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Abstract: The importance of machine learning (ML) in the clinical environment increases con-
stantly. Differentiation of pathological from physiological tracer-uptake in positron emission to-
mography/computed tomography (PET/CT) images is considered time-consuming and attention
intensive, hence crucial for diagnosis and treatment planning. This study aimed at comparing and
validating supervised ML algorithms to classify pathological uptake in prostate cancer (PC) patients
based on prostate-specific membrane antigen (PSMA)-PET/CT. Retrospective analysis of 68Ga-PSMA-
PET/CTs of 72 PC patients resulted in a total of 77 radiomics features from 2452 manually delineated
hotspots for training and labeled pathological (1629) or physiological (823) as ground truth (GT). As
the held-out test dataset, 331 hotspots (path.:128, phys.: 203) were delineated in 15 other patients.
Three ML classifiers were trained and ranked to assess classification performance. As a result, a high
overall average performance (area under the curve (AUC) of 0.98) was achieved, especially to detect
pathological uptake (0.97 mean sensitivity). However, there is still room for improvement to detect
physiological uptake (0.82 mean specificity), especially for glands. The ML algorithm applied to
manually delineated lesions predicts hotspot labels with high accuracy on unseen data and may be
an important tool to assist in clinical diagnosis.

Keywords: prostate cancer (PC); prostate specific membrane antigen (PSMA); positron emission
tomography (PET); computed tomography (CT); radiomics features (RFs); machine learning (ML)

1. Introduction

Prostate Cancer is one of the leading malignancies in the whole world, with 1.3 million
new cases in 2018. It is the second most common cancer in men worldwide [1] and is the
fifth leading cause of cancer death [2]. The number of deaths is estimated to rise by 105.6%
by 2040 [2]. While the overall 5-year-survival-rate reaches 98.0%, it decreases to 30.5% once
metastases occur [3].

In order to diagnose the disease, detect possible progression and monitor therapy
response, body scans are indispensable. Hybrid positron emission tomography/computed
tomography (PET/CT) scans depict anatomical data on the one hand and functional infor-
mation of tissues on the other hand. As a favorable biomarker for PET in prostate cancer
patients, radiolabeled ligands to prostate-specific membrane antigen (PSMA) are used,
being considered in many studies [4]. PSMA is expressed in prostate cells in very low con-
centration and overexpressed in an increasing degree on prostate cancer cells [5]. Therefore,
it allows distinguishing between benign and malignant tissues. For PET diagnosis, small
molecules targeting PSMA and labeled with the positron emitters, gallium-68 (68Ga) [6] or
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fluorine-18 (18F) [7], are utilized. The combination of PSMA-PET and CT allows allocating
metastasis accurately [8,9].

So far, analysis of PSMA-PET/CT image data, performed by specialists in nuclear
medicine, is mainly done manually based on experience. This has several disadvantages,
being time-consuming and error-prone with high numbers of inter- and intra-observer
variability [10]. Here, the use of computer-aided diagnosis (CAD) has several advantages:
it can improve diagnostic precision, accelerates analysis, facilitates the clinical workflow,
lowers human resource costs, and even may predict prognosis, and last but not least, if
trained with proper datasets, can compensate for inter- and intra-observer variability [11].
Machine learning (ML) algorithms base their analysis on very large amounts of unstruc-
tured information (“big data” [12]), which allows the recognition of complex patterns.
Especially in imaging, their application has shown to be very successful [13–15]. In hybrid
imaging, the implementation of artificial intelligence (AI) is a promising field with applica-
tion in a wide range of clinical sectors, e.g., Morbus Alzheimer in neurology, lung cancer,
multiple myeloma, and prostate cancer in oncology [10,11]. Analysis of textural parameters
in standard clinical image data allows performing segmentation and characterization of
tissues as well as being useful in the fields of prediction and prognosis, leading the way
to individually tailored therapies in the future [16–18]. In the field of prostate cancer, ML
methods are furthermore already used and growing, e.g., in treatment, histopathology and
genetics [13,14]. Khurshid et al. have shown that the two textural heterogeneity parameters,
entropy and homogeneity, correlate with pre/post-therapy prostate-specific antigen (PSA)
levels. A higher level of heterogeneity seems to predict a better response to PSMA therapy
and may in the future allow a pre-therapeutic selection of responders to the treatment [19].
Moazemi et al. have consecutively shown that these parameters also have prognostic
potential for the overall survival of prostate cancer patients [20]. In summary, the software
could take over and improve the whole process in the future, enabling specialists to focus
on more important tasks. For such CAD, including decision support algorithms, at first,
the detection of pathological lesions is necessary, followed by an analysis of the radiomics
features in these lesions. Although the automatic segmentation of high tracer uptake would
be an essential step towards such a clinical decision support tool, in this study, we focus
on the automated classification of pathological vs physiological uptake using radiomics
features from manually segmented hotspots and leave the automated segmentation as
future work. When present, such an automated system would enhance the procedure of
the management of PC patients in terms of time and effort.

