.Mean

)
+ r4

(
Xn

gr1
r1

.Pos− Xn.Pos
)
+ r5

(
Xngr2

r2
.Pos− Xn.Pos

)
(11)

where r3, r4, r5 ∈ [0, 1] are the random numbers obtained from the uniform distribution.
In contrast to the original teacher phase in Equation (2), the competency-based learning
in Equation (11) considers two predominant learners (Xn

gr1
r1

and Xngr2
r2

) chosen from two

superior groups to provide more effective guidance to the search process. These two
predominant learners possess different levels of exploration and exploitation capabilities.
If the predominant learner selected from group gr1 surpasses the one from group gr2,
then predominant learner Xn

gr1
r1

is more likely to lead the n-th learner towards the global

optimum, while the other predominant learner Xngr2
r2

is more beneficial in assisting the
n-th learner in escaping from local optima. Furthermore, the stochastic mechanisms used
to select the two superior groups (i.e., gr1 and gr2) and the two predominant learners
(i.e., Xn

gr1
r1

and Xngr2
r2

) from each selected group further contribute to the preservation of

diversity within the ETLBOCBL-CNN population during the modified teacher phase.
In scenario 2, the n-th learner is assigned to the second group (i.e., Xn.Grp = g = 2 for

n = SGroup, . . . , 2SGroup). These learners can learn from one of two predominant learners,
with population indices of n1

r1 and n1
r2, randomly selected from the best group with an

index of g = 1, where Xn1
r1

.Grp = Xn1
r2

.Grp = 1. The population indices of these two

predominant learners are determined as n1
r1, n1

r2 ∈
{

1, SGroup} and n1
r1 6= n1

r2. Next, the
fitness values of these two predominant learners, Xn1

r1
.Err and Xn1

r2
.Err, are compared,

and only the superior one is chosen to guide the search process. For learners categorized
under scenario 2, with n = SGroup, . . . , 2SGroup and g = 2, the position vector Xo f f

n .Pos,
representing the new CNN architecture for the n-th learner, is determined as follows:

Xo f f
n .Pos =

Xn.Pos + r6

(
XTeacher.Pos− FTX.Mean

)
+ r7

(
Xn1

r1
.Pos− Xn.Pos

)
, if Xn1

r1
.Err ≤ Xn1

r2
.Err

Xn.Pos + r6

(
XTeacher.Pos− FTX.Mean

)
+ r7

(
Xn1

r2
.Pos− Xn.Pos

)
, if Xn1

r1
.Err > Xn1

r2
.Err

(12)

where r6, r7 ∈ [0, 1] are the random numbers obtained from the uniform distribution.
In scenario 3, all learners assigned to the first group (i.e., Xn.Grp = g = 1 for

n = 1, . . . , SGroup) are regarded as the best individuals in the population for the current
generation, expected to be closer to the global optimum than other members. Given that
these learners lack better exemplars from other groups to learn from, their search processes
are guided solely by the teacher and the population mean, similar to the teacher phase of
the original TLBO. For a learner categorized under scenario 3, where n = 1, . . . , SGroup and
g = 1, the position vector Xo f f

n .Pos, representing the new CNN architecture, is determined
as follows:

Xo f f
n .Pos = Xn.Pos + r8

(
XTeacher.Pos− FTX.Mean

)
(13)

where r8 ∈ [0, 1] is a random number obtained from the uniform distribution.
The competency-based learning incorporated into the modified teacher phase of

ETLBOCBL-CNN is detailed in Algorithm 4. To derive a potential new CNN architec-
ture for each n-th learner (n = 1, . . . , N and N = GSGroup), Xo f f

n .Pos is computed using
Equations (11)–(13). Subsequently, a rounding operator Round(·) is applied to all dimen-
sional components of Xo f f

n .Pos, except for the values stored in d = 2NConv
max + 3l − 1, where

l = 1, . . . , NConv
max , representing the selection probability of the pooling layer connected

with the l-th convolutional layer. The fitness of each Xo f f
n .Pos is then assessed using

Algorithm 2, producing the corresponding classification error Xo f f
n .Err. If the CNN archi-

tecture represented by Xo f f
n .Pos yields a lower classification error than that of XTeacher.Pos,

the n-th offspring learner Xo f f
n will replace the teacher solution XTeacher. All generated

offspring solutions, Xo f f
n for n = 1, . . . , N, are collected in the offspring population set

Biomimetics 2023, 8, 525 22 of 45

Poff =
[

Xo f f
1 , . . . , Xo f f

n ,, Xo f f
N

]
and will be employed in the subsequent stage of the

modified learner phase alongside the original population, P = [X1, . . . , Xn,, XN].

Algorithm 4: Competency-Based Learning in ETLBOCBL-CNN’s Modified Teacher Phase

Inputs: P = [X1, . . . , Xn,, XN], N, D, XTeacher,Rtrain,Rvalid, Sbatch, εtrain, RL, Cnum, SGroup, G
01: Initialize offspring population set as Poff ← ∅ ;
02: Calculate the population mean X.Mean using Algorithm 3;
03: Sort all solution members of P ascendingly by referring to their fitness values Xn.Err;
04: Determine the group index g assigned to Xn.Grp of all sorted learners using Equations (9) and (10);
05: for n = 1 to N do
06: Initialize the n-th offspring learner as Xo f f

n ← ∅ ;
07: if Xn.Grp ≥ 3 then
08: Randomly select two better group indices of gr1, gr2 ∈ {1, g− 1}, where gr1 < gr2 < g;
09: Randomly select two predominant learners with the population indices represented as

ngr1
r1 ∈

{
(gr1 − 1)SGroup, gr1SGroup} and ngr2

r2 ∈
{
(gr2 − 1)SGroup, gr2SGroup};

10: Calculate Xo f f
n .Pos using Equation (11);

11: else if Xn.Grp = 2 then
12: Randomly select two predominant learners from the first group (i.e., g = 1) with the population

indices of n1
r1, n1

r2 ∈
{

1, SGroup} and n1
r1 6= n1

r2, where Xn1
r1

.Grp = Xn1
r2

.Grp = 1;
13: Compare the fitness values of two predominant learners, i.e., Xn1

r1
.Err and Xn1

r2
.Err;

14: Calculate Xo f f
n .Pos using Equation (12);

15: else if Xn.Grp = 1 then
16: Calculate Xo f f

n .Pos using Equation (13);
17: end if
18: for d = 1 to D do
19: if d 6= 2NConv

max + 3l − 1 with l = 1, . . . , NConv
max then

20: Xo f f
n .Posd ← Round

(
Xo f f

n .Posd

)
;

21: end if
22: end for
23: Perform fitness evaluation on Xo f f

n .Pos to obtain Xo f f
n .Err using Algorithm 2;

24: if Xo f f
n .Er < XTeacher.Err then

25: XTeacher.Pos← Xo f f
n .Pos , XTeacher.Err ← Xo f f

n .Err
26: end if
27: Poff ← Poff ∪ Xo f f

n ;
28: end for
Outputs: Poff =

[
Xo f f

1 , . . . , Xo f f
n ,, Xo f f

N

]
, P = [X1, . . . , Xn,, XN], XTeacher

3.5. Modified Learner Phase of ETLBOCBL-CNN

To encourage exploration and prevent convergence toward local optima, the origi-
nal TLBO employs a repelling mechanism within its single peer interaction, as seen in
Equation (3). However, the effectiveness of this mechanism diminishes over iterations, par-
ticularly as the population converges. This renders it inadequate for complex problems like
automatic network architecture design. Furthermore, the single peer interaction neglects
the dynamics of interactions among multiple peers in a classroom, interactions that foster
more efficient knowledge enhancement and the inclination of learners to preserve their
original useful knowledge. To rectify these shortcomings, the modified learning phase of
ETLBOCBL-CNN introduces a stochastic peer interaction scheme, aiming to enhance its
performance in the discovery of optimal CNN architectures.

In the modified learner phase of ETLBOCBL-CNN, a stochastic peer learning scheme
is introduced. This scheme enables each learner to interact with different peers randomly,
fostering the creation of new CNN architectures. The stochastic nature of these interactions
allows ETLBOCBL-CNN to escape local optima and discover more diverse solutions.
Moreover, by promoting interactions among multiple peers, this phase mimics the intricate

Biomimetics 2023, 8, 525 23 of 45

learning dynamics found in classrooms, facilitating more effective knowledge exchange
and retention.

After completing the modified teacher phase, a clone population, denoted as Pclone =[
Xclone

1 , . . . , Xclone
n ,, Xclone

N

]
, is formed by duplicating the offspring population Poff =[

Xo f f
1 , . . . , Xo f f

n ,, Xo f f
N

]
and sorting it in ascending order based on its fitness values,

denoted as Xclone
n .Err for n = 1, . . . , N. From Pclone, two subsets of the population, PT20 =[

XT20
1 , . . . , XT20

n ,, XT20
0.2N

]
and PT50 =

[
XT50

1 , . . . , XT50
n ,, XT50

0.5N
]
, are created to store

the top 20% and top 50% of learners from the offspring population, respectively. In the
context of the stochastic peer interaction scheme, three distinct strategies are employed to
update the d-th dimension of the position vector for each n-th offspring learner, Xo f f

n .Posd.
The strategy applied is determined by a random variable rand ∈ [0, 1]. Specifically, (a) if
0 ≤ rand < 1/3, a multiple peer interaction is triggered to update Xo f f

n .Posd; (b) if 1/3 ≤
rand < 2/3, a modified single peer interaction is employed to update Xo f f

n .Posd; and (c) if
2/3 ≤ rand ≤ 1, the original value of Xo f f

n .Posd is retained.
Suppose two top-performing offspring learners, denoted as XT20

p and XT20
q , are ran-

domly chosen from PT20, where p 6= q 6= n. If the random variable rand falls within the
range of 0 to 1/3, the multiple peer interaction condition is triggered to update for the d-th
component of the n-th learner, Xo f f

n .Posd, as follows:

Xo f f
n .Posd = Xo f f

n .Posd + r9

(
XT20

p .Posd − Xo f f
n .Posd

)
+ r10

(
XT20

q .Posd − Xo f f
n .Posd

)
(14)

where r9, r10 ∈ [0, 1] are the random numbers obtained from the uniform distribution.
Let XT50

r be a top-performing learner randomly chosen from PT50, and it is utilized to
update the d-th dimension of the n-th offspring learner, i.e., Xo f f

n .Posd, where r 6= n. This
update occurs through a modified single peer interaction scheme when the random variable
rand falls in the range of 1/3 to 2/3. In this modified scheme, Xo f f

n is attracted towards
XT50

r if XT50
r .Err ≤ Xo f f

n .Err. In contrary, Xo f f
n is repelled from XT50

r if XT50
r .Err > Xo f f

n .Err.
The formulation of this modified single peer interaction scheme for updating Xo f f

n .Posd in
each d-th dimension of the n-th learner is as follows:

Xo f f
n .Posd =

Xo f f
n .Posd + r11

(
XT50

r .Posd − Xo f f
n .Posd

)
, i f XT50

r .Err ≤ Xo f f
n .Err

Xo f f
n .Posd + r11

(
Xo f f

n .Posd − XT50
p .Posd

)
, i f XT50

r .Err > Xo f f
n .Err

(15)

where r11 ∈ [0, 1] is a random number obtained from the uniform distribution.
The stochastic peer interaction scheme, introduced in the modified learner phase of

ETLBOCBL-CNN and detailed in Algorithm 5, allows for unique updates in each dimension
of the learners. These updates can involve multiple peer interactions, modified single peer
interactions, or the retention of the original values, facilitating the generation of diverse can-
didate solutions and enhancing search capabilities. All dimensions of the updated Xo f f

n .Pos
are subject to a rounding operation using Round(·), except for those corresponding to
d = 2NConv

max + 3l − 1 for l = 1, . . . , NConv
max because they represent the selection probabilities

of pooling layers associated with the l-th convolutional layer. Subsequently, Algorithm 2 is
used to assess the fitness of each updated offspring learner, resulting in the computation
of their classification error, Xo f f

n .Err. If the CNN architecture represented by the updated
Xo f f

n .Pos yields lower classification error than XTeacher.Pos, the teacher solution XTeacher is
replaced by the n-th updated offspring learner Xo f f

n .

3.6. Tri-Criterion Selection Scheme

In any optimization process employing MSAs, the choice of the selection scheme for
constructing the next-generation population is pivotal. Conventional selection methods,

Biomimetics 2023, 8, 525 24 of 45

like greedy selection and tournament selection, rely solely on the fitness values of solutions
to determine their survival. For example, the original TLBO uses a greedy selection scheme
to compare the fitness values of existing learners with those of new learners generated
through teacher and learner phases. While these fitness-based selection schemes are
straightforward to implement, they have the drawback of rejecting potentially valuable
solutions with temporarily inferior fitness values that could substantially enhance the
overall population quality over time. To address this limitation, the ETLBOCBL-CNN
introduces a tri-criterion selection scheme. This scheme not only takes into account the
fitness of learners but also factors in their diversity and improvement rate.

