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Abstract: In order to improve the image quality of BLADE magnetic resonance imaging (MRI)
using the index tensor solvers and to evaluate MRI image quality in a clinical setting, we imple-
mented BLADE MRI reconstructions using two tensor solvers (the least-squares solver and the L1
total-variation regularized least absolute deviation (L1TV-LAD) solver) on a graphics processing
unit (GPU). The BLADE raw data were prospectively acquired and presented in random order
before being assessed by two independent radiologists. Evaluation scores were examined for con-
sistency and then by repeated measures analysis of variance (ANOVA) to identify the superior
algorithm. The simulation showed the structural similarity index (SSIM) of various tensor solvers
ranged between 0.995 and 0.999. Inter-reader reliability was high (Intraclass correlation coefficient
(ICC) = 0.845, 95% confidence interval: 0.817, 0.87). The image score of L1TV-LAD was significantly
higher than that of vendor-provided image and the least-squares method. The image score of the
least-squares method was significantly lower than that of the vendor-provided image. No signifi-
cance was identified in L1TV-LAD with a regularization strength of λ = 0.4–1.0. The L1TV-LAD
with a regularization strength of λ = 0.4–0.7 was found consistently better than least-squares and
vendor-provided reconstruction in BLADE MRI with a SENSitivity Encoding (SENSE) factor of 2.
This warrants further development of the integrated computing system with the scanner.

Keywords: BLADE MRI; least absolute deviation; graphic processing unit (GPU); non-uniform fast
Fourier transform (NUFFT)

1. Introduction

The BLADE sequence (also known as the Periodically Rotated Overlapping ParallEL
Lines with Enhanced Reconstruction (PROPELLER) magnetic resonance imaging (MRI) [1]
or MultiVane) uses multiple overlapping rectangular k-space patches (the Fourier domain),
which cover the circular region in k-space while sharing the k-space center. It is well known
that BLADE MRI reduces the motion artifacts and assists the scanning process if patients
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are uncooperative. The motion insensitivity of BLADE MRI is achieved by retrospective
correction for translational and rotational motion. For instance, BLADE MRI is effective in
reducing motion artifact [2–5], which is useful in brain, spine, pediatric [6] and abdominal
imaging. Recently, BLADE MRI has been applied to detect pulmonary damages related
to coronavirus disease 2019 (COVID-19) [7]. All of these clinical applications reveal the
value of BLADE MRI for imaging regions in motion, but its role in static imaging remains
uncertain without more investigation.

Previously, BLADE MRI was noted to exhibit less sharp imagery than Cartesian k-
space acquisition [8,9], as a result of using a vendor-provided reconstruction algorithm.
Thus, BLADE MRI is usually chosen as an extra second pulse sequence only when mo-
tion artifacts drastically degrade the image quality. In our imaging facility, we aim to
adopt BLADE MRI as a routine examination in cooperative patients, but the reconstruction
method an be improved to sharpen the imagery. The clinically available protocol modifies
the overlapping blades around the k-space center by a interleaved pattern with a SEN-
Sitivity Encoding (SENSE) acceleration factor of 2. It is known that SENSE acceleration
halves the total scanning time from 150% (compared to the fully sampled turbo spin-echo)
to 75%, but it causes much noise [10]. Image denoising using regularization is one way of
mitigating the noise effect.

However, image reconstruction of the non-Cartesian data has been challenging, since
no simple direct inverse transform is available. Many regularization methods have been
proposed. For instance, over-complete sparse transforms, i.e., the stationary wavelet
transforms, may be implemented to overcome the common blocky or oil-painting artifacts,
but it requires significant effort to implement the complex algorithms. Recent optimization
algorithms could be used to solve L1 minimization problems, e.g., the alternating direction
method of multipliers (ADMM) [11], the fast iterative shrinkage-thresholding algorithm
(FISTA) [12], or the proximal optimal gradient method (POGM) [13], which can obtain
improved image quality at faster convergence rates. All of these techniques, however,
may introduce additional complexities into the process of image reconstruction, thereby
slowing down its clinical adoption.

Apart from recent dedicated regularization methods, image reconstruction using
efficient total-variation (TV) regularization is obstructed by concerns about the suitability
of TV for clinical MRI. Apparent stair-casing or oil-painting artifacts have been identified
in TV regularization [14,15]. However, recent studies have shown that the disadvantages
of TV-related artifacts can be mitigated by using least absolute deviation (LAD) data fi-
delity [16–20] as opposed to common ordinary least squares (OLS) data fidelity. A well
characterized property of LAD is its robustness to outliers and sampling noise, and LAD
has been applied to image interpolation [21], linear regression [22–24], neural networks [25],
and the problem of regularized image restoration [22], but its application to MRI recon-
struction requires further evaluation. It is worth noting that the integration of LAD and TV
may generate an efficient algorithm for clinical purpose.