Therefore, in the present work, we further compare and evaluate supervised ML-based
algorithms for classifying hotspots in PSMA PET/CT, which have shown their potential
before [21]. Additionally, to verify the significance of the existing algorithm, the training
cohort was gradually extended to find out with how many subjects our model would
generalize. The aim of this study was to quantify the accuracy of the algorithm as applied
to unseen sets of data, especially focusing on enhancing the true classification of hotspots
with physiological uptake. To this end, first, the patients’ scans are manually annotated to
provide data. Then, python software undertakes the task of classifying uptakes into two
categories (pathological vs physiological). Finally, the output is verified and reviewed with
an independent test cohort.

2. Materials and Methods
2.1. Patients and Volume of Interest (VoI) Delineation

Data of 87 patients with histologically proven prostate cancer were included in this
analysis. All patients received a PSMA-PET/CT examination due to clinical reasons, either
for staging or treatment control. PET/CT examinations were performed 40 to 80 min
after the intravenous injection from 98 to 159 MBq in-house produced 68Ga-HBED-CC
PSMA using a Siemens Biograph 2 PET/CT machine (Siemens Healthineers, Erlangen,
Germany). First, a low-dose CT (16 mAS, 130 kV) was performed from the skull to mid-
thigh, followed by the PET imaging over the same area with 3 or 4 min per bed position
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depending on the weight of the patient. PET data were reconstructed in 128 × 128 matrices
with 5 mm slice thickness, while CT data were reconstructed in 512 × 512 matrices with
5 mm slice thickness. For PET image reconstruction, the attenuation-weighted ordered
subsets expectation-maximization algorithm implemented by the manufacturer was used,
including attenuation and scatter correction based on the CT data. Additionally, applied by
the manufacturer, a 5 mm post-reconstruction Gaussian filtering was used for smoothing
of all the input images prior to the ML analyses. All patients gave written and informed
consent to the diagnostic procedure. Due to the retrospective character of the data analysis,
an ethical statement was waived by the institutional ethical review board according to the
professional regulations of the medical board of Nordrhein-Westfalen, Germany.

A total of 72 patients were assigned as the training dataset. The patients’ average
age was 71 (range: 48–87), and the average Gleason score was 8 (range: 6–10) (Table 1).
The PET/CT images data were analyzed using Interview Fusion Software by Mediso
Medical Imaging (Budapest, Hungary) [22]. All the hotspots have been identified based on
fused PET and CT data. Volumes of interest (VoIs) were manually delineated with a brush
tool in the PET images slice by slice (Figure 1). The criteria to choose an uptake was the
visible tracer uptake without any predefined threshold. In a second step, the hotspots were
classified as pathological or physiological, corresponding to the location they were situated
in. The hotspots included primary prostate cancer and metastases in the skeletal system,
lymph nodes, as well as physiological uptake in kidneys, liver, glands, gastrointestinal
tract (gut) etc. A total number of 2452 hotspots were marked and then categorized as either
pathological (total of 1629) or physiological (total of 823).

