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Abstract: Numerous people are applying for bank loans as a result of the banking industry’s ex-
pansion, but because banks only have a certain amount of assets to lend to, they can only do so
to a certain number of applicants. Therefore, the banking industry is very interested in finding
ways to reduce the risk factor involved in choosing the safe applicant in order to save lots of bank
resources. These days, machine learning greatly reduces the amount of work needed to choose
the safe applicant. Taking this into account, a novel weights and structure determination (WASD)
neural network has been built to meet the aforementioned two challenges of credit approval and
loan approval, as well as to handle the unique characteristics of each. Motivated by the observation
that WASD neural networks outperform conventional back-propagation neural networks in terms of
sluggish training speed and being stuck in local minima, we created a bio-inspired WASD algorithm
for binary classification problems (BWASD) for best adapting to the credit or loan approval model by
utilizing the metaheuristic beetle antennae search (BAS) algorithm to improve the learning procedure
of the WASD algorithm. Theoretical and experimental study demonstrate superior performance
and problem adaptability. Furthermore, we provide a complete MATLAB package to support our
experiments together with full implementation and extensive installation instructions.

Keywords: neural networks; Moore-Penrose inverse; weights and structure determination; loan
approval classification; beetle antennae search

MSC: 15A24; 65F20; 68T05

1. Introduction

Since the turn of the century, banks and other financial institutions have been granting
loans. Given that credit risk emerges mostly when borrowers are unable or unwilling to
pay, rigorous background screening of a customer prior to approval of a loan failing is an
essential necessity to sustain oneself in such a business [1,2]. Keep in mind that the amount
of non-performing loans in the economy is significant because these loans weigh on bank
profits and use valuable resources, limiting banks’ ability to grant new loans [3,4]. Problems
in the banking sector can swiftly spread to other sections of the economy, jeopardizing
employment and economic growth [5,6]. As a result, there is an urgent need to develop
better models for determining whether or not to grant a loan [7,8].

These days, emerging technologies like machine learning and natural language pro-
cessing greatly reduce the amount of work needed to do such tasks [9–11]. Machine
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learning tasks involving classification are typically found in several fields, such as engi-
neering [12,13], medicine [14], finance and economics [15,16]. Classification presents a
significant challenge in these fields.

Neural networks (NNs), which are mostly used for classification and regression chal-
lenges, have been effectively implemented in several fields, including medicine, engineer-
ing, economics, social science research and finance. In engineering, they are widely used
for alloy behavior analysis [17], solar systems measurements [18], and feedback control
systems stabilization [19]. Additionally, NNs are frequently used in medical diagnostics to
diagnose flat foot [20], diabetic retinopathy [21], and various cancers, such as breast can-
cer [14] and lung cancer [22]. In contrast, NNs are typically used in the fields of economics
and finance for macroeconomic factor prediction [23,24], time series forecasting [25,26],
and portfolio optimization [27]. Furthermore, NNs have been effectively used in social
science investigation, typically for multiclass classification challenges like classifying occu-
pations [28], assessing the possibility for teleworking in jobs [29], and defining occupational
mobility [30].

The primary goal of this work is to create a model for predicting loan acceptance
utilizing novel NNs enhanced with state-of-the-art metaheuristic optimization techniques.
We will use a feed-forward NN that can handle binary classification tasks in order to
achieve this. A training algorithm called weights and structure determination (WASD) will
be used in place of the well-known back-propagation approach for training feed-forward
NNs. Unlike the back-propagation technique, which iteratively changes the network’s
structure, the WASD approach uses the weights direct determination (WDD) procedure
to compute the optimal set of weights directly. In the end, this reduces computational
complexity by preventing the system from becoming trapped in local minima [31]. Taking
into account the multi-input with multi-function activated WASD (MWASD) algorithm
for binary classification proposed in [15], the metaheuristic beetle antennae search (BAS)
algorithm is paired with the MWASD concept in this work to further improve the perfor-
mance and structure of the WASD based NNs. In this way, we present a bio-inspired WASD
(BWASD) algorithm for binary classification challenges to train a 3-layer feed-forward
NN. It is important to note that BAS, which can perform efficient global optimization,
has recently gained significant traction in several scientific domains, such as finance [32],
robotics [33,34], engineering [35,36], and machine learning [19]. To better address these
tasks, BAS has undergone a number of alternations, such as the binary [37] and the semi-
integer [38] acceptations. Specifically in machine learning, the WASD and BAS algorithms
have been combined in [32] to improve the performance and structure of WASD based
NNs for regression-related challenges. Unlike [32], which simply uses the BAS-WASD
combination to determine the best structure of the NN in regression-related situations, our
approach utilizes BWASD:

1. to identify the ideal structure of the NN;
2. to find the optimal activation function of each hidden layer neuron in binary classifi-

cation tasks;
3. and to do cross-validation auto-adjustment (i.e., optimize the ratio between the fitting

and validation sets).

Results from four experiments demonstrate that the BWASD model outperforms several of
the most advanced models of MATLAB’s classification learner in every way.

The primary ideas of this work can be summed up as follows:

• A novel 3-layer feed-forward bio-inspired WASD NN for binary classifications, termed
BWASD, is presented.

• The BWASD algorithm merges the BAS and MWASD processes to further improve the
performance and structure of the WASD based NNs.