Algorithm 5: Stochastic Peer Interaction in ETLBOCBL-CNN’s Modified Teacher Phase

Inputs: N, D, Poff =
[

Xo f f
1 , . . . , Xo f f

n ,, Xo f f
N

]
, XTeacher,Rtrain,Rvalid, Sbatch, εtrain, RL, Cnum

01: Initialize clone population set as Pclone ← ∅ ;

02:
Construct Pclone by duplicating Poff and sorting the offspring learners ascendingly by referring to their fitness values of
Xclone

n .Err for n = 1, . . . , N;
03: Construct PT20 and PT50 by extracting the top 20% and 50% of offspring learners stored in Pclone;
04: for n = 1 to N do
05: for d = 1 to D do
06: Randomly generate rand ∈ [0, 1] from uniform distribution;
07: if 0 ≤ rand < 1/3 then
08: Randomly select XT20

p and XT20
q from PT20, where p 6= q 6= n;

09: Update Xo f f
n .Posd using Equation (14);

10: else if 1/3 ≤ rand < 2/3 then
11: Randomly select XT50

r from PT50, where r 6= n;
12: Update Xo f f

n .Posd using Equation (15);
13: else if 2/3 ≤ rand ≤ 1 then
14: Retain the original value of Xo f f

n .Posd;
15: end if
16: if d 6= 2NConv

max + 3l − 1 with l = 1, . . . , NConv
max then

17: Xo f f
n .Posd ← Round

(
Xo f f

n .Posd

)
;

18: end if
19: end for
20: Perform fitness evaluation on the updated Xo f f

n .Pos to obtain new Xo f f
n .Err using Algorithm 2;

21: if Xo f f
n .Err < XTeacher.Err then

22: XTeacher.Pos← Xo f f
n .Pos , XTeacher.Err ← Xo f f

n .Err ;
23: end if
24: end for
Output: Updated Poff =

[
Xo f f

1 , . . . , Xo f f
n ,, Xo f f

N

]
and XTeacher

After completing the modified learner phase, each n-th offspring learner’s fitness in
the updated population Poff =

[
Xo f f

1 , . . . , Xo f f
n ,, Xo f f

N

]
is compared with that of its

corresponding n-th original learner from P = [X1, . . . , Xn,, XN]. The improvement rate
for each n-th offspring learner is then determined as follows:

Xo f f
n .Impr =

Xn.Err− Xo f f
n .Err

‖ Xn.Pos− Xo f f
n .Pos ‖

(16)

Here,
(

Xn.Err− Xo f f
n .Err

)
in the numerator represents the change in fitness between

the original and offspring learners, while ‖ Xn.Pos− Xo f f
n .Pos ‖ in the denominator quan-

tifies the Euclidean distance between these two learners. A positive Xo f f
n .Impr indicates

that the n-th offspring learner can yield a CNN architecture with a lower classification error
compared to its original counterpart. The magnitude of Xo f f

n .Impr plays a crucial role in as-

Biomimetics 2023, 8, 525 25 of 45

sessing the effectiveness of each offspring learner in enhancing population quality. Higher
values of Xo f f

n .Impr suggest that the n-th offspring learner has achieved substantial im-
provement in classification error with a relatively small traversal in the solution space. This
signifies that the offspring learner possesses valuable information for constructing a robust
CNN architecture that is worth inheriting in the next generation. Notably, the improvement
rate of each n-th original learner in P is set to Xn.Impr = 0 for n = 1, . . . , N, as these original
learners serve as the baseline for comparison with their respective offspring learners.

After calculating the improvement rates for all offspring learners, the subse-
quent action involves creating a merged population PMG by combining the original
P = [X1, . . . , Xn, . . . , XN] with the updated Poff =

[
Xo f f

1 , . . . , Xo f f
n ,, Xo f f

N

]
. The total

population size of PMG is 2N and is represented as follows:

PMG = P∪ Poff =
[

XMG
1 , . . . , XMG

n , . . . , XMG
2N

]
(17)

Each n-th solution member in PMG, designated as XMG
n , can originate from either an

original learner in P or an offspring learner in Poff. These solution members in PMG are
subsequently arranged in ascending order based on the classification error of their corre-
sponding CNN architecture, represented by XMG

n .Err. Additionally, XMG
n .Dis indicates the

Euclidean distance between the CNN architecture represented by the n-th solution member
in PMG (i.e., XMG

n .Pos) and the current best CNN architecture, which is represented by the
first solution member (i.e., XMG

1 .Pos), where

XMG
n .Dis =‖ XMG

n .Pos− XMG
1 .Pos ‖ (18)

A tri-criterion selection scheme is designed to determine the next population of
ETLBOCBL-CNN. This selection is based on the fitness, diversity, and improvement rate
of each n-th solution within PMG, denoted as XMG

n .Err, XMG
n .Dis, and XMG

n .Impr values,
respectively, for n = 1, . . . , 2N. For the construction of the population PNext in the next
generation, a randomly generated integer K1 ∈ {1, N} is used. It serves to select the first K1
solution members from PMG, focusing on the fitness criterion. These K1 solution members
are directly selected from the subset of PMG with the best XMG

n .Err values.
The diversity criterion is then applied to select the next K2 solution members for PNext,

with K2 ∈ {1, N − K1} being a randomly generated integer. The solution members in PMG

with population indices n = K1 + 1, . . . , 2N, that were not initially chosen for PNext, are
flagged with XMG

n .Flag = 0, indicating their non-selection. Subsequently, the weighted
fitness value XMG

n .WF is computed for the remaining (2N − K1) solution members in PMG

with population indices n = K1 + 1, . . . , 2N, taking into account their classification error
(XMG

n .Err) and diversity (XMG
n .Dis) values, i.e.,

XMG
n .WF = α

(
XMG

n .Err− Errmin

Errmax − Errmin

)
+ (1− α)

(
Dismax − XMG

n .Dis
Dismax − Dismin

)
(19)

The weight factor α is stochastically generated from a normal distribution with a mean
of 0.9 and a standard deviation of 0.05, and it is constrained to fall within the range of
0.8 to 1.0 to maintain a balance between diversity and other selection factors. Let Dismax

and Dismin represent the largest and smallest Euclidean distances measured from the best
solution member XMG

1 , respectively, while Errmax and Errmin denote the worst and best
fitness values observed within PMG. Once XMG

n .WF is computed for each solution member,
a binary tournament strategy is employed to randomly select two solution members, XMG

a
and XMG

b , from PMG, with a, b ∈ {K1 + 1, 2N}, a 6= b, and XMG
a .Flag = XMG

b .Flag = 0.

Biomimetics 2023, 8, 525 26 of 45

The solution member with the smaller weighted fitness value is designated as the new
member of PNext, represented as XNext

n for n = K1 + 1, . . . , K1 + K2, where

XNext
n =

{
XMG

a , if XMG
a .WF ≤ XMG

b .WF
XMG

b , otherwise
(20)

The selection process based on the diversity criterion in Equation (20) continues until
all K2 solution members are chosen for PNext. Once a solution member of PMG is selected in
PNext based on the diversity criterion, it is flagged with XMG

n .Flag = 1 to avoid its selection
in subsequent binary tournaments, ensuring the population diversity in the next generation
is not compromised.

The final K3 solution members of PNext are chosen from the remaining (2N − K1)
solution members of PMG based on the improvement rate criterion, considering their
XMG

n .Impr values for n = K1 + 1, . . . , 2N, with K3 = N − K1 − K2. The same binary
tournament strategy is applied to randomly select two solution members, XMG

e and XMG
f ,

from PMG, where e, f ∈ {K1 + 1, 2N}, e 6= f , and XMG
e .Flag = XMG

f .Flag = 0. The solution
member with the greater improvement rate is designated as the new solution member of
PNext, i.e., XNext

n , for n = K1 + K2 + 1, . . . , N, where

XNext
n =

{
XMG

e , if XMG
e .Impr > XMG

f .Impr
XMG

f , otherwise
(21)

The selection process based on the improvement rate criterion in Equation (21) contin-
ues until all K3 solution members are included in PNext. Similarly, any solution member
of PMG that has been chosen for PNext based on the improvement rate criterion is flagged
with XMG

n .Flag = 1 to prevent it from being selected again in the next binary tournament,
maintaining population diversity.

Algorithm 6 presents the pseudocode of the proposed tri-criterion selection scheme.
Unlike traditional fitness-based selection methods like greedy selection and tournament
selection, the proposed selection scheme not only retains the K1 elite solution members
for PNext in the next iteration but also prioritizes the preservation of population diversity
by simultaneously considering the diversity and improvement rate of solutions when
selecting the remaining K2 and K3 solution members for PNext. This approach enriches
population diversity by preserving promising individuals with various solutions, thus
enhancing the search process. Furthermore, it encourages the selection of solutions with a
higher improvement rate, leading to quicker convergence and improved overall optimiza-
tion performance. By incorporating these three criteria, the tri-criterion selection scheme
empowers ETLBOCBL-CNN with a more comprehensive selection process, resulting in the
selection of higher-quality solutions in the next generation.

3.7. Complete Mechanisms of ETLBOCBL-CNN

Algorithm 7 offers a comprehensive overview of the complete mechanisms within
ETLBOCBL-CNN for optimizing CNN architecture concerning a specific dataset. In this
context, the current iteration is stored in a counter variable t, and the predefined maximum
iteration number Tmax serves as the termination criterion for ETLBOCBL-CNN. The process
commences with loading the training (Rtrain) and validation (Rvalid) datasets from the
directory, followed by the initialization of the population using Algorithm 1. ETLBOCBL-
CNN then proceeds to iteratively generate a new offspring population set, Poff, comprising
various CNN architectures, through the modified teacher and learner phases, which are
executed using Algorithms 4 and 5, respectively. Following this, the next-generation popu-
lation, PNext, is formed by applying the proposed tri-criterion selection scheme detailed
in Algorithm 6 to the merged population PMG = P ∪ Poff. The optimization process is
considered complete when t > Tmax.

Biomimetics 2023, 8, 525 27 of 45

Algorithm 6: Tri-Criterion Selection Scheme

Inputs: N, P = [X1, . . . , Xn, . . . , XN], Poff =
[

Xo f f
1 , . . . , Xo f f

n ,, Xo f f
N

]
01: Initialize PNext ← ∅ ;
02: for n = 1 to N do
03: Assign Xn.Impr = 0 for each n-th original learner stored in P;
04: Calculate Xo f f

n .Impr of every n-th offspring learner stored in Poff with Equation (16);
05: end for
06: Construct the merged population PMG using Equation (17);
07: Sort the solution members in PMG ascendingly based on fitness values;
08: for n = 1 to 2N do
09: Calculate XMG

n .Dis of every n-th solution stored in PMG with Equation (18);
10: end for
11: Randomly generate the integers of K1 ∈ {1, N}, K2 ∈ {1, N − K1} and K3 = N − K1 − K2;
12: for n = 1 to K1 do /*Fitness criterion*/
13: XNext

n ← XMG
n ;

14: PNext ← PNext ∪ XNext
n ;

15: end for
12: for n = K1 + 1 to 2N do
13: Randomly generate α based on a normal distribution of N(0.9, 0.05);
14: Restrict the value of α in between 0.8 and 1.
15: Compute the XMG

n .WF of each n-th solution stored in PMG with Equation (19);
16: Initialize the flag variable of each n-th solution stored in PMG as XMG

n .Flag = 0;
17: end for
18: for n = K1 + 1 to K1 + K2 do /*Diversity criterion*/
19: Randomly select XMG

a and XMG
b from PMG, where a, b ∈ {K1 + 1, 2N}, a 6= b, and XMG

a .Flag = XMG
b .Flag = 0.

20: Determine XNext
n with Equation (20);

21: PNext ← PNext ∪ XNext
n ;

22: if XMG
a is selected as XNext

n then /*Prevent the selection of same solution members*/
23: XMG

a .Flag = 1;
24: else if XMG

b is selected as XNext
n then

25: XMG
b .Flag = 1;

26: end if
27: end for
28: for n = K1 + K2 + 1 to N do /*Improvement rate criterion*/
29: Randomly select XMG

e and XMG
f from PMG, where e, f ∈ {K1 + 1, 2N}, e 6= f , and XMG

e .Flag = XMG
f .Flag = 0.

30: Determine XNext
n using Equation (21);

31: PNext ← PNext ∪ XNext
n ;

32: if XMG
e is selected as XNext

n then /*Prevent the selection of same solution members*/
33: XMG

e .Flag = 1;
34: else if XMG

f is selected as XNext
n then

35: XMG
f .Flag = 1;

36: end if
37: end for
Output: PNext =

[
XNext

1 , . . . , XNext
n ,, XNext

N
]

As mentioned earlier, the fitness evaluation process in Algorithm 2 is designed to
employ a reduced epoch number εtrain when training the CNN architecture created by
each ETLBOCBL-CNN learner. While this approach can lower computational overhead, it
may be insufficient for effectively addressing complex problems. Therefore, following the
termination of ETLBOCBL-CNN, the CNN architecture produced by the teacher solution,
designated as XTeacher.Pos, undergoes an extensive training process. This process employs
the same mechanisms as those in Algorithm 2 but utilizes a larger epoch number, εFT .
The objective is to ensure that the CNN stemming from the teacher solution is thoroughly
trained and possesses the capability to effectively tackle complex problems. Upon the
completion of this full training process, comprehensive network information is returned,

Biomimetics 2023, 8, 525 28 of 45

encompassing architecture, classification error, and the number of trainable parameters,
thereby offering valuable insights into the optimized CNN architecture.