Table 1. The age, Gleason score, and PSA level ranges for the patients in the training and test cohorts.

Parameter Training Group Test Cohort

Name Average Min Max Average Min Max

Age 71 48 87 77 63 87
Gleason Score 8 6 10 8 6 10
PSA (ng/mL) 438.72 4.73 5910.0 660.62 1.2 5400.0Tomography 2021, 7,  4 

 

 

 

Figure 1. A sample screenshot from the hotspots’ delineation step using InterView Fusion Software 

(Mediso, Budapest, Hungary) [22]. The hotspots are identified and delineated slice by slice as 3D 

volumes of interests (VoIs) by an experienced nuclear medicine physician (the hotspot names trans-

lation from German: Niere = kidney, Darm = gut. Moreover, Met stands for metastasis). 

Table 2. A list of the radiomics features from both positron emission tomography (PET) and computed tomography (CT) 
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Figure 1. A sample screenshot from the hotspots’ delineation step using InterView Fusion Software
(Mediso, Budapest, Hungary) [22]. The hotspots are identified and delineated slice by slice as
3D volumes of interests (VoIs) by an experienced nuclear medicine physician (the hotspot names
translation from German: Niere = kidney, Darm = gut. Moreover, Met stands for metastasis).
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In total, 15 remaining patients with similar ranges of age, Gleason score, and PSA level
as the patients in the training cohort were assigned to the test group for testing the ML
algorithm (Table 1). First, the scans were again analyzed in the same way with Interview
Fusion software as described above. For every patient, 5 to 10 pathological hotspots
were delineated and tracer uptake in all glands; 5 physiological hotspots and uptake in
the liver. Beforehand, glands proved to be difficult for the algorithm to classify whether
physiological or pathological. This analysis resulted in 331 hotspots with 128 pathological
and 203 physiological lesions.

For each hotspot, a total of 77 radiomics features were calculated using InterView
FUSION software (Mediso Medical Imaging, Budapest, Hungary). The features include
first/higher order statistics, textural heterogeneity parameters, and zone/run length statis-
tics features. The complete list of the features is provided in Table 2.

Table 2. A list of the radiomics features from both positron emission tomography (PET) and computed tomography (CT)
modalities. Please note that the metabolic tumor volume (MTV) is PET-specific. This table is already published in [20].

First or Higher
Order Statistics Shape and Size Textural Volumetric Zone Length

Statistics
Volumetric Run Length

Statistics

Deviation Max. Diameter Entropy Short Zone Emphasis Short Run Emphasis
Mean Homogeneity Long Zone Emphasis Long Run Emphasis

Max Correlation Low Grey-Level Zone
Emphasis

Low Grey-Level Run
Emphasis

Min Contrast High Grey-Level Zone
Emphasis

High Grey-Level Run
Emphasis

Sum Size Variation Short Zone Low
Grey-Level Emphasis

Short Run Low Grey-Level
Emphasis

PET-MTV Intensity Variation Short Zone High
Grey-Level Emphasis

Short Run High Grey-Level
Emphasis

Kurtosis Coarseness Long Zone Low
Grey-Level Emphasis

Long Run Low Grey-Level
Emphasis

Busyness Long Zone High
Grey-Level Emphasis

Long Run High Grey-Level
Emphasis

Complexity Zone Percentage
Grey-Level

Non-Uniformity Run
Length Non-Uniformity

Run Percentage

2.2. Training and Classification

For the ML analyses, the question of pathological versus physiological uptake was
mapped to the so-called supervised ML problem [23]. This sort of ML algorithm is applied
when part of the study cohort already includes complete information on input variables (in
our case, PET/CT hotspots and their corresponding radiomics features) as well as ground
truth labels (in our case, pathological vs physiological). Thus, for training and classification
purposes, an in-house developed software in Python V.3.5 was used. Initially, we used a
30-subjects subset of the training dataset of 72 subjects to pre-set, tune, and compare our
machine learning classifiers from SciKitLearn library [24] (linear kernel support vector
machine (SVM), as well as ExtraTrees [25] and random forest as classifiers based on decision
trees [26]), which already showed their significance [21].