• Taking into account four loan approval datasets, the performance of the MWASD and
BWASD models is contrasted.

• Several of the most advanced models of MATLAB’s classification learner are compared
with the BWASD model in four experiments.
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The structure of the paper is described in the following sections. Section 2 provides an
overview of the WDD procedure for binary classification tasks. The 3-layer feed-forward
BWASD NN structure, the BWASD algorithm and the whole process for training and the
procedure for testing the BWASD NN model are presented in Section 3. Section 4 shows
and discusses the findings of four loan approval datasets using the BWASD, the MWASD
and several of the most cutting-edge models of MATLAB’s classification learner. Final
remarks are provided in Section 5.

2. A Novel Weights Direct Determination (WDD) Process for Binary Classification

The WDD process is an essential component of any WASD technique since it eliminates
the need for laborious, time-consuming, and frequently erroneous repeating computations
to obtain the appropriate weights matching the current hidden layer structure. The WDD
approach is claimed to offer reduced computing complexity and speed compared to tradi-
tional weight determination methods, while also resolving certain related issues [31]. It is
important to note that real numbers are the sole type of input data that the WDD accepts.
Prior to being fed into the NN model, the data must additionally be standardized to a
range of [−0.5,−0.25]. The NN can manage over-fitting in this way. We can achieve it,
if necessary, by using the linear transformation that is illustrated in [26].

In this section, comprehensive explanations of important scientific and theoretical
underpinnings are provided in support of the creation of the BWASD NN. But before
anything else, it is important to recognize some of the key symbols used in this paper:
Transposition is indicated by ()T; factorial of η is indicated by η!; pseudoinversion is shown
by ()†; elementwise exponential is indicated by ()⊙; round function is indicated by R(·).

The theorem of the approximation of the Taylor polynomial (ATP) from [39] is restated
below.

Theorem 1. When a target function, Q(·), has the continuous (ρ + 1)-order derivative on the
range [λ1, λ2] and ρ is a nonnegative integer, it holds that:

Q(η) = Uρ(η) + Vρ(η), η ∈ [λ1, λ2], (1)

where Vρ(η) and Uρ(η), respectively, imply the error term and ρ-order ATP of Q(η).

Assume that Q(α)(θ) is the value of the α-order derivative of Q(x) at point θ. The ap-
proximation of Q(η) appears below:

Q(η) ≈ Uρ(η) =
ρ

∑
α=0

Q(α)(θ)

α!
(η − θ)α, θ ∈ [λ1, λ2]. (2)

Proposition 1. For approximating multivariable functions, one can apply Theorem 1. Consider
Q(η1, η2, . . . , ηv) be the target function with v variables and continuous (ρ + 1)-order partial
derivatives in a neighborhood of the origin (0, . . . , 0). The ρ-order ATP Uρ(η1, η2, . . . , ηv) about
the origin appears below:

Uρ(η1, η2, . . . , ηv) =
ρ

∑
h=0

∑
α1+···+αv=h

η1 · · · ηv

α1 · · · αv

(
∂α1+···+αv Q(0, · · · , 0)

∂ηα1
1 · · · ∂ηαv

v

)
, (3)

where α1, α2, . . . , αv are nonnegative integers.

Consider the input C = [C1, C2, . . . , Cm] ∈ R1×m and the target J ∈ R. The nonlinear
function shown next can be utilized to define the relationship between the input variables
C1, C2, . . . , Cm and the NN’s output target J, based on the multi-input NNs described in [31]:

Q(C1, C2, . . . , Cm) = J. (4)
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The map between the ρ-order ATP Uρ(C1, C2, . . . , Cm) and (4), inline with Proposition 1,
appears below:

Uρ(C1, C2, . . . , Cm) =
n−1

∑
h=0

khwh, (5)

where a power activation function is denoted by kh = Ah(C1, C2, . . . , Cm) ∈ R1×mn; the
weight associated with kh is denoted by wh ∈ Rmn; and h denotes both the number of
hidden layer neurons and the power value.

When r ∈ N samples are taken, the target becomes J ∈ Rr and the input matrix
becomes C = [C1, C2, . . . , Cm] ∈ Rr×m, where Cj ∈ Rr for j = 1, . . . , m. Then, with
kr,h = Ah(C1, C2, . . . , Cm) ∈ Rr×mn, the weight vector W and the input-activation matrix K
appear below:

K =


k1,0 k1,1 . . . k1,n−1
k2,0 k2,1 . . . k2,n−1

...
...

. . .
...

kr,0 kr,1 . . . kr,n−1

 ∈ Rr×mn, W =


w0
w1
w2
. . .

wn−1

 ∈ Rmn. (6)

Afterwards, instead of employing the iterative weight training techniques employed
in traditional NNs, the weights of the ρ-order ATP NN are created by executing the WDD
methodology laid out below [39]:

W = K† J. (7)

Furthermore, Table 1 presents the four power elementwise activation functions extracted
from [26], which are suggested for use in binary classification tasks.

Table 1. Options of power activation functions.

Name Ah(X) Range Numbering

Power Xh (−∞, ∞) 1
Power sigmoid eXh

eXh+1

[ 1
2 , 1
)

2

Power inverse exponential e−Xh
(0, 1) 3

Power softplus ln(1 + eXh
) (0, ∞) 4

3. The Bio-Inspired WASD (BWASD) Model

This section features the 3-layer feed-forward NN structure and the BWASD algorithm.