Algorithm 7: Proposed ETLBOCBL-CNN

Inputs: N, D,Rtrain,Rvalid, Sbatch, εtrain, εFT , RL, Cnum, NConv
min , NConv

max , NFil
min, NFil

max, SKer
min, SKer

max, SPool
min , SPool

max , SStr
min, SStr

max, NFC
min, NFC

max,
NNeu

min , NNeu
max , SGroup, G

01: LoadRtrain andRvalid from the directory;
02: Initialize the population P = [X1, . . . , Xn, . . . , XN] using Algorithm 1;
03: Initialize the iteration counter as t← 0 ;
04: while t < Tmax do
05: Generate Poff and update XTeacher using modified teacher phase (Algorithm 4);
06: Update Poff and XTeacher using modified learner phase (Algorithm 5);
07: Determine PNext using tri-criterion selection scheme (Algorithm 6);
08: P← PNext ;
09: t← t + 1 ;
10: end while
11: Fully train the CNN architecture constructed from XTeacher.Pos with larger εFT (Algorithm 2);
Output: XTeacher and its corresponding optimal CNN architecture

4. Performance Evaluation of ETLBOCBL-CNN
4.1. Benchmark Dataset Selection

This section focuses on evaluating the image classification performance of network ar-
chitectures developed using ETLBOCBL-CNN. These architectures are assessed across nine
benchmark datasets: Modified National Institute of Standards and Technology (MNIST),
MNIST with Rotated Digits (MNIST-RD), MNIST with Random Background (MNIST-RB),
MNIST with Background Images (MNIST-BI), MNIST with Rotated Digits and Background
Image (MNIST-RD + BI), Rectangles, Rectangles with Images (Rectangles-I), Convex, and
Fashion. These datasets were obtained from http://www.iro.umontreal.ca/~lisa/icml200
7data/ (accessed on 3 June 2023). Sample images for each dataset are visually represented
in Figure 8, and Table 3 offers an overview of the selected datasets.

Biomimetics 2023, 8, x FOR PEER REVIEW 28 of 45

thoroughly trained and possesses the capability to effectively tackle complex problems.
Upon the completion of this full training process, comprehensive network information is
returned, encompassing architecture, classification error, and the number of trainable pa-
rameters, thereby offering valuable insights into the optimized CNN architecture.

Algorithm 7: Proposed ETLBOCBL-CNN
Inputs: 𝑁, 𝐷, ℛ , ℛ , 𝑆 , 𝜀 , 𝜀 , 𝑅 , 𝐶 , 𝑁 , 𝑁 , 𝑁 , 𝑁 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑁 , 𝑁 , 𝑁 , 𝑁 , 𝑆 , 𝐺
01: Load ℛ and ℛ from the directory;
02: Initialize the population 𝐏 = [𝑋 , … , 𝑋 , … , 𝑋] using Algorithm 1;
03: Initialize the iteration counter as 𝑡 ← 0;
04: while 𝑡 < 𝑇 do
05: Generate 𝐏𝐨𝐟𝐟 and update 𝑋 using modified teacher phase (Algorithm 4);
06: Update 𝐏𝐨𝐟𝐟 and 𝑋 using modified learner phase (Algorithm 5);
07: Determine 𝐏𝐍𝐞𝐱𝐭 using tri-criterion selection scheme (Algorithm 6);
08: 𝐏 ← 𝐏𝐍𝐞𝐱𝐭 ;
09: 𝑡 ← 𝑡 + 1;
10: end while
11: Fully train the CNN architecture constructed from 𝑋 ∙ 𝑃𝑜𝑠 with larger 𝜀 (Algorithm 2);
Output: 𝑋 and its corresponding optimal CNN architecture

4. Performance Evaluation of ETLBOCBL-CNN
4.1. Benchmark Dataset Selection

This section focuses on evaluating the image classification performance of network
architectures developed using ETLBOCBL-CNN. These architectures are assessed across
nine benchmark datasets: Modified National Institute of Standards and Technology
(MNIST), MNIST with Rotated Digits (MNIST-RD), MNIST with Random Background
(MNIST-RB), MNIST with Background Images (MNIST-BI), MNIST with Rotated Digits
and Background Image (MNIST-RD + BI), Rectangles, Rectangles with Images (Rectan-
gles-I), Convex, and Fashion. These datasets were obtained from http://www.iro.umon-
treal.ca/~lisa/icml2007data/ (accessed on 3 June 2023). Sample images for each dataset are
visually represented in Figure 8, and Table 3 offers an overview of the selected datasets.

The selection of these nine benchmark datasets for this study is based on several jus-
tifications. Firstly, the current study prioritizes the development of an efficient MSA-based
automated network architecture search method that can scale to larger datasets in the fu-
ture, given the limited computing resources. As a result, this study has chosen to test the
proposed ETLBOCBL-CNN exclusively on these nine datasets, which have small input
sizes (28 × 28 × 1). Additionally, each of these benchmark datasets exhibits distinct char-
acteristics related to the types of objects to be classified. This diversity makes them well-
suited for evaluating the overall effectiveness of the proposed ETLBOCBL-CNN in search-
ing for optimal CNN architectures capable of robustly classifying various types of da-
tasets. Furthermore, these benchmark datasets are selected because different algorithms
have previously reported promising results on them. This choice allows for convenient
comparisons between the performance of ETLBOCBL-CNN and the algorithms that have
achieved the best results on these datasets.

(a) (b)

(c) (d)

Biomimetics 2023, 8, x FOR PEER REVIEW 29 of 45

(e) (f)

(g) (h)

(i)

Figure 8. Sample images of the datasets: (a) MNIST, (b) MNIST-RD, (c) MNIST-RB, (d) MNIST-BI,
(e) MNIST-RD + BI, (f) Rectangles, (g) Rectangles-I, (h) Convex, and (i) Fashion.

Table 3. An overview of nine image datasets utilized for performance evaluation.

Dataset Total No. of
Dataset

No. of
Training
Dataset

No. of Testing
Dataset Input Size No. of Output

Classes

MNIST 70,000 60,000 10,000 28 × 28 × 1 10
MNIST-RD 62,000 12,000 50,000 28 × 28 × 1 10
MNIST-RB 62,000 12,000 50,000 28 × 28 × 1 10
MNIST-BI 62,000 12,000 50,000 28 × 28 × 1 10

MNIST-RD +
BI 62,000 12,000 50,000 28 × 28 × 1 10

Rectangles 51,200 1200 50,000 28 × 28 × 1 2
Rectangles-I 62,000 12,000 50,000 28 × 28 × 1 2

Convex 58,000 8000 50,000 28 × 28 × 1 2
Fashion 70,000 60,000 10,000 28 × 28 × 1 10

The MNIST dataset [70] consists of grayscale images featuring handwritten digits
from 0 to 9, serving as a standard benchmark for classifier evaluation. To increase the
complexity of classification tasks, four variants of the MNIST dataset are designed [71]:
MNIST-RD, MNIST-RB, MNIST-BI, and MNIST-RD + BI. These variants introduce addi-
tional elements such as rotation, random background noise, background images, and
combinations of rotation and background images. These enhancements are designed to
test the generalization capabilities of classifiers. Notably, all four MNIST variants present
imbalanced distributions between their training and testing datasets, further challenging
classifiers in extracting meaningful features.

The Rectangle dataset comprises grayscale images displaying outlines of rectangles
of different sizes. It is used to assess classifier performance in recognizing larger rectan-
gles, whether in terms of height or width. On the other hand, the Rectangle-I dataset pre-
sents a more intricate challenge. It contains grayscale images of rectangles, each contain-
ing additional images within its boundaries. Solving this dataset involves the identifica-
tion of image patches within the rectangle or within the background.

The Convex dataset comprises grayscale images portraying a variety of geometric
shapes, encompassing both convex and non-convex forms. It serves as a means to evaluate
a classifier’s capacity to recognize and differentiate between these geometric types. Fi-
nally, the Fashion dataset [72] consists of grayscale images featuring various fashion prod-
ucts, categorized into ten classes of items like trousers, dresses, coats, tops, bags, sneakers,
sandals, ankle boots, pullovers, and shirts. Due to its elevated complexity, the Fashion
dataset presents a demanding challenge for assessing classifier performance.

Figure 8. Sample images of the datasets: (a) MNIST, (b) MNIST-RD, (c) MNIST-RB, (d) MNIST-BI,
(e) MNIST-RD + BI, (f) Rectangles, (g) Rectangles-I, (h) Convex, and (i) Fashion.

http://www.iro.umontreal.ca/~lisa/icml2007data/
http://www.iro.umontreal.ca/~lisa/icml2007data/

Biomimetics 2023, 8, 525 29 of 45

Table 3. An overview of nine image datasets utilized for performance evaluation.

Dataset Total No. of
Dataset

No. of Training
Dataset

No. of Testing
Dataset Input Size No. of Output

Classes

MNIST 70,000 60,000 10,000 28× 28× 1 10
MNIST-RD 62,000 12,000 50,000 28× 28× 1 10
MNIST-RB 62,000 12,000 50,000 28× 28× 1 10
MNIST-BI 62,000 12,000 50,000 28× 28× 1 10

MNIST-RD + BI 62,000 12,000 50,000 28× 28× 1 10
Rectangles 51,200 1200 50,000 28× 28× 1 2

Rectangles-I 62,000 12,000 50,000 28× 28× 1 2
Convex 58,000 8000 50,000 28× 28× 1 2
Fashion 70,000 60,000 10,000 28× 28× 1 10

The selection of these nine benchmark datasets for this study is based on several
justifications. Firstly, the current study prioritizes the development of an efficient MSA-
based automated network architecture search method that can scale to larger datasets in
the future, given the limited computing resources. As a result, this study has chosen to
test the proposed ETLBOCBL-CNN exclusively on these nine datasets, which have small
input sizes (28× 28× 1). Additionally, each of these benchmark datasets exhibits distinct
characteristics related to the types of objects to be classified. This diversity makes them
well-suited for evaluating the overall effectiveness of the proposed ETLBOCBL-CNN in
searching for optimal CNN architectures capable of robustly classifying various types of
datasets. Furthermore, these benchmark datasets are selected because different algorithms
have previously reported promising results on them. This choice allows for convenient
comparisons between the performance of ETLBOCBL-CNN and the algorithms that have
achieved the best results on these datasets.

The MNIST dataset [70] consists of grayscale images featuring handwritten digits from
0 to 9, serving as a standard benchmark for classifier evaluation. To increase the complexity
of classification tasks, four variants of the MNIST dataset are designed [71]: MNIST-RD,
MNIST-RB, MNIST-BI, and MNIST-RD + BI. These variants introduce additional elements
such as rotation, random background noise, background images, and combinations of
rotation and background images. These enhancements are designed to test the general-
ization capabilities of classifiers. Notably, all four MNIST variants present imbalanced
distributions between their training and testing datasets, further challenging classifiers in
extracting meaningful features.

The Rectangle dataset comprises grayscale images displaying outlines of rectangles of
different sizes. It is used to assess classifier performance in recognizing larger rectangles,
whether in terms of height or width. On the other hand, the Rectangle-I dataset presents
a more intricate challenge. It contains grayscale images of rectangles, each containing
additional images within its boundaries. Solving this dataset involves the identification of
image patches within the rectangle or within the background.

The Convex dataset comprises grayscale images portraying a variety of geometric
shapes, encompassing both convex and non-convex forms. It serves as a means to evaluate
a classifier’s capacity to recognize and differentiate between these geometric types. Finally,
the Fashion dataset [72] consists of grayscale images featuring various fashion products,
categorized into ten classes of items like trousers, dresses, coats, tops, bags, sneakers,
sandals, ankle boots, pullovers, and shirts. Due to its elevated complexity, the Fashion
dataset presents a demanding challenge for assessing classifier performance.

4.2. Simulation Settings

The performance of ETLBOCBL-CNN is assessed by comparing it with thirteen estab-
lished machine learning and deep learning models known for high classification accuracy
across eight selected datasets: MNIST, MNIST-RD, MNIST-RB, MNIST-RI, MNIST-RD +
BI, Rectangle, Rectangle-I, and Convex. These algorithms include ScatNet-2 [73], LDANet-

Biomimetics 2023, 8, 525 30 of 45

2 [74], PCANet-2 [74], RandNet-2 [74], NNet [71], CAE-1 [75], CAE-2 [75], DBN-3 [71],
SAA-3 [71], SVM + Poly [71], SVM + RBF [71], EvoCNN [76], and particle-swarm-based
CNN (psoCNN) [62]. Furthermore, the performance of ETLBOCBL-CNN is evaluated
against thirteen additional algorithms, namely 2C1P2F, 2C1P2F + Dropout, 3C2F, 3C1P2F +
Dropout, MLP 256-128-64, MLP 256-128-100, AlexNet [77], SqueezeNet [78], HOG + SVM,
GRU + SVM, GRU + SVM + Dropout, psoCNN [62], and EvoCNN [76], specifically for the
Fashion dataset. These algorithm results are sourced from reputable literature and publicly
available code repositories.

Notably, EvoCNN and psoCNN, like ETLBOCBL-CNN, are MSA-based algorithms
used for iteratively searching optimal CNN architectures within a maximum iteration limit.
Most of the selected peer algorithms were manually designed for specific tasks, making
them suitable for comparison with ETLBOCBL-CNN’s autonomous capability to discover
optimal CNN architectures that achieve higher accuracy with fewer network parameters,
with minimal human intervention. ETLBOCBL-CNN’s parameter settings conform to
established conventions in the deep learning and MSA communities, as detailed in Table 4.
To ensure the statistical robustness of the findings, 30 independent simulation runs of
ETLBOCBL-CNN were conducted on a computer equipped with Python 3.8.5 and Nvidia
GeForce RTX 3090.

Table 4. Parameter settings of ETLBOCBL-CNN used for performance evaluation.