In the first round of training, cross-validation (CV) is applied with KFold with 3 folds
to tune hyperparameters of the classifiers and identify the best performing one. To this
end, at each CV step, the C and Gamma parameters of the linear SVM as well as the
min_sample_leaf and max_depth of the decision tree-based algorithms are tuned using
grid search. For the hyperparameter tuning, standard ranges of the hyperparameters are
applied. For example, for C, the range from 2−5 to 213 is used, and for max_depth, the
range from 1 to 10 is used for the grid search. This has resulted in the best combination of
the hyperparameters for each classifier and helped to identify the best classifier based on
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the performance metrics AUC, sensitivity (SE), and specificity (SP). We further quantified
the performances of the classifiers on the test cohort to end up with the best algorithm,
which was Extra Trees. From this point, we used Extra Trees with its tuned hyperparame-
ters (n_estimators = 250, max_depth = 20, min_samples_leaf = 1) to investigate how the
algorithm would generalize as the size of the training cohort increases.

For the next step to assess the generalizability of the algorithms, we started with the
first initial cohort of 30 patients for training the algorithm. Then, we added the data from
the second training cohort (42 patients), one patient at a time and with a randomized order
(thus, the sizes of the training subsets varied from 30 to 72). It means, in each training
step, a random subset of the combination of the two training cohorts was chosen, and
each time the size of the subset was increased by one patient. Furthermore, we repeated
the classification task 100 times with a bootstrapping approach to calculate the accuracy
measures at each training step. As we aimed at assessing the performance of our algorithm
on unseen data, in each step, we calculated the prediction accuracies (AUC, sensitivity (SE),
and specificity (SP)) on the validation set (the hold-out set with 15 subjects). Finally, we
report the mean and standard deviation (std) of the accuracy metrics to give an overview of
how increasing the size of the training cohort affects the classification performance metrics
when trained by the training cohorts of 30 to 72 subjects and tested by the test cohort of
15 subjects. The performance metrics were calculated at each training step based on the
prediction scores of the ML classifier as trained by the training cohort and tested by the
test cohort, then averaged along 100 bootstraps.

To minimize the risk of overfitting, first, the dataset including feature vectors of
training and test subjects were normalized, using the MinMax standardization method.
This method maps the input variables into the range between 0 and 1 to compensate
for inconsistent variable ranges. As a result, variables with very large or very small
values would not affect the classifier performance. For this study, we chose to apply both
cross-validations to identify the best classifier and bootstrapping with replacement and
resampling on the training set to better estimate the population statistics.