Furthermore, a crucial factor in parallel imaging is the smoothness of the coil estima-
tion methods, which greatly influence the quality of the complex-valued imagery. Phase
singularity has appeared in the recent literature, such as deep-learning frameworks [26]
or phase-contrast MRI [27], forcing one to include the second dominant eigenvector [28].
Some networks effectively mitigate the phase singularity of eigen-decomposition [29,30].
Another approach is to leverage the phase unwrapping algorithms [31] to address the
sharp phase transition in coil sensitivities, which may prove useful in future clinical appli-
cations. Recently deep-learning-based MRI reconstruction has solved the parallel image
reconstruction problem with deep-SENSE [32] and GRAPPAnet [33].

This study is a continuing effort to bridge the gap between recent methodological
developments [34,35] and image quality assessment in a clinical setting. In this study,
we tested the clinical value of the L1TV-LAD method on the GPU, which is immune to
the stair-casing artifacts of TV. In addition, a new coil estimation method was integrated
into the reconstruction pipeline without phase singularity. In the present study, the tensor
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iteration generates smooth coil sensitivities, which appear to be more homogeneous than
that obtained with the power iteration or the root-sum-squared (RSS) method. The tensor
iterations naturally impose a low-frequency constraint, and phase singularity is mitigated.
Our method is conceptually akin to the simultaneous estimation for imagery and coil
sensitivity [36], although we consider its index tensor form without including the Sobolev-
norm weight [37]. We tested the image quality of the L1TV-LAD reconstruction in a clinical
setting in order to assess the value of the algorithm. We discuss the implications of this
study and the outlook for future studies.

2. Materials and Methods
2.1. Mathematical Background

Index tensor notation has provided a handy tool for annotating multi-dimensional
operators beyond second order matrices. The adoption of the multi-dimensional indexed
tensors is useful to the non-Cartesian MRI acquisition modes. In this study, we investigated
the index tensor notation for non-Cartesian BLADE MRI encoding method. The technical
details are outlined in Appendix A.

2.2. Reconstruction of In Vivo Rawdata

The in vivo study was approved by the regional institutional review board (approval
number 20-022 obtained from the Jianan Psychiatric Center, MOHW, Tainan City, Taiwan;
approved on 11 September 2020; revised on 31 December 2020). Data were retrieved from
patients who received head scanning for clinical indications but with negative findings, ex-
cluding patients with positive findings such as traumatic injury, tumor, stroke or infectious
diseases. Patients’ genders, ages and identifiable personal information were removed after
data acquisition because this minimized the risks of data breach and it is not necessary
to store the information for image quality assessment. The experimental design of this
study is illustrated in Figure 1. The BLADE rawdata were acquired from a 1.5 T scanner
(Magneto Avanto, Syngo B17, Siemens, Erlangen, Germany). The acquisition parameters
were: field-of-view (FOV) = 22–26 cm, repetition times = 4100 ms, echo times = 100 ms,
slice thickness = 5 mm, matrix size = 256× 256–320× 320, blade size = 512× 35–640× 35,
2 × SENSE factor, number of blades = 14, 22–24 slices. The T2-weighted BLADE raw-
data were retrieved from the Siemens 3D MRI scanner, which were then parsed using
open-source twixtools [38].

2.3. Image Reconstruction Based on Tensor Solvers

The computer simulation tested the single-coil image reconstruction to evaluate the
numerical performance of different algorithms, using a sagittal T1-weighted head MRI
as a ground truth image. The k-space (Fourier domain) data were generated from a
high-resolution T1 weighted turbo-spin echo sagittal brain MRI using the Python non-
uniform fast Fourier transform (PyNUFFT) package [35]. Images were reconstructed using
three algorithms: (1) the Sparse Equations and Least Squares (LSMR) algorithm [39] with
100 iterations at a satisfactory convergence, (2) L1TV-OLS, and (3) L1TV-LAD. The LSMR
algorithm was chosen for its stability to non-symmetric matrices [39]. We reproduce the
stair-casing artifacts in images by L1TV-OLS, but not in images by L1TV-LAD or LSMR.

The coil sensitivity profiles were computed from the center of k-space. The RSS
method divides the complex-valued low-resolution images by the root-sum-squared of
all channels. The power iteration implements the method in [40], which first smoothed
the coil images by the SPIRiT kernel (ACS = 16 with 16 overlapping squares) and then
applied power iterations to calculate the eigenvectors. The tensor iterations compute the
coil sensitivities with the equation outlined in Equation (A14) (Appendix B).