Parameter Value

Maximum iteration number, Tmax 10
Population size, N 20
Dimension size, D 23

Lower limit of convolutional layer numbers, NConv
min 1

Upper limit of convolutional layer numbers, NConv
max 3

Lower limit of filter number, NFil
min 3

Upper limit of filter number, NFil
max 256

Lower limit of kernel size, SKer
min 3× 3

Upper limit of kernel size, SKer
max 9× 9

Lower limit of pooling size, SPool
min 1× 1

Upper limit of pooling size, SPool
max 3× 3

Lower limit of stride size, SStr
min 1× 1

Upper limit of stride size, SStr
max 2× 2

Lower limit of of fully connected layer numbers, NFC
min 1

Upper limit of fully connected layer numbers, NFC
max 2

Lower limit of neuron numbers, NNeu
min 1

Upper limit of neuron numbers, NNeu
max 300

Lower limit of integer index to select optimizer type, LHOpt
min

1

Upper limit of integer index to select optimizer type, LHOpt
max 5

Lower limit of integer index to select learning rate, LHLR
min 1

Upper limit of integer index to select learning rate, LHLR
max 5

Lower limit of integer index to select initializer type, LH Int
min 1

Upper limit of integer index to select initializer type, LH Int
max 5

Lower limit of integer index to select L2-regularizer, LHL2
min 1

Upper limit of integer index to select L2-regularizer, LHL2
max 5

Inclusion of batch normalization Yes
Dropout rate 0.5

Epoch number for the fitness evaluation of learner, εtrain 1
Epoch number for the full training of the best learner returned, εFT 100

4.3. Performance Analyses
4.3.1. Comparison in Classifying the First Eight Benchmark Datasets

Table 5 presents a comprehensive overview of classification accuracies achieved by the
proposed ETLBOCBL-CNN and its peer algorithms across eight challenging benchmark
image datasets: MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD + BI, Rectangles,

Biomimetics 2023, 8, 525 31 of 45

Rectangles-I, and Convex. The accuracies are determined using the respective test datasets,
ensuring a fair evaluation of generalization capabilities. For clarity, Table 5 highlights the
best and second-best results for each dataset in bold and underlined, respectively. Sym-
bols such as “(+)”, “(−)”, and “(=)” indicate whether ETLBOCBL-CNN outperforms, lags
behind, or equals the peer algorithm’s classification accuracy for a specific dataset. “NA”
denotes cases where dataset results are unavailable for direct comparison, as they were
sourced from existing literature. To provide a concise summary of the results, the “w/t/l”
metric conveys whether ETLBOCBL-CNN’s discovered optimal CNN architectures outper-
form, match, or underperform compared to peers in the w, t, and l datasets. Additionally,
“#BCA” informs the number of instances where each compared algorithm achieves the
highest classification accuracy across all eight benchmark image datasets.

Table 5. Classification accuracies obtained by ETLBOCBL-CNN and its peers when tackling the eight
selected datasets.

Algorithm MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD + BI

ScatNet-2 98.73% (+) 92.52% (+) 87.70% (+) 81.60% (+) 49.52% (+)
LDANet-2 98.95% (+) 92.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)
PCANet-2 98.60% (+) 91.48% (+) 93.15% (+) 88.45% (+) 64.14% (+)
RandNet-2 98.75% (+) 91.53% (+) 86.53% (+) 88.35% (+) 56.31% (+)

NNet 95.31% (+) 81.89% (+) 79.96% (+) 72.59% (+) 37.84% (+)
CAE-1 98.60% (+) 95.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)
CAE-2 97.52% (+) 90.34% (+) 89.10% (+) 84.50% (+) 54.77% (+)
DBN-3 96.89% (+) 89.70% (+) 93.27% (+) 83.69% (+) 52.61% (+)
SAA-3 96.54% (+) 89.70% (+) 88.72% (+) 77.00% (+) 48.07% (+)

SVM + Poly 96.31% (+) 84.58% (+) 83.38% (+) 75.99% (+) 43.59% (+)
SVM + RBF 96.97% (+) 88.89% (+) 85.42% (+) 77.49% (+) 44.82% (+)

EvoCNN 98.82% (+) 94.78% (+) 97.20% (+) 95.47% (+) 64.97% (+)
psoCNN 99.51% (+) 94.56% (+) 97.61% (+) 96.87% (+) 81.05% (+)

ETLBOCBL-CNN (Best) 99.72% 96.67% 98.28% 97.22% 83.45%
ETLBOCBL-CNN (Mean) 99.66% 95.65% 98.00% 96.85% 81.72%

Algorithm Rectangles Rectangles-I Convex w/t/l #BCA

ScatNet-2 99.99% (=) 91.98% (+) 93.50% (+) 7/1/0 1
LDANet-2 99.86% (+) 83.80% (+) 92.78% (+) 8/0/0 0
PCANet-2 99.51% (+) 86.61% (+) 95.81% (+) 8/0/0 0
RandNet-2 99.91% (+) 83.00% (+) 94.55% (+) 8/0/0 0

NNet 92.84% (+) 66.80% (+) 67.75% (+) 8/0/0 0
CAE-1 99.86% (+) 83.80% (+) NA 7/0/0 0
CAE-2 98.46% (+) 78.00% (+) NA 7/0/0 0
DBN-3 97.39% (+) 77.50% (+) 81.37% (+) 8/0/0 0
SAA-3 97.59% (+) 75.95% (+) 81.59% (+) 8/0/0 0

SVM + Poly 97.85% (+) 75.95% (+) 80.18% (+) 8/0/0 0
SVM + RBF 97.85% (+) 75.96% (+) 80.87% (+) 8/0/0 0

EvoCNN 99.99% (=) 94.97% (+) 95.18% (+) 7/1/0 1
psoCNN 99.93% (+) 96.03% (+) 97.74% (+) 8/0/0 0

ETLBOCBL-CNN (Best) 99.99% 97.41% 98.35% NA 8
ETLBOCBL-CNN (Mean) 99.97% 96.02% 97.76% NA NA

The remarkable performance of ETLBOCBL-CNN is evident from the results in Table 5.
It attains the highest classification accuracies across various image datasets, including
MNIST (99.72%), MNIST-RD (96.67%), MNIST-RB (98.28%), MNIST-BI (97.22%), MNIST-
RD + BI (83.45%), Rectangles (99.99%), Rectangles-I (97.41%), and Convex (98.35%). In
comparison to nine other algorithms (LDANet-2, PCANet-2, RandNet-2, NNet, DBN-
3, SAA-3, SVM-Poly, SVM-RBF, and psoCNN), ETLBOCBL-CNN consistently achieves
higher classification accuracies across all selected image datasets. Furthermore, ETLBOCBL-
CNN demonstrates outstanding mean classification accuracies of 99.66%, 95.65%, 98.00%,
96.85%, 81.72%, 99.97%, 97.41%, and 98.35%, surpassing the performance of thirteen

Biomimetics 2023, 8, 525 32 of 45

other algorithms in solving five out of the eight datasets: MNIST, MNIST-RD, MNIST-RB,
MNIST-RD + BI, and Convex. In addition to classification accuracies, Figure 9 presents the
distribution of test errors generated by ETLBOCBL-CNN for these eight datasets through
boxplots, offering insights into its overall performance. These simulation results reveal
that MSA-based methods like ETLBOCBL-CNN, psoCNN, and EvoCNN consistently rank
among the top two best-performing algorithms for solving these image datasets. This indi-
cates that integrating MSAs into the automated construction of optimal CNN models can be
a promising alternative to manual trial-and-error network design, reducing the need for ex-
tensive human intervention. Furthermore, the excellent performance of ETLBOCBL-CNN
in classifying the majority of benchmark datasets, compared to EvoCNN and psoCNN,
highlights the efficacy of incorporating competency-based learning and stochastic peer
interaction schemes into the modified teacher and learner phases of ETLBOCBL-CNN.
These modifications strike a balance between explorative and exploitative search strategies,
enabling ETLBOCBL-CNN to construct promising CNN models automatically, reducing
the reliance on human expertise. The integration of a tri-criterion selection scheme in
ETLBOCBL-CNN is also highly beneficial. This scheme considers criteria beyond fitness,
safeguarding valuable network information within the learners. It promotes diversity
and facilitates a commendable rate of fitness improvement, even when learners’ current
fitness levels are temporarily inferior. Both diversity and the fitness improvement rate
significantly contribute to the potential of ETLBOCBL-CNN in achieving long-term ad-
vancements in performance, especially in tackling complex problems like optimizing CNN
architecture design.

To further investigate the performance disparity between ETLBOCBL-CNN and its
peer algorithms when addressing the chosen image datasets, a series of non-parametric
statistical analyses [79] were conducted. These analyses aimed to provide deeper insights
into the classification accuracies presented in Table 5, with CAE-1 and CAE-2 excluded
from the analysis due to their lack of classification accuracies for the Convex dataset.
A performance comparison using the Wilcoxon signed-rank test [79] was conducted to
examine the performance difference between ETLBOCBL-CNN and its peer algorithms
across the eight selected datasets. The results of the Wilcoxon signed-rank test, including
the R+, R−, p, and h values, are presented in Table 6. R+ and R− represent the sum of
ranks indicating the superiority and inferiority of ETLBOCBL-CNN compared to each
algorithm, respectively. The p value serves as a measure of the minimum significance
level required to detect a performance difference between two algorithms. An algorithm
is considered significantly better than its peer when the p value falls below the threshold
value of α = 0.05. Additionally, the h value is denoted as “+”, “=”, or “−” to signify
whether ETLBOCBL-CNN is significantly better, insignificantly different, or significantly
worse than its peer in solving the selected datasets.

Table 6. Wilcoxon signed-rank test results comparing ETLBOCBL-CNN with its peers.

ETLBOCBL-CNN vs. R+ R− p Value h Value

ScatNet-2 28.0 0.0 1.42× 10−2 +
LDANet-2 36.0 0.0 9.58× 10−3 +
PCANet-2 36.0 0.0 9.58× 10−3 +
RandNet-2 36.0 0.0 9.58× 10−3 +

NNet 36.0 0.0 8.37× 10−3 +
DBN-3 36.0 0.0 9.58× 10−3 +
SAA-3 36.0 0.0 9.58× 10−3 +

SVM + Poly 36.0 0.0 9.58× 10−3 +
SVM + RBF 36.0 0.0 9.58× 10−3 +

EvoCNN 28.0 0.0 1.42× 10−3 +
psoCNN 36.0 0.0 8.37× 10−3 +

Biomimetics 2023, 8, 525 33 of 45

Biomimetics 2023, 8, x FOR PEER REVIEW 32 of 45

Table 5. Classification accuracies obtained by ETLBOCBL-CNN and its peers when tackling the
eight selected datasets.

Algorithm MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD + BI
ScatNet-2 98.73% (+) 92.52% (+) 87.70% (+) 81.60% (+) 49.52% (+)
LDANet-2 98.95% (+) 92.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)
PCANet-2 98.60% (+) 91.48% (+) 93.15% (+) 88.45% (+) 64.14% (+)
RandNet-2 98.75% (+) 91.53% (+) 86.53% (+) 88.35% (+) 56.31% (+)

NNet 95.31% (+) 81.89% (+) 79.96% (+) 72.59% (+) 37.84% (+)
CAE-1 98.60% (+) 95.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)
CAE-2 97.52% (+) 90.34% (+) 89.10% (+) 84.50% (+) 54.77% (+)
DBN-3 96.89% (+) 89.70% (+) 93.27% (+) 83.69% (+) 52.61% (+)
SAA-3 96.54% (+) 89.70% (+) 88.72% (+) 77.00% (+) 48.07% (+)

SVM + Poly 96.31% (+) 84.58% (+) 83.38% (+) 75.99% (+) 43.59% (+)
SVM + RBF 96.97% (+) 88.89% (+) 85.42% (+) 77.49% (+) 44.82% (+)
EvoCNN 98.82% (+) 94.78% (+) 97.20% (+) 95.47% (+) 64.97% (+)
psoCNN 99.51% (+) 94.56% (+) 97.61% (+) 96.87% (+) 81.05% (+)

ETLBOCBL-CNN (Best) 99.72% 96.67% 98.28% 97.22% 83.45%
ETLBOCBL-CNN (Mean) 99.66% 95.65% 98.00% 96.85% 81.72%

Algorithm Rectangles Rectangles-I Convex w/t/l #BCA
ScatNet-2 99.99% (=) 91.98% (+) 93.50% (+) 7/1/0 1
LDANet-2 99.86% (+) 83.80% (+) 92.78% (+) 8/0/0 0
PCANet-2 99.51% (+) 86.61% (+) 95.81% (+) 8/0/0 0
RandNet-2 99.91% (+) 83.00% (+) 94.55% (+) 8/0/0 0

NNet 92.84% (+) 66.80% (+) 67.75% (+) 8/0/0 0
CAE-1 99.86% (+) 83.80% (+) NA 7/0/0 0
CAE-2 98.46% (+) 78.00% (+) NA 7/0/0 0
DBN-3 97.39% (+) 77.50% (+) 81.37% (+) 8/0/0 0
SAA-3 97.59% (+) 75.95% (+) 81.59% (+) 8/0/0 0

SVM + Poly 97.85% (+) 75.95% (+) 80.18% (+) 8/0/0 0
SVM + RBF 97.85% (+) 75.96% (+) 80.87% (+) 8/0/0 0
EvoCNN 99.99% (=) 94.97% (+) 95.18% (+) 7/1/0 1
psoCNN 99.93% (+) 96.03% (+) 97.74% (+) 8/0/0 0

ETLBOCBL-CNN (Best) 99.99% 97.41% 98.35% NA 8
ETLBOCBL-CNN (Mean) 99.97% 96.02% 97.76% NA NA

(a) (b) (c) (d)

Biomimetics 2023, 8, x FOR PEER REVIEW 33 of 45

(e) (f) (g) (h)

Figure 9. Test errors obtained by ETLBOCBL-CNN while solving the eight datasets: (a) MNIST, (b)
MNIST-RD, (c) MNIST-RB, (d) MNIST-BI, (e) MNIST-RD + BI, (f) Rectangles, (g) Rectangles-I, and
(h) Convex.