3.1. The Neural Network Structure

Figure 1 illustrates the architecture of the 3-layer feed-forward NN. Specifically, the NN
finds the appropriate neuron of Layer 2 with equal weight 1 after receiving the normalized
input values C1, C2, . . . , Cm from Layer 1 (i.e., the input layer). Note that Layer 2 contains a
maximum of n active neurons. Moreover, the WDD process is used to acquire the neurons
that link Layer 2 and Layer 3 (i.e., the output layer), and these neurons have weights
Wj, j = 1, 2, . . . , n − 1. Using the following formula, the predictions Ĵ are computed:

Ĵ = KW. (8)

Finally, Layer 3 has a single active neuron that utilizes the elementwise function outlined
below:

B( Ĵi) =

{
1 , Ĵi ≥ −0.375
0 , Ĵi < −0.375

, for i = 1, 2, . . . , r, (9)
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where the numbers 0 and 1, respectively, stand for false and true in order to identify
something as true or false depending on the related input C of the first layer. Also, notice
that the number −0.375 is the midpoint of the interval [−0.5,−0.25].

C1

C2

B(Ĵ )

Layer 1 Layer 2 Layer 3

w0 

w1 

wn-1 

A0(C1,C2,…,Cm)

A1(C1,C2,…,Cm)

An-1(C1,C2,…,Cm)

1 

1 

1 
Cm

Figure 1. Structure of the BWASD neural network.

3.2. The BWASD Algorithm

The BWASD algorithm, which incorporates the BAS algorithm [40], is responsible for
training the NN model. It should be noted that beetles use both of their antennae to search
for food, depending on how strong the scent is that they detect on them (Figure 2). This ten-
dency is mimicked by the optimal solution finder of the BAS algorithm, and this approach
allows the use of state-of-the-art techniques for optimization (see [41–43]). BWASD mimics
the behavior of the beetle to find the optimal number of hidden layer neurons in the NN,
their power value, and the optimal activation function from Table 1 for each hidden layer
neuron. It does this by optimizing the ratio between the fitting and validation sets (i.e.,
cross-validation auto-adjustment).

Beetle Searching Behavior:
• at each step t, gauge the strength of the odor
• compare the intensity of the odor, f(x), to
   reckon a direcon towards the food source
• move in that direcon by a size step ξt that
   corresponds to the intensity difference

ξ0
ξ1

t=0
f(xL)<f(xR)

t=1
f(xL)<f(xR)

t=2
f(xL)>f(xR)

t=3
f(xL)>f(xR)

t=4
Goal reached, x*

ξ2

ξ3

Figure 2. Beetle searching behavior.
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First, an objective function must be defined. Consider the training set Xtr ∈ Rr×m

with r in number samples and their target Jtr ∈ Rr. The parameter p ∈ [0.3, 0.95] ⊆ R
determines the ratio between the fitting and the validation set. Particularly, the first r1 = pr
samples of Xtr are used for fitting the model and the last r2 = r − r1 samples for validation.
That is, X f i ∈ Rr1×m is the fitting set and Xva ∈ Rr2×m is the validation set, while J f i ∈ Rr1

and Jva ∈ Rr2 are their target, respectively. Keep in mind that validation aids in ensuring
that the model’s success generalizes beyond the training set because it is separate from the
fitting set. Then, the K matrix is constructed according to Algorithm 1 proposed in [15],
which makes use the power activation function in Table 1. For the fitting set X f i, the weights
of the NN W are directly obtained by (7) using K(1 : r1) and J f i. For the validation set
Xva, the NN predictions Ĵva are obtained by (8) using K(r1 + 1 : r) and W, and the mean
absolute error (MAE) between the target Jva and Ĵva is gauged via the next formula:

E =
1
r2

r2

∑
k=1

∣∣Jk − Ĵk
∣∣. (10)

It should be noted that the MAE is widely used in machine learning as a loss function
for classification challenges, and that it counts errors between paired observations that
represent the same situation. Assume the vector x = [p, c, N]T, where N is a vector
that includes the hidden layer neurons’ power values and c is a vector that contains the
numbering of the optimal activation function from Table 1 for each hidden layer neuron.
In Algorithm 1, the previously indicated procedure is expressed as an objective function.

Algorithm 1 Objective function.

Require: The vector x, the input data X and the target J.
1: procedure OB_FUNC(X, J, x)
2: Split x into p, c and N, and set r the rows number of X.
3: Keep only the nonnegative elements in N and in c only their corresponding activa-

tion function numbering.
4: Calculate the matrix K through Algorithm 1 proposed in [15] under the N and c.
5: Set r1 = pr, r2 = r − r1, X f i = X(1 : r1, :), J f i = J(1 : r1), Xva = X(r1 + 1 : r, :) and

Jva = J(r1 + 1 : r).
6: Through the WDD method, calculate W utilizing K(1 : r1) and J f i.
7: Through (8), calculate Ĵva utilizing K(r1 + 1 : r) and W.
8: Through (10), assign the MAE that was calculated between Ĵva and Jva to E.
9: end procedure

Ensure: E, the error.