We applied the above coil sensitivities generated by RSS, power iteration, and tensor
iteration to image reconstruction. The parameters of LSMR were 100 iterations without a
damping factor because applying a damping factor (the L2 regularization) on the image
incurs the risk of over-suppressing the components with high noise levels. The L1TV-LAD
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were based on Equation (A15) using the split-Bregman method [41] and LAD data fidelity
(Appendix C). The parameters of L1TV-LAD were: µ = 1, λ = 0.4–1.0 (µ: the weighting
of the data fidelity; λ: the regularization strength. These parameters were determined
from previous literature and the pilot study). The reconstructed gray-scale images were
converted to Digital Imaging and Communications in Medicine (DICOM) format without
image compression.

Figure 1. Experimental design in the study. 9 patients were scanned by the BLADE protocol. Images
were generated by vendor-provided reconstruction (the sampling density compensation), the least-
squares method (using LSMR) and L1TV-LAD. Images were randomized for blinded image quality
assessment by 2 readers. The results were statistically analyzed by cluster analysis with repeated
measures ANOVA.

In vivo BLADE rawdata allow parallel imaging reconstruction to be performed. The
tensor iterations are performed around the center of the k-space trajectory. This is simply
performed by using the NUFFT and then multiplying the data with the sampling density
compensation function with the mask function, and an adjoint operation of the NUFFT.
The eigenvector of each voxel was normalized to the L2 norm along the coil dimension.

We performed 100 iterations for LSMR and the L1TVLAD algorithms. The LSMR algo-
rithm uses the hybrid CPU-GPU computing method and the GPU acceleration component
is encapsulated in a PROPELLER2D_gpu class. The L1TV-LAD algorithms performed all
the iterations on the accelerator with minimal data transfer between GPU and the host.
A rawdata set of 22 slices and 6 coils was reconstructed within 1 min of computation
times by 4 GPUs (Titan X Pascal video card (NVIDIA Corporation, Santa Clara, CA, USA)
with 3584 cores, 1417 MHz–1531 MHz, 12 GB 384-bit GDDR5X memory). The reconstruc-
tion time of the vendor-provided algorithm was completed after data acquisition without
delays, making a post-acquisition evaluation impossible, though an in-house developed
sampling density compensation algorithm can compute the result within 5 s on a single
CPU core.
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2.4. Radiologists’ Evaluation

Two board-certified radiologists (Reader A with 8 years of clinical experience, and
Reader B, with 9 years of clinical experience) separately evaluated the reconstructed MRI
DICOM series with viewing software (G3 PACS viewer, INFINITT, Seoul, Korea) and
DICOM-compliant monitors (model CCL354i2, TOTOKU, Tokyo, Japan), allowing readers
to adjust the imaging window, level or zoom. The reconstruction algorithms were hidden
from the radiologists, and they could not identify any algorithms based on the order of their
appearance. To randomize the images, all the DICOM series and the vendor-provided T2
BLADE DICOM series were anonymized and were given random Service-Object Pair (SOP)
Instance Unique Identifier (UID) Attributes. Therefore, the radiologists could not have
been influenced by the order in which the data appeared. Due to the limited capacity to
exhaust all the regularization methods, the L1TV-OLS reconstruction method was excluded
from the clinical evaluation because of the obvious stair-casing and oil-painting artifacts
noted in the pilot study and the literature. The method of scoring in the literature was
modified [42] but we adjusted the scoring system to reflect the subtle changes in the images
imposed by the different methods of reconstruction.

Absolute image scores (Table 1) were evaluated in terms of overall image quality,
level of noise, tissue contrast, sharpness, and artifacts, with scores ranging from 1 (non-
diagnostic) to 5 (excellent). The absolute image scores provide a subjective evaluation of
the image quality from the perspective of clinical diagnosis. Scores above 3 were diagnostic,
and higher scores (≥4) provided good or excellent image quality in the tests. For the
relative image scores (Table 2), we assessed 4 reconstruction algorithms together with the
vendor-provided T2 BLADE images, ranging from 1 (much inferior) to 5 (much better).
Relative scoring used the vendor-provided image as the reference image. A score of ≥4
was interpreted as better than the vendor-provided image. Both radiologists rated the
vendor-provided image as 3, because they were able to identify the vendor-provided image
identical to the reference image.

Table 1. Absolute image scores (1: worst, 5: best).