3. Results
3.1. Pathological and Physiological Hotspots

In the 72 patients’ scans of the training cohort, 2452 hotspots have been identified and
marked. Out of these, 823 hotspots have been classified as physiological versus 1634 as
pathological. In the 15 patients of the control cohort, 331 areas with increased uptake have
been defined. Table 3 shows the detailed distribution of hotspots in the training cohort, and
Table 4 shows the summarized distribution of the hotspots in the train and test cohorts. In
the training cohort of 72 patients, the category “others” denotes 33 lesions in other organs
such as the spleen and lung.
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Table 3. The distribution of hotspots throughout the training cohort subjects.
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1 11 1 1 2 2 2 2 0 0 1 1 2
2 26 1 1 2 0 0 1 2 2 1 0 0
3 21 0 1 2 0 0 2 2 0 0 1 0
4 25 0 0 2 2 2 0 0 1 0 0 0
5 15 1 2 2 0 2 0 2 1 0 1 4
6 28 0 1 2 2 1 2 2 0 1 1 0
7 30 1 1 2 2 0 2 0 0 0 1 0
8 20 1 1 2 0 2 1 2 1 1 1 0
9 16 0 1 2 2 2 1 0 1 0 1 3
10 25 0 1 2 1 0 1 0 0 0 1 2
11 11 1 2 2 2 2 2 2 1 1 0 0
12 19 1 0 2 1 1 0 1 0 1 1 1
13 25 1 1 2 0 2 2 1 0 1 1 1
14 34 0 1 2 2 2 0 0 1 0 1 0
15 11 1 1 2 0 0 0 2 1 0 1 0
16 35 1 1 2 2 2 0 1 0 1 1 0
17 18 1 2 2 1 2 2 2 0 0 1 0
18 17 1 1 2 2 0 1 0 1 1 1 6
19 7 0 1 2 2 2 0 0 2 1 0 0
20 27 1 1 2 2 0 2 2 0 1 1 5
21 14 1 1 2 0 0 0 2 1 0 0 0
22 22 1 1 1 1 2 2 0 2 1 1 0
23 18 0 0 2 1 0 2 0 0 0 1 0
24 19 0 2 2 2 2 2 0 0 0 1 1
25 31 0 1 2 2 1 1 2 2 1 1 0
26 12 1 1 2 0 2 2 0 1 0 1 1
27 29 0 0 2 2 0 2 0 0 0 1 0
28 43 0 0 2 0 2 0 0 1 0 0 0
29 13 1 2 2 1 2 0 0 2 0 1 0
30 29 1 1 2 2 1 2 0 0 1 1 0
31 13 1 1 2 2 2 2 2 0 0 1 0
32 24 1 1 2 0 2 2 2 2 0 0 0
33 24 1 1 2 0 2 2 2 2 0 0 0
34 22 1 0 2 0 2 2 2 2 0 0 0
35 13 1 2 2 0 2 2 2 1 0 1 0
36 30 1 1 2 0 2 2 2 0 0 0 0
37 30 1 1 2 2 2 2 2 0 0 0 0
38 15 1 1 2 0 2 2 2 1 0 0 0
39 21 1 1 2 2 2 2 2 1 0 1 0
40 25 1 1 2 0 2 2 0 0 0 1 0
41 10 1 2 2 0 2 2 2 2 0 0 0
42 20 1 0 2 0 2 2 2 0 0 0 0
43 23 1 1 2 0 2 2 2 0 0 1 0
44 36 1 1 2 0 2 2 2 1 0 1 0
45 11 1 1 2 0 2 2 2 1 0 0 2
46 34 1 1 2 2 2 2 2 0 0 0 0
47 19 1 1 2 0 2 2 2 0 0 1 0
48 15 1 1 2 2 2 2 2 2 0 0 0
49 7 1 1 2 2 2 2 2 2 0 0 1
50 28 1 1 2 2 2 2 2 0 0 1 0
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Table 3. Cont.
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51 10 1 1 2 0 2 2 2 2 0 0 1
52 26 1 1 1 0 2 2 2 2 0 0 0
53 14 1 1 2 0 2 2 2 0 0 1 0
54 23 1 1 2 2 2 2 2 2 0 0 2
55 31 1 1 2 3 2 2 2 2 0 0 0
56 12 1 1 2 0 2 2 2 2 0 0 0
57 27 1 1 2 0 2 2 2 2 0 0 0
58 45 1 1 2 0 2 2 2 1 0 1 0
59 10 1 1 2 0 2 2 2 2 0 0 0
60 26 1 1 2 0 4 2 2 2 0 0 0
61 20 1 1 2 1 2 2 2 2 0 1 1
62 29 1 1 2 0 2 1 2 0 0 0 0
63 29 1 1 2 0 2 2 2 2 0 0 0
64 26 1 3 2 0 2 2 2 2 0 1 0
65 20 1 1 2 0 2 2 2 2 0 1 0
66 19 0 1 2 0 2 2 2 1 0 1 0
67 47 1 1 2 1 2 2 2 0 0 0 0
68 16 1 2 2 0 2 0 2 1 0 0 0
69 25 1 2 0 0 2 2 2 2 0 0 0
70 21 0 1 2 0 2 2 2 2 0 0 0
71 42 1 1 2 0 2 2 2 0 0 1 0
72 31 1 1 2 0 2 2 2 2 0 0 0

total 1620 58 76 140 57 122 115 107 71 14 39 33

Table 4. The distribution of the hotspots over different body organs in the training and test cohorts.
(* the others category refers to the rest of organs in which hotspots were located).