Second, by adopting the beetle’s behavior, the objective function in Algorithm 1 is
minimized. Consider the vector x = [p, cT, NT]T, where the parameter p ∈ [0.3, 0.95], and c
is a vector of variable size and its elements take the integer values 1, 2, 3 or 4. These
4 numbers correspond to the activation functions presented in Table 1. Also, the vector
N has the same size as c and its entries take the integer values 0, 1, . . . , nmax − 1 or nmax.
Take note that nmax is the maximum number of hidden layer neurons that the user has set.
These nmax + 1 values represent the power of the activation functions for every neuron
in the hidden layer. For instance, c = [2, 4]T and N = [9, 6]T indicate the presence of two
hidden layer neurons, the first of which operates under the power of 9 using the power
sigmoid activation function and the second under the power of 6 using the power softplus
activation function.

The beetle’s position is represented by the previously described vector x in our method,
and the odor concentration at position x is represented by the objective function f (x) in
Algorithm 1. The minimal value of f (x) acts as a link to the source of the odor. In addition,
we use the notation xt with t = 1, 2, 3, . . . , tmax, where tmax indicates the maximum number
of iterations that the user specifies, to denote the position of the beetle at the t-th moment. As
a result, we set the lower boundary LB = [0.3, 1T, 0T]T, where 1, 0 ∈ Rnmax+1 denote the all
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ones and all zeros vectors, respectively, and the upper boundary UB = [0.9, 1T · 4, 1T · nmax]T.
In order to guarantee that LB ≤ x ≤ UB, the following element-wise function will be used
for the element j = 1, . . . , 2nmax + 1:

g(xj) =


UBj, xj > UBj
xj, LB ≤ xj ≤ UB
LBj, xj < LBj

. (11)

Thus, a model of searching behavior is defined by the beetle’s chaotic search path in the
following manner:

h =
γ

ϵ + ∥γ∥ , (12)

where γ ∈ R2nmax+1 implies a random vector of 2nmax + 1 entries and ϵ = 2−52. The
following formulas are used to create the left (xL) and right (xR) antennae, which simulate
the beetle’s antennae’s searching behaviors:

xR = g(R(xt + ηth)), xL = g(R(xt − ηth)). (13)

where the sensing width of the antennae, ηt, corresponds to the exploit’s capacity at the
t-th moment. Furthermore, take into account the potential best solution (xP):

xP = g(R(xt + ξtηtsign( f (xL)− f (xR)))), (14)

where the notation ξt represents a step size that accounts for the rate of convergence after a
rise in t across the search. Next, the detecting behavior is stated as follows:

xt+1 =

{
xP, f (xP) ≤ f (xt)
xt, f (xP) > f (xt)

. (15)

Finally, the following describes the update rules for η and ξ:

ηt+1 = 0.991ηi + 0.001, ξt+1 = 0.991ξ i. (16)

It is important to remember that the prerequisites for the previously given technique are as
follows:

x0 = [1 − q, 2 − q, . . . , 2nmax + 1 − q]T, (17)

where q = R((2nmax + 1)/2).
After that, on the complete training data set, the BWASD algorithm finds and outputs

the optimal: ratio p∗ between the fitting and validation sets; the optimal W; the optimal
power value N∗; and the optimal activation function of each hidden layer neuron c∗. The
full workflow of the BWASD algorithm is illustrated in the diagram of Figure 3a.

Once finding the optimal structure of BWASD NN model of Figure 1, its optimal
weights and parameters p∗, N∗, c∗, we set the testing set Xte to find the predictions B( Ĵte)
via (9). The diagram presented in Figure 3b provides an illustration of the comprehensive
process for modeling and prediction using the BWASD NN model.
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f(xP) < f(xt)?

xt+1 ← xP

Update ξ and ζ through Equation (16), and set t ← t+1

Yes

t ≤ tmax?

No

No

Yes

xt+1 ← xi

Calculate xP via Equation (14)

Set h ← Equation (12), and xL, xR ← Equation (13)

Initialize via Equation (17)

Return the optimal x*← xt

(a) BWASD algorithm.

Input Data

Return B(Ĵte) via Equation (9) 

Construct the Xtr, Xte, Jtr, and Jte sets 

Compute K of Xte via Equation (6) for the hidden-layer 
neuron powers N and their activation functions c

Find the optimal W, N and c 
through BWASD for Xtr and Dtr

Set C the data containing the 
explanatory variables and J the target

Compute Ĵte via Equation (8)

(b) Procedure for predicting with the BWASD neural network.

Figure 3. The BWASD algorithm and the procedure for predicting with the BWASD neural network.

4. Experiments

In this section, four datasets are used to conduct four different experiments on credit
and loan approval. In these experiments, the performance of the BWASD NN is examined
and compared with several top-performing models of MATLAB’s classification learner. The
kernel naive Bayes (KNB), fine tree (FTR), linear support vector machine (LSVM), and fine
k-nearest neighbors (FKNN) are these classification models. The MWASD NN model
developed in [15] is also compared because BWASD is an enhanced version of MWASD. For
the BWASD model, we have used η0 = ξ0 = 5, tmax = 21, and nmax = 10; for the MWASD
model, we have used nmax = 10 and p = 0.8; and for the MATLAB classification models, we
have used the default values. It is noteworthy that by clicking the next GitHub link, anyone
can obtain the entire development and implementation of the ideas and computation
techniques discussed in Sections 2–4: https://github.com/SDMourtas/BWASD (accessed
on 10 January 2024). Be aware that the MATLAB toolbox includes implementation and
installation guidance.