To further investigate the performance disparity between ETLBOCBL-CNN and its
peer algorithms when addressing the chosen image datasets, a series of non-parametric
statistical analyses [79] were conducted. These analyses aimed to provide deeper insights
into the classification accuracies presented in Table 5, with CAE-1 and CAE-2 excluded
from the analysis due to their lack of classification accuracies for the Convex dataset. A
performance comparison using the Wilcoxon signed-rank test [79] was conducted to ex-
amine the performance difference between ETLBOCBL-CNN and its peer algorithms
across the eight selected datasets. The results of the Wilcoxon signed-rank test, including
the 𝑅 , 𝑅 , p, and h values, are presented in Table 6. 𝑅 and 𝑅 represent the sum of
ranks indicating the superiority and inferiority of ETLBOCBL-CNN compared to each al-
gorithm, respectively. The p value serves as a measure of the minimum significance level
required to detect a performance difference between two algorithms. An algorithm is con-
sidered significantly better than its peer when the p value falls below the threshold value
of 𝛼 = 0.05. Additionally, the h value is denoted as “+”, “=”, or “−” to signify whether
ETLBOCBL-CNN is significantly better, insignificantly different, or significantly worse
than its peer in solving the selected datasets.

Table 6. Wilcoxon signed-rank test results comparing ETLBOCBL-CNN with its peers.

ETLBOCBL-CNN vs. 𝑹 𝑹 p Value h Value
ScatNet-2 28.0 0.0 1.42 × 10 +
LDANet-2 36.0 0.0 9.58 × 10 +
PCANet-2 36.0 0.0 9.58 × 10 +
RandNet-2 36.0 0.0 9.58 × 10 +

NNet 36.0 0.0 8.37 × 10 +
DBN-3 36.0 0.0 9.58 × 10 +
SAA-3 36.0 0.0 9.58 × 10 +

SVM + Poly 36.0 0.0 9.58 × 10 +
SVM + RBF 36.0 0.0 9.58 × 10 +
EvoCNN 28.0 0.0 1. 42 × 10 +
psoCNN 36.0 0.0 8.37 × 10 +

Figure 9. Test errors obtained by ETLBOCBL-CNN while solving the eight datasets: (a) MNIST,
(b) MNIST-RD, (c) MNIST-RB, (d) MNIST-BI, (e) MNIST-RD + BI, (f) Rectangles, (g) Rectangles-I, and
(h) Convex.

The Friedman test [79] was also conducted to comprehensively analyze the over-
all performance disparities between ETLBOCBL-CNN and the other peer algorithms in
solving the eight image datasets. Table 7 presents the rankings of all compared algo-
rithms based on their classification accuracies, from the best to the worst: ETLBOCBL-
CNN, psoCNN, EvoCNN, LDANet-2, PCANet-2, ScatNet-2, RandNet-2, DBN-3, SAA-3,
SVM + RBF, SVM + Poly, and NNet. Table 7 also highlights significant global differences
among all compared algorithms, with a p value smaller than α = 0.05. To explore the spe-
cific differences among the algorithms, three post hoc statistical analysis procedures [79],
namely Bonferroni–Dunn, Holm, and Hochberg, were conducted. These procedures aimed
to provide a comprehensive understanding of the discrepancies between the compared
algorithms and ETLBOCBL-CNN, which served as the control algorithm. Table 8 presents
the z values, unadjusted p values, and adjusted p values (APVs) obtained from the post hoc
procedures. It is worth noting that APVs smaller than α = 0.05, denoted in boldface, con-
firm the significant improvement of ETLBOCBL-CNN over NNet, SVM + Poly, SVM + RBF,

Biomimetics 2023, 8, 525 34 of 45

SAA-3, and DBN-3. Moreover, the Holm and Hochberg procedures verify the significant
improvement of ETLBOCBL-CNN over RandNet-2 and ScatNet-2.

Table 7. Average ranking and corresponding p values obtained from the Friedman test.

Algorithm Ranking Chi-Square Statistic p Value

ScatNet-2 5.8125

76.658654 0.00× 100

LDANet-2 5.2500
PCANet-2 5.2500
RandNet-2 6.0000

NNet 12.0000
DBN-3 7.9375
SAA-3 9.0625

SVM + Poly 10.5625
SVM + RBF 9.4375

EvoCNN 3.0625
psoCNN 2.5000

ETLBOCBL-CNN 1.1250

Table 8. Adjusted p values (APVs) calculated using the three post hoc procedures.

ETLBOCBL-CNN vs. z Unadjusted
p Bonferroni–Dunn p Holm

p Hochberg p

Nnet 6.03× 100 0.00× 100 0.00× 100 0.00× 100 0.00× 100

SVM + Poly 5.23× 100 0.00× 100 2.00× 10−6 2.00× 10−6 2.00× 10−6

SVM + RBF 4.61× 100 4.00× 10−6 4.40× 10−5 3.60× 10−5 3.60× 10−5

SAA-3 4.40× 100 1.10× 10−5 1.17× 10−4 8.50× 10−5 8.50× 10−5

DBN-3 3.78× 100 1.58× 10−4 1.73× 10−3 1.10× 10−3 1.10× 10−3

RandNet-2 2.70× 100 6.85× 10−3 7.53× 10−2 4.11× 10−2 4.11× 10−2

ScatNet-2 2.60× 100 9.32× 10−3 1.02× 10−1 4.66× 10−2 4.66× 10−2

LDANet-2 2.29× 100 2.21× 10−2 2.43× 10−1 8.85× 10−2 6.64× 10−2

PCANet-2 2.29× 100 2.21× 10−2 2.43× 10−1 8.85× 10−2 6.64× 10−2

EvoCNN 1.07× 100 2.82× 10−1 3.11× 100 5.65× 10−1 4.66× 10−1

psoCNN 7.63× 10−1 4.66× 10−1 4.90× 100 5.65× 10−1 4.66× 10−1

4.3.2. Comparison in Classifying the MNIST-Fashion Datasets

Table 9 displays the classification accuracies and the total number of trainable parame-
ters for network architectures generated by ETLBOCBL-CNN and 13 other peer algorithms.
Notably, MSA-based methods, such as ETLBOCBL-CNN, consistently exhibit remarkable
performance when applied to the MNIST-Fashion dataset. The results in Table 5 highlight
the ability of MSAs to automatically construct optimal CNN models with high classification
accuracy while maintaining lower network complexity, applicable to various image classifi-
cation tasks. In the context of the MNIST-Fashion dataset, the proposed ETLBOCBL-CNN
achieves the second-best classification accuracy of 93.70%. EvoCNN and psoCNN, two
other MSA-based algorithms, secure the highest and third-best accuracies of 94.53% and
92.81%, respectively. These outcomes demonstrate the effectiveness of MSA-based ap-
proaches, including ETLBOCBL-CNN, in achieving state-of-the-art performance for image
classification tasks.

Biomimetics 2023, 8, 525 35 of 45

Table 9. Performance evaluation of the proposed ETLBOCBL-CNN alongside its peer algorithms
when tackling the MNIST-Fashion dataset.

Algorithm Classification Accuracy No. of Trainable Parameters

Human Performance 1 83.50% NA
2C1P2F + Dropout 1 91.60% 3.27× 106

2C1P 1 92.50% 1.00× 105

3C2F 1 90.70% NA
3C1P2F + Dropout 1 92.60% 7.14× 106

GRU + SVM 1 88.80% NA
GRU + SVM + Dropout 89.70% NA

HOG + SVM 1 92.60% NA
AlexNet [77] 89.90% 6.00× 107

SqueezeNet-200 [78] 90.00% 5.00× 105

MLP 256-128-64 1 90.00% 4.10× 104

MLP 256-128-100 1 88.33% 3.00× 106

EvoCNN [76] 94.53% 6.68× 106

psoCNN [62] 92.81% 2.58× 106

ETLBOCBL-CNN (Best) 93.70% 8.43× 105

ETLBOCBL-CNN (Mean) 93.12% 1.95× 106

1 https://github.com/zalandoresearch/fashion-mnist (accessed on 3 June 2023).

ETLBOCBL-CNN achieves a classification accuracy in solving the MNIST-Fashion
dataset that is slightly lower than that of EvoCNN, with a negligible difference of less
than 1%. Notably, the CNN architecture produced by ETLBOCBL-CNN demonstrates
remarkable efficiency, featuring only 0.843 million trainable parameters. This parameter
number is significantly lower, being approximately 87.38% and 67.33% less than the param-
eter numbers of EvoCNN (6.68 million) and psoCNN (2.58 million), respectively. These
findings reveal that ETLBOCBL-CNN strikes a favorable balance between classification
accuracy and network complexity when designing optimal CNN architectures for specific
classification tasks. In recent years, the integration of automated smart systems into various
aspects of daily life, including identity recognition systems, traffic monitoring systems, and
mobile navigation systems, has become increasingly prevalent. However, many of these
technologies are embedded in mobile or edge devices with limited computational power
and power resources. Consequently, there is a growing demand for deep learning models
that are resource-efficient to support the development of these emerging technologies. In
this context, the proposed ETLBOCBL-CNN, with its capacity to create networks with
reduced complexity, emerges as a highly desirable solution for the advancement of diverse
mobile smart systems.

When comparing ETLBOCBL-CNN to other established algorithms such as 2C1P2F +
Dropout, 3C1P2F + Dropout, AlexNet, and MLP 256-128-100 in solving the MNIST-Fashion
dataset, the performance of the latter algorithms is notably inferior. These algorithms are
characterized by networks with a considerably larger number of trainable parameters,
ranging from 3.27 million to an extensive 60 million. This observation implies that many
manually crafted deep learning models often feature an excess of trainable parameters that
do not significantly enhance classification accuracy. Instead, they result in unnecessary
consumption of computational resources. In contrast, ETLBOCBL-CNN distinguishes
itself by achieving competitive performance not only on the MNIST-Fashion dataset but
also across the other eight datasets. What sets ETLBOCBL-CNN apart is its capacity to
deliver exceptional classification results without the need for data augmentation techniques
or overly complex network structures. This is achieved by initializing the learners with
simpler network architectures, which leads to faster convergence rates during the search
process. Furthermore, ETLBOCBL-CNN illustrates the feasibility of achieving state-of-
the-art classification performance using a simpler network structure, highlighting the
effectiveness and efficiency of the proposed approach.

https://github.com/zalandoresearch/fashion-mnist

Biomimetics 2023, 8, 525 36 of 45

4.3.3. Optimal Network and Learning Hyperparameters Obtained by ETLBOCBL-CNN

Table 10 presents the optimal network architectures and learning hyperparameters
identified by ETLBOCBL-CNN to achieve the highest classification accuracy across the
selected image datasets. It is noteworthy that the optimal CNN architectures consistently
feature a single fully connected layer. This aligns with recent studies [80], suggesting
that CNN models with a single fully connected layer tend to outperform those with
multiple fully connected layers. Interestingly, it is also observed that the inclusion of a
pooling layer between successive convolution layers is not mandatory for achieving the
best classification accuracy, as seen in results from the MNIST, MNIST-RD, MNIST-RB,
MNIST-BI, MNIST-RD + BI, Rectangles, and Convex datasets.

Table 10. Optimal network and learning hyperparameters derived by ETLBOCBL-CNN to solve each
selected image dataset with the highest classification accuracy.