Hotspot Category Training Cohort 72 Patients Test Cohort 15 Patients

Metastases 1620 128
Bladder 58 13
Kidney 140 30

Salivary Gland 415 111
Prostate 14 -

gut 76 33
liver 39 15

ureter 57 1
Others * 33 -

Total of hotspots 2452 331

3.2. Patient Validation

As a result of the cross-validation step, the Extra Trees classifier outperformed other
classifiers (see Figure 2). The Extra Trees classifier trained with the data of 30 patients
resulted in an AUC of 0.95, a sensitivity of 0.95, and a specificity of 0.80. As expected,
extending the training cohort by incrementing the sample size, one patient after another,
resulted in improved accuracy measures until it reached its overall maximum as the data
from the 72nd subject was imported (0.98 AUC, 0.97 sensitivity, and 0.83 specificity).
Figure 2 gives an overview of how different classifiers performed on the first training
cohort, and Table 5 shows the mean and standard deviation of the accuracy measures
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along all the training steps. Based on the training data of 72 subjects and the validation
cohort of 15 subjects, 125 of the 128 lesions defined by the reader as pathological were
identified as pathological as well, which means a sensitivity of 0.97. Additionally, the
physiological uptake was classified with high precision. While the algorithm showed
accurate predictions of liver, kidneys, GUT, etc., specificity regarding salivary glands
showed to be more difficult with a figure of 0.82. Especially in sublingual and lacrimal
glands, there was a high rate of false positives (9/19 and 7/19). Other glands were easier to
identify as physiological, resulting in a total of only 2 (submandibular gland) and 1 (parotid
gland) false positives. The complete overview is presented in Table 6. As pathological
prostate uptake was only present in 14 subjects from the training cohort, we could not
analyze the prediction performance on the test cohort for this category. However, analyzing
the 14 prostate hotspots from the training cohort, we achieved a sensitivity of 0.92 (13/14
true positives).

Tomography 2021, 7,  9 
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Figure 2. The receiver operating characteristic (ROC) curves to compare three classifiers. The
classifiers are ranked after tuning in the cross-validation step and trained with the first training
cohort with 30 subjects and then applied to the test cohort.

Table 5. The mean and standard deviation (std) values of the area under the curves (AUCs), sensitiv-
ities, and specificities achieved as the training cohort was extended.

Accuracy Metric Mean Std

AUC 0.98 0.002
Sensitivity 0.97 0.004
Specificity 0.82 0.02
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Table 6. The results of the predictions on the test cohort. (GUT: gastrointestinal tract).

Category 1/Pathological 0/Physiological Total Specificity

bladder 0 13 13 1.00
glands 19 92 111 0.82
GUT 1 32 33 0.97
liver 0 15 15 1.00

kidney 0 30 30 1.00
ureter 0 1 1 1.00

metastases 125 3 128 0.97

4. Discussion

The application of ML-based image analysis would implicate several benefits for
patients. First of all, this examination is fast and non-invasive. Second of all, it could be
used for therapy prediction and differentiation between low and high-risk patients [27] and
for prediction of overall survival [20], as already published before. It could furthermore
be the base of individual therapy and treatment tailoring in the future, combining the
technique with analysis of textural parameters. Furthermore, the presented ML-based
approach and the outcoming results confirm the potential of the ML methods for the
analysis of newly day-to-day arriving patients’ data.

The problem with the smaller set of data was that more physiological hotspots were
recognized as pathological, i.e., a high rate of false positives. Results with the bigger
set of data have shown to be more specific though. However, the obtained prediction
accuracies after increasing the training cohort size showed the robustness of the algorithms.
In addition, it is important to note that we have a very high number of hotspots per patient
(34 hotspots per patient on average). Therefore, even with a low number of patients we
have, significant numbers of lesions.