4.1. Dataset 1

Customer information entered on an online loan application form is included in the
dataset used in this experiment. You may access the dataset, which we will refer to as
DA1, by clicking on the provided link: https://www.kaggle.com/datasets/ninzaami/
loan-predication?resource=download (accessed on 10 January 2024). It is important to
mention that DA1 was provided by a business that wants to automate the real-time loan
qualifying process using customer information. DA1 will contain 471 numerical samples
under 13 variables when the data preprocessing algorithm described in [15] is used. As
a result, the training set is constructed using the first 236 samples, while the testing set is
constructed using the final 235 samples.

The BWASD training error is shown in Figure 4a, while the NNs classification results
for the training and testing sets are displayed in Figures 4b,c, respectively. Figure 4a shows
that the validation error is higher than the fitting error, and that the BWASD requires
20 iterations to optimize the NN structure. Particularly, BWASD returned N∗ = [3, 1, 3, 4]
with c∗ = [3, 2, 2, 1] and p∗ = 0.3 for the specific run, while MWASD returned N∗ = [0, 1]

https://github.com/SDMourtas/BWASD
https://www.kaggle.com/datasets/ninzaami/loan-predication?resource=download
https://www.kaggle.com/datasets/ninzaami/loan-predication?resource=download
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with c∗ = [1, 3]. That is, the NN trained under BWASD has 4 hidden layer neurons, while
the NN trained under MWASD has 2. Figure 4b shows that FKNN has the best ratio
correct/incorrect classifications on the training set, whereas KNB has the worst. Figure 4c
shows that BWASD has the best ratio correct/incorrect classifications on the testing set,
while FKNN and KNB have the worst.

5 10 15 20
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(a) BWASD training error.
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(b) Training set results.
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(c) Testing set results.

Figure 4. Neural networks results on DA1.

4.2. Dataset 2

The dataset used in this experiment includes results based on credit rating algorithms
as well as the possibility that someone may have financial issues in the next two years.
It is important to mention that banks ussualy utilize credit scoring algorithms to assess
whether to approve a loan based on an estimation of the likelihood of default. You may
access the dataset, which we will refer to as DA2, by clicking on the provided link: https://
www.kaggle.com/brycecf/give-me-some-credit-dataset?select=cs-training.csv (accessed
on 10 January 2024). DA2 will contain 120269 numerical samples under 11 variables when
the data preprocessing algorithm described in [15] is used. As a result, the training set is
constructed using the first 9179 samples, while the testing set is constructed using the final
111090 samples.

The BWASD training error is shown in Figure 5a, while the NNs classification results
for the training and testing sets are displayed in Figures 5b,c, respectively. Figure 5a shows
that the validation error is higher than the fitting error, and that the BWASD requires 10 it-
erations to optimize the NN structure. Particularly, BWASD returned N∗ = [0, 0, 3, 3, 4, 6]
with c∗ = [4, 3, 3, 4, 2, 3] and p∗ = 0.9 for the specific run, while MWASD returned
N∗ = [0, 1, 2, 3, 4] with c∗ = [2, 3, 4, 3, 4]. That is, the NN trained under BWASD has 6 hid-
den layer neurons, while the NN trained under MWASD has 5. Figure 5b shows that FKNN
has the best ratio correct/incorrect classifications on the training set, whereas KNB has the
worst. Figure 5c shows that LSVM has the best ratio correct/incorrect classifications on the
testing set and BWASD has the second best, while KNB has the worst.

4.3. Dataset 3

Numerous credit card applications are received by commercial banks. Many of them
are turned down for a variety of reasons, such as excessive credit record requests, poor
income, or large loan balances. Because time is money, manually assessing these ap-
plications is tedious, prone to errors, and time-consuming. Fortunately, machine learn-
ing can be used to automate this operation, and most commercial banks already do so.
The dataset used in this experiment includes results of credit card applications. You
may access the dataset, which we will refer to as DA3, by clicking on the provided link:
https://www.kaggle.com/datasets/samuelcortinhas/credit-card-approval-clean-data (ac-
cessed on 10 January 2024). DA3 will contain 689 numerical samples under 16 variables
when the data preprocessing algorithm described in [15] is used. As a result, the training

https://www.kaggle.com/brycecf/give-me-some-credit-dataset?select=cs-training.csv
https://www.kaggle.com/brycecf/give-me-some-credit-dataset?select=cs-training.csv
https://www.kaggle.com/datasets/samuelcortinhas/credit-card-approval-clean-data
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set is constructed using the first 345 samples, while the testing set is constructed using the
final 344 samples.

The BWASD training error is shown in Figure 6a, while the NNs classification results
for the training and testing sets are displayed in Figures 6b,c, respectively. Figure 6a shows
that the validation error is mostly higher than the fitting error, and that the BWASD requires
21 iterations to optimize the NN structure. Particularly, BWASD returned
N∗ = [0, 0, 2, 2, 2, 5, 5] with c∗ = [2, 1, 1, 4, 4, 2, 2] and p∗ = 0.95 for the specific run, while
MWASD returned N∗ = [0, 1, 2] with c∗ = [4, 3, 4]. That is, the NN trained under BWASD
has 7 hidden layer neurons, while the NN trained under MWASD has 3. Figure 6b shows
that FKNN has the best ratio correct/incorrect classifications on the training set, whereas
KNB has the worst. Figure 6c shows that BWASD has the best ratio correct/incorrect
classifications on the testing set, while KNB has the worst.
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Figure 5. Neural networks results on DA2.
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Figure 6. Neural networks results on DA3.