Dataset Layers Network
Hyperparameters Learning Hyperparameters

MNIST

Convolutional NFil
1 = 231, SKer

1 = 9× 9 LHOpt = 3 (‘Adam’)
Maximum Pooling SPool

1 = 2× 2, SStr
1 = 1× 1 LHLR = 3 (‘0.001’)

Convolutional NFil
2 = 101, SKer

2 = 9× 9 LH Int = 1 (‘Glorot Normal’)
Convolutional NFil

3 = 97, SKer
3 = 9× 9 LHL2 = 1 (‘0.001’)

Fully Connected NNeu
1 = 10

MNIST-RD

Convolutional NFil
1 = 96, SKer

1 = 9× 9 LHOpt = 3 (‘Adam’)
Convolutional NFil

2 = 47, SKer
2 = 9× 9 LHLR = 3 (‘0.001’)

Convolutional NFil
3 = 125, SKer

3 = 9× 9 LH Int = 1 (‘Glorot Normal’)
Average Pooling SPool

3 = 3× 3, SStr
3 = 1× 1 LHL2 = 2 (‘0.005’)

Fully Connected NNeu
1 = 10

MNIST-RB

Convolutional NFil
1 = 47, SKer

1 = 3× 3 LHOpt = 3 (‘Adam’)
Convolutional NFil

2 = 112, SKer
2 = 9× 9 LHLR = 4 (‘0.005’)

Convolutional NFil
3 = 65, SKer

3 = 9× 9 LH Int = 2 (‘Glorot Uniform’)
Average Pooling SPool

3 = 3× 3, SStr
3 = 1× 1 LHL2 = 3 (‘0.01’)

Fully Connected NNeu
1 = 10

MNIST-BI

Convolutional NFil
1 = 76, SKer

1 = 3× 3 LHOpt = 3 (‘Adam’)
Convolutional NFil

2 = 137 , SKer
2 = 6× 6 LHLR = 4 (‘0.005’)

Convolutional NFil
3 = 181, SKer

3 = 7× 7 LH Int = 2 (‘Glorot Uniform’)
Maximum Pooling SPool

3 = 3× 3, SStr
3 = 2× 2 LHL2 = 3 (‘0.01’)

Fully Connected NNeu
1 = 10

MNIST-RD + BI

Convolutional NFil
1 = 48, SKer

1 = 5× 5 LHOpt = 3 (‘Adam’)
Convolutional NFil

2 = 63 , SKer
2 = 7× 7 LHLR = 3 (‘0.001’)

Maximum Pooling SPool
2 = 3× 3, SStr

2 = 1× 1 LH Int = 2 (‘Glorot Uniform’)
Convolutional NFil

3 = 108 , SKer
3 = 8× 8 LHL2 = 3 (‘0.01’)

Average Pooling SPool
3 = 2× 2, SStr

3 = 1× 1
Fully Connected NNeu

1 = 10

Rectangles

Convolutional NFil
1 = 234, SKer

1 = 9× 9 LHOpt = 3 (‘Adam’)
Convolutional NFil

2 = 89, SKer
2 = 9× 9 LHLR = 2 (‘0.0005’)

Maximum Pooling SPool
2 = 3× 3, SStr

2 = 1× 1 LH Int = 2 (‘Glorot Uniform’)
Convolutional NFil

3 = 85, SKer
3 = 9× 9 LHL2 = 1 (‘0.001’)

Average Pooling SPool
3 = 3× 3, SStr

3 = 2× 2
Fully Connected NNeu

1 = 2

Biomimetics 2023, 8, 525 37 of 45

Table 10. Cont.

Dataset Layers Network
Hyperparameters Learning Hyperparameters

Rectangles-I

Convolutional NFil
1 = 74, SKer

1 = 3× 3 LHOpt = 4 (‘Adamax’)
Maximum Pooling SPool

1 = 2× 2, SStr
1 = 1× 1 LHLR = 3 (‘0.001’)

Convolutional NFil
2 = 161, SKer

2 = 9× 9 LH Int = 1 (‘Glorot Normal’)
Average Pooling SPool

2 = 1× 1, SStr
2 = 2× 2 LHL2 = 4 (‘0.05’)

Convolutional NFil
3 = 207, SKer

3 = 9× 9
Maximum Pooling SPool

3 = 3× 3, SStr
3 = 1× 1

Fully Connected NNeu
1 = 2

Convex

Convolutional NFil
1 = 136, SKer

1 = 9× 9 LHOpt = 4 (‘Adamax’)
Maximum Pooling SPool

1 = 3× 3, SStr
1 = 1× 1 LHLR = 3 (‘0.001’)

Convolutional NFil
2 = 118, SKer

2 = 9× 9 LH Int = 1 (‘Glorot Normal’)
Convolutional NFil

3 = 197, SKer
3 = 9× 9 LHL2 = 3 (‘0.01’)

Fully Connected NNeu
1 = 2

MNIST-Fashion

Convolutional NFil
1 = 164, SKer

1 = 3× 3 LHOpt = 3 (‘Adam’)
Maximum Pooling SPool

1 = 2× 2, SStr
1 = 1× 1 LHLR = 3 (‘0.001’)

Convolutional NFil
2 = 96, SKer

2 = 3× 3 LH Int = 3 (‘He Normal’)
Fully Connected NNeu

1 = 10 LHL2 = 1 (‘0.001’)

Furthermore, Table 10 highlights that the effectiveness of the network architectures
generated by ETLBOCBL-CNN for different image datasets relies heavily on the thoughtful
selection of learning hyperparameters during the training process. The optimal combina-
tions of learning hyperparameters are determined by considering the specific characteristics
of the given image datasets and the configuration of the discovered network architectures.
The results in Table 10 verify ETLBOCBL-CNN’s capacity to minimize network complexity
by eliminating redundant layers and parameters while maintaining high performance.
This unique capability of ETLBOCBL-CNN offers compelling evidence of its ability to
autonomously design optimal network architectures for various classification tasks, even
with minimal prior knowledge of the problem domains.

4.4. Discussion
4.4.1. Impact of Proposed Modifications in ETLBOCBL-CNN

As demonstrated in the prior subsection, ETLBOCBL-CNN has displayed commend-
able performance in generating optimal CNN architectures that effectively address nine se-
lected datasets, delivering superior classification accuracy. The effectiveness of ETLBOCBL-
CNN stems from three main modifications: (a) the competency-based learning within the
modified teacher phase, (b) the stochastic peer interaction scheme within the modified
learner phase, and (c) the tri-criterion selection scheme. This subsection delves into a de-
tailed discussion of the individual contributions of each modification, conducted through
an ablation study to gauge their specific impacts on ELTBOCLB-CNN when addressing the
optimization problem of automatic network architecture design.

To establish a baseline, the ablation study incorporates a method called TLBO-CNN.
To gauge the effects of the three major modifications introduced in this study, three vari-
ants of ETLBOCBL-CNN are investigated: ETLBOCBL-CNN-v1, ETLBOCBL-CNN-v2,
and ETLBOCBL-CNN-v3. In ETLBOCBL-CNN-v1, competency-based learning is em-
ployed within its modified teacher phase, retaining the original learner phase. In contrast,
ETLBOCBL-CNN-v2 maintains the original teacher phase but integrates the stochastic peer
interaction scheme into its modified learner phase. ETLBOCBL-CNN-v3 incorporates both
competency-based learning and stochastic peer interaction schemes in the modified teacher
and learner phases, respectively. It is notable that these ETLBOCBL-CNN variants use the
greedy-based selection scheme, isolating the impact of the proposed tri-criterion selection
scheme when compared to the complete ETLBOCBL-CNN.

Biomimetics 2023, 8, 525 38 of 45

The performance of TLBO-CNN and all ETLBOCBL-CNN variants in the automated
generation of CNN architectures for the nine selected datasets is presented in Table 11. The
reported metrics include classification accuracy and the number of trainable parameters,
indicative of network complexity. ETLBOCBL-CNN variants consistently outperform the
baseline TLBO-CNN. They exhibit the capability to generate CNN architectures with re-
duced network complexity while achieving higher classification accuracy for most datasets.
This demonstrates the efficacy of the modified teacher and learner phases in addressing
automatic network architecture design challenges. Compared to TLBO-CNN’s original
teacher phase, ETLBO-CNN’s competency-based learning mechanism in the modified
teacher phase excels in preserving population diversity. It accomplishes this by guiding
each learner using personalized and high-performing peers selected from different superior
groups. This approach enhances robustness against premature convergence, maintaining
rapid convergence towards promising solution regions based on personalized guidance.
Additionally, the stochastic peer interaction scheme in ETLBOCBL-CNN’s modified learner
phase offers more flexibility compared to TLBO-CNN’s original learner phase. It accurately
emulates the complex learning dynamics observed in a classroom. ETLBOCBL-CNN learn-
ers employ diverse learning strategies and more effective knowledge-sharing mechanisms
during this phase, leading to the discovery of diverse CNN architectures. The multiple
peer interaction and modified single peer interaction schemes facilitate different levels of
exploratory searches, fostering knowledge sharing and collaborative learning among peers.
Simultaneously, the stochastic peer interaction scheme promotes exploitation by retaining
valuable network information acquired during previous learning processes. The proper
balancing between exploration and exploitation searches attained in both the modified
teacher and learner phases of ETLBOCBL-CNN has improved the effectiveness of CNN
architecture search.

Table 11. Ablation study to gauge the impacts of proposed modifications in ETLBOCBL-CNN.

Dataset Metric TLBO-CNN
ETLBOCBL-CNN Variants

v1 v2 v3 Complete

MNIST
Accuracy 98.54% 98.66% 98.74% 99.01% 99.72%
Complexity 12.10 M 10.68 M 8.94 M 4.71 M 3.41 M

MNIST-RD
Accuracy 94.66% 96.34% 96.46% 96.58% 96.67%
Complexity 10.10 M 3.92 M 2.34 M 2.19 M 1.67 M

MNIST-RB
Accuracy 96.91% 97.90% 97.92% 98.04% 98.28%
Complexity 7.23 M 3.85 M 6.16 M 5.67 M 1.47 M

MNIST-BI
Accuracy 95.53% 96.34% 96.37% 97.10% 97.22%
Complexity 5.02 M 2.07 M 2.45 M 1.98 M 1.90 M

MNIST-RD + BI
Accuracy 77.58% 78.19% 82.20% 82.74% 83.45%
Complexity 3.71 M 6.11 M 4.95 M 2.22 M 1.26 M

Rectangles Accuracy 99.68% 99.71% 99.79% 99.90% 99.99%
Complexity 12.60 M 6.24 M 11.51 M 2.76 M 2.34 M

Rectangles-I Accuracy 95.71% 97.24% 97.36% 97.37% 97.41%
Complexity 6.63 M 2.02 M 6.05 M 3.47 M 5.51 M

Convex
Accuracy 95.20% 97.12% 97.55% 97.71% 98.35%
Complexity 1.54 M 3.55 M 2.59 M 1.51 M 1.46 M

MNIST-Fashion
Accuracy 91.89% 92.91% 91.99% 93.12% 93.70%
Complexity 4.31 M 3.12 M 3.44 M 2.97 M 0.84 M

Table 11 shows varying performance between ELTBOCBL-CNN-v1 and ETLBOCBL-
CNN-v2 in solving automatic network design problems. ETLBOCBL-CNN-v2 generally
outperforms ETLBOCBL-CNN-v1 in classification accuracy and network complexity across
four datasets: MNIST, MNIST-RD, MNIST-RD + BI, and Convex. Conversely, ETLBOCBL-

Biomimetics 2023, 8, 525 39 of 45

CNN-v1 excels in MNIST-Fashion with higher accuracy and lower network complexity
compared to ETLBOCBL-CNN-v2. For the other four datasets (MNIST-RB, MNIST-BI, Rect-
angles, and Rectangle-I), ETLBOCBL-CNN-v1 performs better in network complexity, while
ETLBOCBL-CNN-v2 exhibits a competitive edge in classification accuracy. These obser-
vations verify the unique contributions of competency-based learning and stochastic peer
interaction to ETLBOCBL-CNN in solving automatic network design problems. Addition-
ally, ETLBOCBL-CNN-v3 produces more competitive classification accuracy and network
complexity across all nine datasets compared to ETLBOCBL-CNN-v1 and ETLBOCBL-
CNN-v2, affirming the synergistic effects of the competency-based learning in the modified
teacher phase and the stochastic peer interaction in the modified learner phase. These fac-
tors assist ETLBOCBL-CNN in searching for optimal CNN architectures with high accuracy
and low complexity when solving the given tasks.

Finally, Table 11 highlights that the complete ETLBOCBL-CNN outperforms ETLBOCBL-
CNN-v3 by generating CNN architectures with higher accuracy and lower complexity
across all nine datasets. While there are marginal differences in classification accuracy across
most datasets, complete ETLBOCBL-CNN excels notably in reducing network complexity
compared to ETLBOCBL-CNN-v3. Unlike TLBO-CNN and the three ETLBOCBL-CNN
variants, which rely solely on the fitness criterion, complete ETLBOCBL-CNN employs
a tri-criterion selection scheme. This scheme considers fitness, diversity, and fitness im-
provement when deciding the survival of population members in the next generation. The
proposed tri-criterion selection scheme allows learners with relatively lower fitness but
greater diversity or potential for improvement to survive, enhancing population diversity
and resilience against premature convergence. In the context of automatic network archi-
tecture design, the performance comparisons in Table 11 demonstrate the effectiveness of
the tri-criterion selection scheme in discovering high-performing, low-complexity CNN
architectures for effective classification tasks.

4.4.2. Qualitative Complexity Analysis of ETLBOCBL-CNN

In this subsection, a detailed Big O analysis is conducted to examine the time complex-
ity of both the proposed ETLBOCBL-CNN and the baseline TLBO-CNN. It is important
to note that both methods share the same time complexity for fitness evaluation when
addressing automatic network architecture design tasks with identical benchmark datasets.
Let N represent the population size and D the problem dimensionality. TLBO-CNN exhibits
a time complexity O(ND) for generating the initial population and creating new solutions
through both the teacher and learner phases. Consequently, the overall time complexity for
TLBO-CNN in each iteration is O(ND) in the worst-case scenario.

ETLBOCBL-CNN shares a similar time complexity to TLBO-CNN during population
initialization, also at O(ND). However, the overall time complexity of ETLBOCBL-CNN is
governed by the three key modifications introduced, namely (a) competency-based learning
in the modified teacher phase, (b) the stochastic peer interaction scheme in the modified
learner phase, and (c) the tri-criterion selection scheme.

In each iteration of the modified teacher phase, the computation of population means,
X.Mean, using Equation (8) incurs a time complexity of O(ND). The sorting process that
arranges all learners based on their fitness values in ascending order has a time complexity
of O(N log N). Additionally, the competency-based learning mechanism, employed to
calculate the values of Xo f f

n for all N learners using Equations (11), (12), and (13), results in
a time complexity of O(ND). Since O(ND) exhibits a higher growth rate than O(N log N),
the overall time complexity of the modified teacher phase is O(ND) per iteration.