Score Overall Image Quality Noise (SNR) Tissue Contrast * Sharpness Artifacts †

1 Non-diagnostic All structures are
noisy

Not all tissues can be sep-
arated

No structures are
sharp

Severe

2 Limited Most structures are
noisy

Few tissues can be sepa-
rated clearly

Few structures are
sharp

Moderate

3 Diagnostic Several structures
are noisy

Several structures can be
separated clearly

Several structures
are sharp

Mild

4 Good A few structures
are noisy

Most structures can be
separated clearly

Most structures
are sharp

Minimal

5 Excellent No noticeable noise
on any image

All tissues can be sepa-
rated clearly

All structures are
sharp

None

*: gray matter, white matter, cerebrospinal fluid, lesion; †: motion, aliasing, Gibbs, star-like artifacts.

Table 2. Relative image scores: as compared with the vendor-provded T2 BLADE images (1: worst, 5: best).

Score Overall Image Quality Noise (SNR) Tissue Contrast * Sharpness Artifacts †

1 Much inferior Much inferior Much inferior Much inferior Much more

2 Somewhat inferior Somewhat inferior Somewhat inferior Somewhat inferior Somewhat more

3 No distinction No distinction No distinction No distinction No distinction

4 Somewhat better Somewhat better Somewhat better Somewhat better Somewhat fewer

5 Much better Much better Much better Much better Much fewer

*: gray matter, white matter, cerebrospinal fluid, lesion; †: motion, aliasing, Gibbs, star-like artifacts.
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The rationale of the experimental design (the absolute and the relative scores) was
that, while the relative image scores gave a detailed evaluation of the subtle differences in
image quality, these subtle visual differences could also be reflected in clinical values. Thus,
readers were allowed to quantify the visual image quality and the perceived clinical values
separately. Finally, two scores were used to represent separately the diagnostic ability and
the difference in visual perception. Inter-rater reliability and repeated measure analysis of
variance (ANOVA) were used to compare the scores given by the two readers.

3. Results
3.1. Coil Sensitivity Profiles

Figure 2 shows that the RSS method demonstrates spatially abrupt changes in the
complex components. The power iterations method led to discontinuous complex-valued
components and phase singularity. The tensor iteration generated smooth coil sensitivities
without abrupt discontinuous complex components or phase singularity.

Figure 2. Comparisons between estimation methods for coil sensitivity profiles of coils 1–6. Only
real-valued images are shown. (A) Coil images: The real part of the low-resolution coil images.
(B) RSS (root-sum-squared): The low-resolution images divided by the RSS, but exhibiting phase
wrapping. (C) The power iteration causes phase singularity (arrow heads) in all six channels. (D)
Tensor iterations extracted smooth sensitivities. Although the intensity distributions between (C)
and (D) looked different, both solutions were valid eigenvectors which were non-unique. However,
the phase singularities in (C) could affect the homogeneity of complex-valued imagery.

As shown in Figure 3, the complex imagery was influenced by different coil estimation
methods. All three coil sensitivity estimation methods produced final images of similar
magnitude. However, the phase images and complex valued images varied with the three
coil estimation methods. The RSS method generated phase wrapping in the intracranial
regions, which led to local signal suppression in the real component of the image. Power
iteration produced focal phase singularity, and abrupt signal changing around the thalamus,
which may have affected the clinical diagnosis if a phase image was required. The tensor
iteration was immune from the spatial changes. The phase image and the complex valued
image parts seemed to be more homogeneous than the other two methods.
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Figure 3. In vivo study for the least-squares reconstructed images using different coil sensitivity
estimation methods. White arrow heads indicate the phase singularities in the phase image, which led
to local changes of intensity in the real and the imaginary components; (A) RSS: images reconstructed
by RSS coil sensitivities; (B) Power iteration: images reconstructed by the coil sensitivities of the power
iterations, which were influenced by phase singularities; (C) Tensor iteration: images reconstructed
by the coil sensitivities of the tensor iterations, which were more homogeneous than the results of (B).