4.4. Dataset 4

Banks require decision-making guidelines regarding which loans they will approve or
deny in order to reduce their own losses. Loan managers take into account an applicant’s
socioeconomic and demographic profiles before making a determination about the loan
application. The dataset used in this experiment includes results of loan applications
based on applicants socioeconomic and demographic profiles. You may access the dataset,
which we will refer to as DA4, by clicking on the provided link: https://www.kaggle.
com/datasets/mpwolke/cusersmarildownloadsgermancsv (accessed on 10 January 2024).
DA4 will contain 999 numerical samples under 20 variables when the data preprocessing
algorithm described in [15] is used. As a result, the training set is constructed using the
first 500 samples, while the testing set is constructed using the final 499 samples.

https://www.kaggle.com/datasets/mpwolke/cusersmarildownloadsgermancsv
https://www.kaggle.com/datasets/mpwolke/cusersmarildownloadsgermancsv
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The BWASD training error is shown in Figure 7a, while the NNs classification results
for the training and testing sets are displayed in Figures 7b,c, respectively. Figure 7a
shows that the validation error is higher than the fitting error, and that the BWASD requires
2 iterations to optimize the NN structure. Particularly, BWASD returned N∗ = [0, 2, 3, 3, 2, 4]
with c∗ = [4, 1, 1, 1, 1, 4] and p∗ = 0.95 for the specific run, while MWASD returned
N∗ = [0, 1, 2] with c∗ = [4, 3, 3]. That is, the NN trained under BWASD has 6 hidden layer
neurons, while the NN trained under MWASD has 3. Figure 7b shows that FKNN has
the best ratio correct/incorrect classifications on the training set, whereas KNB has the
worst. Figure 7c shows that BWASD has the best ratio correct/incorrect classifications on
the testing set, while FTR has the worst.
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Figure 7. Neural networks results on DA4.

4.5. Performance Measures and Discussion

The models statistics for DA1-DA4 on the testing set are shown in Tables 2–5, cor-
respondingly. The MAE, true positive (TP), true negative (TN), false positive (FP), false
negative (FN), precision, recal, accuracy and F-score are the performance gauges considered
in this analysis. Consult [44] for further information and a detailed examination of these
gauges. Additionally, the accuracy of the classification models is statistically evaluated
using the mid-p-value McNemar test in Tables 6–8.

Table 2. Neural network models’ statistics in DA1.

DA1 Neural Network Models

Statistic BWASD MWASD FKNN FTR LSVM KNB

MAE 0.2170 0.2297 0.2893 0.2723 0.2297 0.2893
FP 0.0304 0.0243 0.1646 0.1707 0.0243 0.0243
TP 0.9695 0.9756 0.8353 0.8292 0.9756 0.9756
FN 0.6478 0.7042 0.5774 0.5070 0.7042 0.9014
TN 0.3521 0.2957 0.4225 0.4929 0.2957 0.0985

Precision 0.9695 0.9756 0.8353 0.8292 0.9756 0.9756
Recal 0.5994 0.5807 0.5912 0.6205 0.5807 0.5197

Accuracy 0.7829 0.7702 0.7106 0.7276 0.7702 0.7106
F-score 0.7408 0.7281 0.6924 0.7098 0.7281 0.6782

In Table 2, BWASD appears to have the finest MAE, accuracy and F-score, and the
second finest TP, FP, precision and recal. FTR has the best TN, FN and recal, and the worst
TP, FP, and precision. The results of MWASD and LSVM are identical and they have the
best TP, FP, and precision. Additionally, KNB has the worst MAE, TN, FN, recal, accuracy
and F-score. According to the aforementioned statistics, the performance of BWASD is the
best, while KNB is the poorest.
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Table 3. Neural network models’ statistics in DA2.

DA2 Neural Network Models

Statistic BWASD MWASD FKNN FTR LSVM KNB

MAE 0.1353 0.1395 0.3093 0.2073 0.0768 0.4847
FP 0.4028 0.3958 0.4669 0.2932 0.5718 0.1747
TP 0.5971 0.6041 0.5330 0.7067 0.4281 0.8252
FN 0.1248 0.1295 0.3032 0.2039 0.0575 0.4968
TN 0.8751 0.8704 0.6967 0.7960 0.9424 0.5031

Precision 0.5971 0.6041 0.5330 0.7067 0.4281 0.8252
Recal 0.8270 0.8233 0.6374 0.7760 0.8815 0.6242

Accuracy 0.8646 0.8604 0.6906 0.7926 0.9231 0.5152
F-score 0.6935 0.6969 0.5805 0.7398 0.5764 0.7107

In Table 3, LSVM appears to have the finest MAE, TN, FN, recal and accuracy, whereas
KNB has finest TP, FP and precision, and FTR has the finest F-score. BWASD has the second
best MAE, TN, FN, recal and accuracy, but BWASD has better TP, FP, precision and F-score
than LSVM. Additionally, KNB has the worst MAE, TN, FN, recal and accuracy, whereas
LSVM has the worst TP, FP, precision and F-score. According to the aforementioned
statistics, the performance of BWASD is the best overall, while KNB is the poorest.