A time complexity of O(N log N) is required for sorting the offspring learners by their
fitness levels in each iteration of the modified learner phase. The creation of PT20 and PT50,
containing the top 20% and 50% of offspring learners, demands a time complexity of O(N)

per iteration. During the computation of Xo f f
n using the stochastic peer interaction scheme,

including the multiple peer interaction as defined in Equation (14), modified single peer
interaction as defined in Equation (15), and the knowledge retention mechanism, a time

Biomimetics 2023, 8, 525 40 of 45

complexity of O(ND) is incurred for all N learners. Hence, the total time complexity of the
modified teacher phase in ETLBOCBL-CNN remains O(ND) per iteration.

For the tri-criterion selection scheme, the calculation of Xo f f
n .Impr for all N offspring

learners in Poff using Equation (16) incurs a time complexity of O(ND) per iteration,
while generating the merged population PMG using Equation (17) requires O(N) per
iteration. Subsequently, the sorting of population members in PMG has a time complexity
of O(N log N) per iteration. Additionally, the procedures for calculating XMG

n .Dis using
Equation (18) and XMG

n .WF using Equation (19) for all learners in each iteration result
in time complexities of O(ND) and O(N), respectively. When constructing PNext for the
subsequent iteration of ETLBOCBL-CNN based on fitness, diversity, and improvement rate
criteria, a time complexity of O(N) per iteration is incurred. The collective time complexity
of the tri-criterion selection scheme in ETLBOCBL-CNN amounts to O(ND) per iteration.

The time complexity analyses conducted for each key modification of ETLBOCBL-
CNN reveal that the overall time complexity for each iteration is O(ND) in the worst-case
scenario. This implies that the time complexity of ETLBOCBL-CNN is inherently tied
to the population size (N) and the problem’s dimensional size (D). In this study, the
total dimensional size is calculated as D = 5NConv

max + NFC
max + 6. Consequently, the time

complexity of ETLBOCBL-CNN is contingent on the upper limit values of the convolutional
layer number (NConv

max) and the fully connected layer number (NFC
max). These values can be

thoughtfully determined based on the input image size used for classification tasks.

4.4.3. Quantitative Complexity Analysis of ETLBOCBL-CNN

In this subsection, a quantitative complexity analysis of ETLBOCBL-CNN is performed.
Specifically, Table 12 presents the computational time required by ETLBOCBL-CNN to
search for an optimal CNN architecture for each of the selected benchmark datasets with
the best classification accuracy. The computation time for automatically searching for
the optimal CNN architecture across the nine benchmark datasets varies from 1013.88 s
(approximately 17 min) to 14,227.21 s (approximately 4 h). The simulation results in
Table 12 highlight a significant advantage of ETLBOCBL-CNN: its ability to generate high-
performing yet computationally efficient CNN architectures, making it a valuable solution
for resource-constrained environments, such as mobile or edge devices, where efficient
resource utilization is paramount.

Table 12. Computational time incurred to find the optimal CNN architectures to solve each dataset.

Datasets Computational Time (s)

MNIST 5945.89
MNIST-RD 2851.13
MNIST-RB 3087.26
MNIST-BI 3317.30
MNIST-RD + BI 2735.13
Rectangles 1013.88
Rectangles-I 4132.82
Convex 1380.63
MNIST-Fashion 14,227.21

ETLBOCBL-CNN has a wide range of potential applications, including medical image
analysis, natural language processing, autonomous vehicles, recommendation systems,
environmental monitoring, and more. The simulation results confirm ETLBOCBL-CNN
as a robust and effective approach for automated CNN architecture design. It excels in
achieving a balance between classification accuracy and network complexity, positioning it
as a promising solution for various image classification tasks.

The computational times reported in Table 12 are based on utilizing the proposed
ETLBOCBL-CNN to address the nine benchmark datasets, each with an input size of
28 × 28 × 1. As outlined in the previous subsection’s Big O analysis, the overall time

Biomimetics 2023, 8, 525 41 of 45

complexity of ETLBOCBL-CNN inherently depends on NConv
max and NFC

max. These two upper
limit values need to be thoughtfully set based on the input image size used for specific
classification tasks. While the primary focus of current study is on designing ETLBOCBL-
CNN for the automatic search of optimal CNN architectures tailored to specific datasets, it
is crucial to discuss the scalability of this method, particularly when applied to real-world
applications involving large-scale problems and diverse datasets.

Scaling up deep learning methods to handle more extensive datasets and complex
problems invariably presents substantial challenges, and ETLBOCOL-CNN is no excep-
tion. A primary challenge pertains to computational resources. Larger datasets and more
complex architectures demand increased training times, memory resources, and processing
power. This could potentially restrict the use of ETLBOCOL-CNN in scenarios with limited
computing infrastructure. Furthermore, as data volume increases in larger-scale problems,
challenges related to model generalization and overfitting may arise. With growing data
complexity, maintaining model robustness becomes increasingly critical.

However, amid these scalability challenges, ETLBOCBL-CNN offers several advan-
tages. The proposed modifications such as competency-based learning, the stochastic
peer interaction scheme, and the tri-criterion selection scheme have demonstrated their
potentials to enhance generalization and robustness when dealing with diverse datasets.
The automated architecture design process of ETLBOCBL-CNN remains a valuable asset
for accelerating model development, reducing human intervention, and improving perfor-
mance. To tackle these scalability issues, mitigation strategies can be employed. Techniques
like parallel processing, distributed computing, or specialized hardware utilization can
significantly reduce training times and efficiently handle more extensive datasets. It is
imperative to explore these options to fully unlock the potential of ETLBOCBL-CNN.

5. Conclusions

In this study, ETLBOCBL-CNN is presented as an innovative method for optimizing
CNN architectures, offering an automated approach to efficiently design optimal network
structures for classification tasks across various complexities. This method incorporates
an efficient solution encoding scheme to discover valid and novel CNN architectures. It
optimizes both network hyperparameters and learning. To enhance ETLBOCBL-CNN’s
performance, this paper introduces a competency-based learning concept that categorizes
learners according to their fitness values, guiding each learner’s search process not only
with the teacher solution and population mean but also with guidance from other pre-
dominant learners. This promotes diverse exploration and prevents convergence toward
local optima. Moreover, a stochastic peer interaction scheme is integrated into ETLBOCBL-
CNN’s learner phase, enhancing its robustness against local optima through collaborative
learning among learners. This scheme enables effective knowledge sharing and retention,
engaging single or multiple peer learners. To overcome the limitations of greedy selection,
ETLBOCBL-CNN introduces a tri-criterion selection scheme, which assesses learners’ sur-
vival in the next generation by considering their fitness, diversity, and improvement rate.
This scheme promotes diversity and ensures continued fitness improvement, even when
current fitness levels are temporarily inferior. It safeguards valuable network information
within learners and enhances population quality over the long term.

The proposed ETLBOCBL-CNN’s performance is assessed across nine image datasets
and compared with state-of-the-art methods. The results demonstrate that ETLBOCBL-
CNN consistently achieves competitive classification accuracies, often surpassing or match-
ing the performance of existing peer algorithms. This solidifies ETLBOCBL-CNN as a
robust and effective approach for automated CNN architecture design, effectively balanc-
ing classification accuracy and network complexity. Its adaptability to various datasets
enhances its versatility. Future research can explore incorporating advanced network blocks
like DenseNet and ResNet into ETLBOCBL-CNN to generate advanced CNN architectures.
Additionally, formulating the automatic network architecture design as a multi-objective
optimization problem opens possibilities for a multi-objective ETLBOCBL-CNN capable

Biomimetics 2023, 8, 525 42 of 45

of satisfying diverse stakeholder requirements, including factors like inference speed and
network parameters.

Author Contributions: Conceptualization, K.M.A., W.H.L., S.S.T. and S.M.T.; methodology, K.M.A.,
W.H.L. and S.S.T.; software, K.M.A., A.S. and M.M.E.; validation, K.M.A., S.M.T. and D.S.K.; formal
analysis, K.M.A., A.H.A. and A.A.A.; investigation, K.M.A., W.H.L. and S.S.T.; resources, D.S.K.,
A.H.A., A.A.A. and S.M.T.; data curation, K.M.A., A.S. and M.M.E.; writing—original draft prepa-
ration, K.M.A., W.H.L. and S.S.T.; writing—review and editing, A.S., M.M.E., S.M.T. and D.S.K.;
visualization, K.M.A., A.S. and S.M.T.; supervision, W.H.L. and S.S.T.; project administration, W.H.L.,
D.S.K. and S.M.T.; funding acquisition, D.S.K., A.H.A., A.A.A. and S.M.T. All authors have read and
agreed to the published version of the manuscript.

Funding: Authors thank Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2023R120).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data will be provided upon reasonable request.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
(number PNURSP2023R120), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 2012, 35, 221–231. [CrossRef] [PubMed]
2. Wang, P.; Li, Z.; Hou, Y.; Li, W. Action recognition based on joint trajectory maps using convolutional neural networks. In

Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016;
pp. 102–106.

3. Jayanthi, J.; Jayasankar, T.; Krishnaraj, N.; Prakash, N.; Sagai Francis Britto, A.; Vinoth Kumar, K. An intelligent particle swarm
optimization with convolutional neural network for diabetic retinopathy classification model. J. Med. Imaging Health Inform. 2021,
11, 803–809. [CrossRef]

4. Goel, T.; Murugan, R.; Mirjalili, S.; Chakrabartty, D.K. OptCoNet: An optimized convolutional neural network for an automatic
diagnosis of COVID-19. Appl. Intell. 2021, 51, 1351–1366. [CrossRef] [PubMed]

5. Müller, A.; Karathanasopoulos, N.; Roth, C.C.; Mohr, D. Machine learning classifiers for surface crack detection in fracture
experiments. Int. J. Mech. Sci. 2021, 209, 106698. [CrossRef]

6. Sharma, N.; Jain, V.; Mishra, A. An analysis of convolutional neural networks for image classification. Procedia Comput. Sci. 2018,
132, 377–384. [CrossRef]

7. Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone
double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [CrossRef]

8. Wu, Z.; Tang, Y.; Hong, B.; Liang, B.; Liu, Y. Enhanced precision in dam crack width measurement: Leveraging advanced
lightweight network identification for pixel-level accuracy. Int. J. Intell. Syst. 2023, 2023, 9940881. [CrossRef]

9. Wu, F.; Yang, Z.; Mo, X.; Wu, Z.; Tang, W.; Duan, J.; Zou, X. Detection and counting of banana bunches by integrating deep
learning and classic image-processing algorithms. Comput. Electron. Agric. 2023, 209, 107827. [CrossRef]

10. Yu, N.; Xu, Q.; Wang, H. Wafer defect pattern recognition and analysis based on convolutional neural network. IEEE Trans.
Semicond. Manuf. 2019, 32, 566–573. [CrossRef]

11. Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 34, 550–570. [CrossRef] [PubMed]

12. Wistuba, M.; Rawat, A.; Pedapati, T. A survey on neural architecture search. arXiv 2019, arXiv:1905.01392. [CrossRef]
13. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural

architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 19–34.

14. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the
International Conference on Machine Learning, Shanghai, China, 28–30 November 2018; pp. 4095–4104.

15. Jaafra, Y.; Laurent, J.L.; Deruyver, A.; Naceur, M.S. Reinforcement learning for neural architecture search: A review. Image Vis.
Comput. 2019, 89, 57–66. [CrossRef]

16. Zhao, J.; Zhang, R.; Zhou, Z.; Chen, S.; Jin, J.; Liu, Q. A neural architecture search method based on gradient descent for remaining
useful life estimation. Neurocomputing 2021, 438, 184–194. [CrossRef]

17. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian optimisation and
optimal transport. Adv. Neural Inf. Process. Syst. 2018, 31.

https://doi.org/10.1109/TPAMI.2012.59
https://www.ncbi.nlm.nih.gov/pubmed/22392705
https://doi.org/10.1166/jmihi.2021.3362
https://doi.org/10.1007/s10489-020-01904-z
https://www.ncbi.nlm.nih.gov/pubmed/34764551
https://doi.org/10.1016/j.ijmecsci.2021.106698
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1016/j.engstruct.2022.115158
https://doi.org/10.1155/2023/9940881
https://doi.org/10.1016/j.compag.2023.107827
https://doi.org/10.1109/TSM.2019.2937793
https://doi.org/10.1109/TNNLS.2021.3100554
https://www.ncbi.nlm.nih.gov/pubmed/34357870
https://doi.org/10.48550/arXiv.1905.01392
https://doi.org/10.1016/j.imavis.2019.06.005
https://doi.org/10.1016/j.neucom.2021.01.072

Biomimetics 2023, 8, 525 43 of 45

18. Zhou, H.; Yang, M.; Wang, J.; Pan, W. Bayesnas: A bayesian approach for neural architecture search. In Proceedings of the
International Conference on Machine Learning, Bangkok, Thailand, 13–15 December 2019; pp. 7603–7613.

19. Camero, A.; Wang, H.; Alba, E.; Bäck, T. Bayesian neural architecture search using a training-free performance metric. Appl. Soft
Comput. 2021, 106, 107356. [CrossRef]

20. Ahmad, M.; Abdullah, M.; Moon, H.; Yoo, S.J.; Han, D. Image classification based on automatic neural architecture search using
binary crow search algorithm. IEEE Access 2020, 8, 189891–189912. [CrossRef]

21. Oyelade, O.N.; Ezugwu, A.E. A bioinspired neural architecture search based convolutional neural network for breast cancer
detection using histopathology images. Sci. Rep. 2021, 11, 1–28. [CrossRef]

22. Arman, S.E.; Deowan, S.A. IGWO-SS: Improved grey wolf optimization based on synaptic saliency for fast neural architecture
search in computer vision. IEEE Access 2022, 10, 67851–67869. [CrossRef]

23. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578. [CrossRef]
24. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055. [CrossRef]
25. Yu, H.; Peng, H.; Huang, Y.; Fu, J.; Du, H.; Wang, L.; Ling, H. Cyclic differentiable architecture search. IEEE Trans. Pattern Anal.