As a matter of fact, overfitting is an important concern in ML studies, especially
when the number of features exceeds the number of samples. In this study, we included
2452 hotspots data (n_samples = 2452) and 77 radiomics features (n_features = 77). We also
applied MinMax standardization. We had already applied cross-validation in the previous
study [21] to identify the best performing ML classifier and tune its hyperparameters.
In this study, we applied Bootstrapping to better estimate the population statistics. To
conclude, all these precautions had been made to avoid overfitting.

In this analysis, we could also identify in which locations the most problems appear in
the AI algorithm. In fact, the categorization of glands proved to be difficult with a specificity
of just 0.82. 19 out of 111 glands were identified as metastasis, especially sublingual (9/19)
and lacrimal (7/19) glands. The reason why the ML algorithm performs poorer on glands
might be caused by the fact that, from the data-driven point of view, the radiomics features
of the glands seem to be in a similar range as for the pathological uptake. Therefore, this
must be a topic of further improvement of the algorithm. However, this limitation of the
algorithm seems to be acceptable for this feasibility study as the head is only in very far
spread tumor disease, a typical location of metastases. For other organ uptakes as kidney
and bladder, a specificity of 1.0 was reached. Even uptake in the GUT approached a result
just as high with a specificity of 0.97. The performance of the ML classifier to classify
pathological prostate uptake was also quantified as high (0.92 sensitivity). However, as
no pathological uptake was annotated in the test cohort, we could not analyze it on the
test step.

As the goal of the presented study was to show the feasibility and power of the lesion
classification in PSMA-PET data, so far, we used manual segmentation. For fast data
processing in clinical routine in future segmentation needs to be performed in an automatic
or at least semi-automatic manner, e.g., as described for bone lesions in [28]. However, this
topic was beyond the scope of this study, and as no satisfying algorithms for total lesion
segmentation in PSMA-PET are available, we decided for a manual segmentation not to
alter our results by problems with a not fully validated segmentation process. Even as
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manual segmentation shows several problems, e.g., interobserver variability, it is widely
accepted in this context [19,29].

As one of the limitations of the current study, the gold standard, which is in our
case, the human-experienced nuclear medicine physician, should be discussed. For the
detection of pathological uptake, naturally, histopathology findings should be preferred.
However, we had nearly 2500 hotspots in our training cohort of 72 patients, meaning nearly
35 hotspots per patient, including physiological uptake. Therefore, there is no option and
justification for performing such a high number of biopsies. This is a general limitation of
this kind of study.

Another general limitation that needs to be taken into account is that the whole study
was performed on data of the same scanner. Although this was not part of the current
study, in further steps, it should be analyzed how specific training and results are according
to changes in scan devices or scan protocols. Such questions should be dealt with best in
multicentric studies.

For further studies in ML analysis of medical image data, prostate cancer seems to
be an ideal subject having a high and increasing prevalence. It should be easy to acquire
“big data” and so to train, develop, and improve the algorithm. In the end, a large group of
people would benefit from this study.

5. Conclusions

Computer-aided decision support systems analyzing radiomics features from pre-
therapeutic 68Ga-PSMA-PET-CT scans and leveraging state-of-the-art supervised machine
learning methods have shown their significance to identify pathological uptake in patients
with advanced prostate carcinoma even on unseen data. Further improvement, however,
should be done in the identification of small glands and in cross-validation of different PET
scanners and perhaps other centers to overcome limitations of interobserver variability and
problems due to scan specifications.
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Abbreviations

PC prostate cancer
PSMA prostate specific membrane antigen
PSA prostate specific antigen
PET positron emission tomography
CT computed tomography
RFs radiomics features
ML machine learning
AI artificial intelligence
AUC area under the curve
SE sensitivity
SP specificity
VoI volume of interest
gut gastrointestinal tract
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