Table 4. Neural network models’ statistics in DA3.

DA3 Neural Network Models

Statistic BWASD MWASD FKNN FTR LSVM KNB

MAE 0.1366 0.1424 0.2005 0.1918 0.1482 0.2994
FP 0.0915 0.0784 0.2091 0.1895 0.0718 0.3856
TP 0.9084 0.9215 0.7908 0.8104 0.9281 0.6143
FN 0.1727 0.1937 0.1937 0.1937 0.2094 0.2303
TN 0.8272 0.8062 0.8062 0.8062 0.7905 0.7696

Precision 0.9084 0.9215 0.7908 0.8104 0.9281 0.6143
Recal 0.8402 0.8263 0.8032 0.8070 0.8158 0.7272

Accuracy 0.8633 0.8575 0.7994 0.8081 0.8517 0.7005
F-score 0.8730 0.8713 0.7969 0.8087 0.8683 0.6660

In Table 4, BWASD appears to have the finest MAE, TN, FN, recal, accuracy and
F-score. LSVM has the finest TP, FP and precision. The results of MWASD and LSVM
are identical and they have the best TP, FP, and precision. Additionally, KNB has the
worst statistic measurements, FKNN has the second worst MAE, TP, FP, precision, recal,
accuracy and F-score, whereas LSVM has the second worst TN and FN. According to the
aforementioned statistics, the performance of BWASD is the best, while KNB is the poorest.

Table 5. Neural network models’ statistics in DA4.

DA4 Neural Network Models

Statistic BWASD MWASD FKNN FTR LSVM KNB

MAE 0.2384 0.2404 0.3126 0.3406 0.2565 0.2885
FP 0.1016 0.1101 0.1949 0.2768 0.0960 0.0169
TP 0.8983 0.8898 0.8050 0.7231 0.9039 0.9830
FN 0.5724 0.5586 0.6000 0.4965 0.6482 0.9517
TN 0.4275 0.4413 0.4000 0.5034 0.3517 0.0482

Precision 0.8983 0.8898 0.8050 0.7231 0.9039 0.9830
Recal 0.6107 0.6143 0.5729 0.5928 0.5823 0.5080

Accuracy 0.7615 0.7595 0.6873 0.6593 0.7434 0.7114
F-score 0.7271 0.7268 0.6694 0.6515 0.7083 0.6699
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In Table 5, BWASD appears to have the finest MAE, accuracy and F-score, the second
finest recall, and the third finest TP, FP, TN, FN and precision. KNB has the best TP, FP and
precision, FTR has the best TN and FN, and MWASD has the best recal. LSVM has the best
TP, FP and precision. Additionally, FTR has the worst MAE, TP, FP, precision, accuracy and
F-score, whereas KNB has the worst TN, FN and recal. According to the aforementioned
statistics, the performance of BWASD is the best, while FTR is the poorest.

The BWASD model is compared to all other models in Tables 6–8 using the mid-p-value
McNemar test to statistically evaluate the classification models’ accuracies. The McNemar
test is a form of homogeneity test that applies to contingency tables and is a distribution-free
statistical hypothesis test. The test determines whether the binary classification models’
accuracies differ or whether one binary classification model outperforms the other. We
perform the McNemar test specifically using the MATLAB function testcholdout, as de-
scribed in [45,46]. It is important to note that the simulation experiments in [45–47] show
that this test has good statistical power and achieves nominal coverage. The statistical
analysis in this subsection follows the recommendations in [47]. According to the marginal
homogeneity null hypothesis, each outcome’s two marginal probabilities are equal. In our
investigation, the null hypothesis claims that the accuracy of the predicted class labels from
the NN model Z and the BWASD is equal, where Z refers to MWASD, FKNN, FTR, LSVM
or KNB. Additionally, we consider the following three alternative hypothesis (AH):

• AH1: For predicting the class labels, the NN model Z and the BWASD have unequal
accuracies.

• AH2: For predicting the class labels, the NN model Z is more accurate than the
BWASD.

• AH3: For predicting the class labels, the NN model Z is less accurate than the BWASD.

In this way, we conduct three McNemar tests under three different alternative hypothesis
to assess. Each test determines whether to reject or not to reject the null hypothesis at the
5% significance level. Keep in mind that an outcome is considered statistically significant if
it allows us to reject the null hypothesis, and that lower p-values (usually ≤ 0.05) are seen
as more convincing proof to reject the null hypothesis.

Table 6 shows the McNemar’s test results for AH1. In DA1, DA3 and DA4, when
comparing BWASD to Z = {FKNN, FTR, KNB}, a p-value of almost zero from the McNemar
test indicates that there is enough proof to reject the null hypothesis. In other words,
the predicted accuracies of the Z and BWASD models are not equal. On the other hand,
when comparing BWASD to Z = {MWASD, LSVM}, a p-value that is far from zero indicates
that there is enough proof to not reject the null hypothesis. In other words, the predicted
accuracies of the Z and BWASD models are equal. In DA2, when comparing BWASD to
Z = {MWASD, FKNN, FTR, LSVM, KNB}, a p-value of almost zero indicates that there is
enough proof to reject the null hypothesis. In other words, the predicted accuracies of the
Z and BWASD models are not equal.