Mach. Intell. 2022, 45, 211–228. [CrossRef]
26. Xue, Y.; Qin, J. Partial connection based on channel attention for differentiable neural architecture search. IEEE Trans. Ind. Inform.

2022, 19, 6804–6813. [CrossRef]
27. Cai, Z.; Chen, L.; Liu, H.-L. EPC-DARTS: Efficient partial channel connection for differentiable architecture search. Neural Netw.

2023, 166, 344–353. [CrossRef]
28. Zhu, X.; Li, J.; Liu, Y.; Wang, W. Improving Differentiable Architecture Search via Self-Distillation. arXiv 2023, arXiv:2302.05629.

[CrossRef] [PubMed]
29. Mihaljević, B.; Bielza, C.; Larrañaga, P. Bayesian networks for interpretable machine learning and optimization. Neurocomputing

2021, 456, 648–665. [CrossRef]
30. Karathanasopoulos, N.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P. Bayesian identification of the tendon fascicle’s

structural composition using finite element models for helical geometries. Comput. Methods Appl. Mech. Eng. 2017, 313, 744–758.
[CrossRef]

31. Chen, J.; Chen, M.; Wen, J.; He, L.; Liu, X. A Heuristic Construction Neural Network Method for the Time-Dependent Agile Earth
Observation Satellite Scheduling Problem. Mathematics 2022, 10, 3498. [CrossRef]

32. Ma, Z.; Yuan, X.; Han, S.; Sun, D.; Ma, Y. Improved chaotic particle swarm optimization algorithm with more symmetric
distribution for numerical function optimization. Symmetry 2019, 11, 876. [CrossRef]

33. Gharehchopogh, F.S.; Maleki, I.; Dizaji, Z.A. Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection. Evol.
Intell. 2022, 15, 1777–1808. [CrossRef]

34. Behera, M.; Sarangi, A.; Mishra, D.; Mallick, P.K.; Shafi, J.; Srinivasu, P.N.; Ijaz, M.F. Automatic Data Clustering by Hybrid
Enhanced Firefly and Particle Swarm Optimization Algorithms. Mathematics 2022, 10, 3532. [CrossRef]

35. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
36. Ang, K.M.; El-kenawy, E.-S.M.; Abdelhamid, A.A.; Ibrahim, A.; Alharbi, A.H.; Khafaga, D.S.; Tiang, S.S.; Lim, W.H. Optimal

Design of Convolutional Neural Network Architectures Using Teaching–Learning-Based Optimization for Image Classification.
Symmetry 2022, 14, 2323. [CrossRef]

37. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]

38. Ang, K.M.; Lim, W.H.; Tiang, S.S.; Ang, C.K.; Natarajan, E.; Ahamed Khan, M. Optimal Training of Feedforward Neural Networks
Using Teaching-Learning-Based Optimization with Modified Learning Phases. In Proceedings of the 12th National Technical
Seminar on Unmanned System Technology 2020, Kuala Lumpur, Malaysia, 24–25 November 2022; pp. 867–887.

39. Schaffer, J.D.; Caruana, R.A.; Eshelman, L.J. Using genetic search to exploit the emergent behavior of neural networks. Phys. D
Nonlinear Phenom. 1990, 42, 244–248. [CrossRef]

40. Kitano, H. Empirical studies on the speed of convergence of neural network training using genetic algorithms. In Proceedings of
the AAAI, Boston, MA, USA, 29 July–3 August 1990; 1990; pp. 789–795.

41. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef]

42. Siebel, N.T.; Sommer, G. Evolutionary reinforcement learning of artificial neural networks. Int. J. Hybrid Intell. Syst. 2007, 4,
171–183. [CrossRef]

43. Stanley, K.O.; D’Ambrosio, D.B.; Gauci, J. A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 2009,
15, 185–212. [CrossRef]

44. Banharnsakun, A. Towards improving the convolutional neural networks for deep learning using the distributed artificial bee
colony method. Int. J. Mach. Learn. Cybern. 2019, 10, 1301–1311. [CrossRef]

45. Zhu, W.; Yeh, W.; Chen, J.; Chen, D.; Li, A.; Lin, Y. Evolutionary convolutional neural networks using abc. In Proceedings of the
2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24 February 2019; pp. 156–162.

46. Ozcan, T.; Basturk, A. Transfer learning-based convolutional neural networks with heuristic optimization for hand gesture
recognition. Neural Comput. Appl. 2019, 31, 8955–8970. [CrossRef]

https://doi.org/10.1016/j.asoc.2021.107356
https://doi.org/10.1109/ACCESS.2020.3031599
https://doi.org/10.1038/s41598-021-98978-7
https://doi.org/10.1109/ACCESS.2022.3184291
https://doi.org/10.48550/arXiv.1611.01578
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1109/TPAMI.2022.3153065
https://doi.org/10.1109/TII.2022.3184700
https://doi.org/10.1016/j.neunet.2023.07.029
https://doi.org/10.1016/j.neunet.2023.08.062
https://www.ncbi.nlm.nih.gov/pubmed/37717323
https://doi.org/10.1016/j.neucom.2021.01.138
https://doi.org/10.1016/j.cma.2016.10.024
https://doi.org/10.3390/math10193498
https://doi.org/10.3390/sym11070876
https://doi.org/10.1007/s12065-021-00590-1
https://doi.org/10.3390/math10193532
https://doi.org/10.1109/4235.585893
https://doi.org/10.3390/sym14112323
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/0167-2789(90)90078-4
https://doi.org/10.1162/106365602320169811
https://doi.org/10.3233/HIS-2007-4304
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1007/s13042-018-0811-z
https://doi.org/10.1007/s00521-019-04427-y

Biomimetics 2023, 8, 525 44 of 45

47. Dixit, U.; Mishra, A.; Shukla, A.; Tiwari, R. Texture classification using convolutional neural network optimized with whale
optimization algorithm. SN Appl. Sci. 2019, 1, 1–11. [CrossRef]

48. Kylberg, G. Kylberg Texture Dataset v. 1.0; Centre for Image Analysis, Swedish University of Agricultural Sciences: Uppsala,
Sweden, 2011.

49. Brodatz, P. Textures: A Photographic Album for Artists and Designers; Dover Pub.: New York, NY, USA, 1966.
50. Ojala, T.; Maenpaa, T.; Pietikainen, M.; Viertola, J.; Kyllonen, J.; Huovinen, S. Outex-new framework for empirical evaluation of

texture analysis algorithms. In Proceedings of the 2002 International Conference on Pattern Recognition, Quebec, QC, Canada,
11–15 August 2002; pp. 701–706.

51. Ratre, A. Stochastic gradient descent–whale optimization algorithm-based deep convolutional neural network to crowd emotion
understanding. Comput. J. 2020, 63, 267–282. [CrossRef]

52. Murugan, R.; Goel, T.; Mirjalili, S.; Chakrabartty, D.K. WOANet: Whale optimized deep neural network for the classification of
COVID-19 from radiography images. Biocybern. Biomed. Eng. 2021, 41, 1702–1718. [CrossRef] [PubMed]

53. Wen, L.; Gao, L.; Li, X.; Li, H. A new genetic algorithm based evolutionary neural architecture search for image classification.
Swarm Evol. Comput. 2022, 75, 101191. [CrossRef]

54. Xue, Y.; Wang, Y.; Liang, J.; Slowik, A. A self-adaptive mutation neural architecture search algorithm based on blocks. IEEE
Comput. Intell. Mag. 2021, 16, 67–78. [CrossRef]

55. He, C.; Tan, H.; Huang, S.; Cheng, R. Efficient evolutionary neural architecture search by modular inheritable crossover. Swarm
Evol. Comput. 2021, 64, 100894. [CrossRef]

56. Xu, Y.; Ma, Y. Evolutionary neural architecture search combining multi-branch ConvNet and improved transformer. Sci. Rep.
2023, 13, 15791. [CrossRef]

57. Salih, S.Q. A new training method based on black hole algorithm for convolutional neural network. J. Southwest Jiaotong Univ.
2019, 54, 1–12. [CrossRef]

58. Llorella, F.R.; Azorín, J.M.; Patow, G. Black hole algorithm with convolutional neural networks for the creation of brain-computer
interface based in visual perception and visual imagery. Neural Comput. Appl. 2023, 35, 5631–5641. [CrossRef]

59. Nguyen, T.; Nguyen, G.; Nguyen, B.M. EO-CNN: An enhanced CNN model trained by equilibrium optimization for traffic
transportation prediction. Procedia Comput. Sci. 2020, 176, 800–809. [CrossRef]

60. Nandhini, S.; Ashokkumar, K. An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-
based henry gas solubility optimization algorithm. Neural Comput. Appl. 2022, 34, 5513–5534. [CrossRef]

61. Pandey, A.; Jain, K. Plant leaf disease classification using deep attention residual network optimized by opposition-based
symbiotic organisms search algorithm. Neural Comput. Appl. 2022, 34, 21049–21066. [CrossRef]

62. Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol.
Comput. 2019, 49, 62–74. [CrossRef]

63. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701. [CrossRef]
64. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 6–10 June 2010; pp. 249–256.
65. Lydia, A.; Francis, S. Adagrad—An optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci. 2019, 6, 566–568.
66. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
67. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
68. Zeng, X.; Zhang, Z.; Wang, D. AdaMax Online Training for Speech Recognition. Available online: http://cslt.riit.tsinghua.edu.

cn/mediawiki/images/d/df/Adamax_Online_Training_for_Speech_Recognition.pdf. (accessed on 3 June 2023).
69. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [CrossRef]
70. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
71. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An empirical evaluation of deep architectures on problems

with many factors of variation. In Proceedings of the 24th International Conference on Machine Learning, NewYork, NY, USA,
20–24 June 2007; pp. 473–480.

72. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

73. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886.
[CrossRef]

74. Chan, T.-H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans.
Image Process. 2015, 24, 5017–5032. [CrossRef] [PubMed]

75. Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; Bengio, Y. Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the International Conference on Machine Learning, Bellevue, WA, USA, 28 June 2011; pp. 833–840.

76. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol.
Comput. 2019, 24, 394–407. [CrossRef]

77. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

https://doi.org/10.1007/s42452-019-0678-y
https://doi.org/10.1093/comjnl/bxz103
https://doi.org/10.1016/j.bbe.2021.10.004
https://www.ncbi.nlm.nih.gov/pubmed/34720309
https://doi.org/10.1016/j.swevo.2022.101191
https://doi.org/10.1109/MCI.2021.3084435
https://doi.org/10.1016/j.swevo.2021.100894
https://doi.org/10.1038/s41598-023-42931-3
https://doi.org/10.35741/issn.0258-2724.54.3.22
https://doi.org/10.1007/s00521-022-07542-5
https://doi.org/10.1016/j.procs.2020.09.075
https://doi.org/10.1007/s00521-021-06714-z
https://doi.org/10.1007/s00521-022-07587-6
https://doi.org/10.1016/j.swevo.2019.05.010
https://doi.org/10.48550/arXiv.1212.5701
http://cslt.riit.tsinghua.edu.cn/mediawiki/images/d/df/Adamax_Online_Training_for_Speech_Recognition.pdf.
http://cslt.riit.tsinghua.edu.cn/mediawiki/images/d/df/Adamax_Online_Training_for_Speech_Recognition.pdf.
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TPAMI.2012.230
https://doi.org/10.1109/TIP.2015.2475625
https://www.ncbi.nlm.nih.gov/pubmed/26340772
https://doi.org/10.1109/TEVC.2019.2916183
https://doi.org/10.1145/3065386

Biomimetics 2023, 8, 525 45 of 45

78. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

79. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

80. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,
arXiv:1412.6806.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.swevo.2011.02.002

	Introduction
	Recent Advances in Automated Network Architecture Design
	Existing Challenges of MSA-Based Automated Network Architecture Design
	Research Objectives and Contributions of Current Works
	Paper Outline

	Related Works
	Original TLBO
	CNN
	Existing MSA-Based Network Architecture Design Methods

	Proposed ETLBOCBL-CNN
	Proposed Solution Encoding Scheme
	Population Initialization of ETLBOCBL-CNN
	Fitness Evaluation of ETLBOCBL-CNN
	Modified Teacher Phase of ETLBOCBL-CNN
	Construction of Mean Network Architecture Represented by Population Mean
	Construction of New CNN Architecture Using Competency-Based Learning

	Modified Learner Phase of ETLBOCBL-CNN
	Tri-Criterion Selection Scheme
	Complete Mechanisms of ETLBOCBL-CNN

	Performance Evaluation of ETLBOCBL-CNN
	Benchmark Dataset Selection
	Simulation Settings
	Performance Analyses
	Comparison in Classifying the First Eight Benchmark Datasets
	Comparison in Classifying the MNIST-Fashion Datasets
	Optimal Network and Learning Hyperparameters Obtained by ETLBOCBL-CNN

	Discussion
	Impact of Proposed Modifications in ETLBOCBL-CNN
	Qualitative Complexity Analysis of ETLBOCBL-CNN
	Quantitative Complexity Analysis of ETLBOCBL-CNN

	Conclusions
	References