Table 7 shows the McNemar’s test results for AH2. In DA1, DA3 and DA4, when
comparing BWASD to Z = {MWASD, FKNN, FTR, KNB, LSVM}, a p-value of one or almost
one from the McNemar test indicates that there is not enough proof to reject the null
hypothesis. In other words, the predicted accuracies of the Z and BWASD models are equal.
In DA2, when comparing BWASD to Z = {MWASD, FKNN, FTR, KNB}, a p-value of one or
almost one indicates that there is not enough proof to reject the null hypothesis. In other
words, the predicted accuracies of the Z and BWASD models are equal. However, when
comparing BWASD to Z = {LSVM}, a p-value of zero indicates that there is enough proof to
reject the null hypothesis. In other words, the Z model is more accurate than the BWASD.

Table 8 shows the McNemar’s test results for AH3. In DA1, DA3 and DA4, when
comparing BWASD to Z = {FKNN, FTR, KNB}, a p-value of almost zero from the McNemar
test indicates that there is enough proof to reject the null hypothesis. In other words, the Z
model is less accurate than the BWASD. On the other hand, when comparing BWASD to
Z = {MWASD, LSVM}, a p-value that is far from zero indicates that there is enough proof to
not reject the null hypothesis. In other words, the predicted accuracies of the Z and BWASD
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models are equal. In DA2, when comparing BWASD to Z = {MWASD, FKNN, FTR, KNB},
a p-value of almost zero indicates that there is enough proof to reject the null hypothesis.
In other words, the Z model is less accurate than the BWASD. On the other hand, when
comparing BWASD to Z = {LSVM}, a p-value of one indicates that there is enough proof to
not reject the null hypothesis. In other words, the predicted accuracies of the Z and BWASD
models are equal.

Table 6. McNemar’s test results for AH1.

BWASD DA1 DA2
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.2187 rejected 0
FKNN rejected 0.0050 rejected 0

FTR rejected 0.0288 rejected 0
KNB rejected 0.0009 rejected 0

LSVM not rejected 0.2187 rejected 0

BWASD DA3 DA4
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.5488 not rejected 0.8600
FKNN rejected 0.0021 rejected 0.0006

FTR rejected 0.0090 rejected 10−6

KNB rejected 10−7 rejected 0.0095
LSVM not rejected 0.2668 not rejected 0.1741

Table 7. McNemar’s test results for AH2.

BWASD DA1 DA2
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.8906 not rejected 1
FKNN not rejected 0.9975 not rejected 1

FTR not rejected 0.9856 not rejected 1
KNB not rejected 0.9995 not rejected 1

LSVM not rejected 0.8906 rejected 0

BWASD DA3 DA4
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.7256 not rejected 0.5700
FKNN not rejected 0.9989 not rejected 0.9997

FTR not rejected 0.9955 not rejected 1
KNB not rejected 1 not rejected 0.9952

LSVM not rejected 0.8666 not rejected 0.9129

Table 8. McNemar’s test results for AH3.

BWASD DA1 DA2
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.1094 rejected 0
FKNN rejected 0.0025 rejected 0

FTR rejected 0.0144 rejected 0
KNB rejected 0.0004 rejected 0

LSVM not rejected 0.1094 not rejected 1

BWASD DA3 DA4
vs Null Hypothesis p-Value Null Hypothesis p-Value

MWASD not rejected 0.2744 not rejected 0.4300
FKNN rejected 0.0011 rejected 0.0003

FTR rejected 0.0045 rejected 2×10−6

KNB rejected 5×10−8 rejected 0.0048
LSVM not rejected 0.1334 not rejected 0.0871
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Therefore, based on Tables 2–8 statistics, we conclude that the BWASD is the best
performing model in DA1-DA4. In broad terms, the BWASD model consistently provided
great results in the classification of loan approval tasks, and it performs rather well when
compared to traditional NN models. Therefore, the BWASD model can be beneficial for
various businesses. These include businesses looking to automate the evaluation of loan
applications based on customer information, banks evaluating credit card applications,
banks evaluating loan applications based on an estimation of the likelihood of default,
and banks evaluating loan applications based on the socioeconomic and demographic
profiles of applicants.

5. Conclusions

This work presents a bio-inspired WASD NN for binary classification challenges,
named BWASD. The findings of experiments in four loan approval datasets demonstrate
that the BWASD model performs better than the MWASD model and several cutting-edge
models of MATLAB’s classification learner. Therefore, the BWASD model has shown to be
an excellent stand-in for determining whether or not to approve a loan. It is significant to
note that the BWASD NN model can only be trained and tested using actual numerical data
as input due to restrictions imposed by the WDD method. Future research will therefore
focus on properly adjusting and applying it to other binary classification challenges across
multiple scientific disciplines.

In this context, the BWASD model could be modified for use in the engineering domain
to analyze alloy behavior or data from solar systems, as shown in [17,18]. The BWASD
model could also be adjusted for use in the medicine domain to analyze diagnostic data,
as demonstrated in [21]. Finally, integrating BAS alternations, like [37,38], may help to
improve the accuracy of the BWASD model even further.
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