3.2. Numerical Evaluation of the Image Quality

Because the approved ethical protocols in the clinical study did not require patients to
move their heads, a simulation study was performed to simulate the case of partial k-space
coverage with missing blades. In this simulation, a partial k-space (14 blades out of 20,
equivalent to 70% blade coverage) was generated from a T1 weighted sagittal brain MRI.
Figure 4 shows the image quality metrics of a simulated brain MRI of L1TV-OLS, L1TV-
LAD, and least-squares reconstructions. The full images show that L1TV-LAD was better
than L1TV-OLS and least square. However, zoom-ins show that no consistent trend can be
seen in the L1, L2 and SSIM image quality metrics in the magnified brain regions because
the SSIM can be influenced by the magnification of the images. The L1/L2 norms show that
the L1TV-LAD method is superior to the L1TV-OLS and least-squares. A moderate level of
noise can be seen in the least-squares image and the ground truth, which justifies the higher
SSIM of the least-squares method. However, the trend of SSIM is altered in the zoom-in
images, in which the least-squares is superior to the L1TV-LAD and L1TV-OLS. Slight
oil-painting artifacts can be seen in the L1TV-OLS, but were not observed in the L1TV-LAD.
The contrast-to-noise ratios (CNRs) are listed in Table 3. While the least-squares method
lowers the CNR, L1TV-LAD increases the overall CNR to different levels.

3.3. Clinical Evaluation of the Image Quality

Nearly all five BLADE MRI imaging sets show good clinical diagnostic potential except
for subtle differences in the zoom-ins (Figure 5). However, we noted in at least one slice
that the vendor-provided reconstruction method yields erroneous motion correction (see
Figure 6). This erroneous motion correction is a rare condition, which was not identified by
operators and was impossible to correct during data acquisition.
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Table 3. Contrast-to-noise ratios (CNRs).

CNR Vendor Least-
Square

L1TV-LAD
(λ = 0.4)

L1TV-LAD
(λ = 0.7)

L1TV-LAD
(λ = 1.0)

GM 55.0± 14.8 48.7± 8.2 75.1± 11.9 89.4± 14.2 101.3± 16.3

WM 38.5± 10.0 31.5± 7.1 48.5± 7.9 57.6± 8.2 65.3± 8.7

CSF 137.0± 24.9 111.4± 31.0 169.4± 36.0 201.1± 40.5 223.7± 48.0

Thalamus 44.7± 10.2 37.3± 9.6 57.3± 11.1 68.2± 12.1 77.2± 13.1

GP 36.5± 8.3 28.8± 7.1 44.6± 7.8 53.1± 8.4 60.2± 9.1

CN 50.8± 9.8 38.1± 8.1 58.6± 8.6 69.7± 9.1 78.9± 10.0

Putamen 44.8± 9.2 35.2± 8.5 54.2± 9.3 66.7± 20.8 73.1± 10.6
GM: gray matter; WM: white matter; CSF: cerebrospinal fluid; GP: globus pallidum; CN: caudate nucleus.

Figure 4. Simulated k-space of a sagittal T1-weighted TSE head MRI and reconstruction results of
3 algorithms. The k-space has 14 blades (70% coverage of the fully sampled k-space), which can occur
when 30% of the blades are corrupted due to patient movement. Simulated data are reconstructed by
three algorithms (A) the L1TV-OLS, (B) the L1TV-LAD, and (C) the least squares. Overall, L1TV-LAD
achieves lower L1/L2 norm than the L1TV-OLS or least-squares, without stair-casing artifacts or
cartoon-like over-smoothed image quality. Least-squares causes a higher L1/L2 norm and obvious
artifacts in the difference map. The zoom-in of the imagery by 3 algorithms shows similar SSIM
values (SSIM = 0.9924–0.9946).

In Figures 7 and 8, the absolute and relative scores given by the two readers show high
inter-rater reliability (intraclass correlation coefficient (ICC): 0.845, 95% confidence interval:
0.817, 0.87 by R language with the irr library). Analyses using repeated measures ANOVA
reveal that the scores across the five methods were statistically significant (p-value < 0.001)
in the absolute and relative scores rated by two readers. Cluster analysis using post hoc
pairwise ANOVA shows that the scores with the least-squares method were significantly
lower than those with the vendor-provided image (p < 0.001 in the absolute and relative
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scores from Reader A, and that p < 0.01 in the absolute scores and p < 0.001 in the
relative scores from Reader B). The scores of L1TV-LAD were significantly higher than
the vendor-provided image (p < 0.001 in the absolute and relative scores from the two
readers) and the least-squares method (p-value ranged from <0.01 to p < 0.001) in the
absolute and relative scores. Insignificant differences between the different regularization
strength values of L1TV-LAD (λ = 0.4, 0.7, 1.0) were also observed (p > 0.1). The L1TV-
LAD method exhibited less noise and fewer artifacts than the vendor-provided image and
least-squares method (Figure 5), and was sharper and better in overall imaging quality.
There is no difference of tissue contrast with any of the reconstruction methods.

Figure 5. DICOM images for evaluation by radiologists. (A) is the vendor-provided image. (B)
is the LSMR reconstruction. (C–E) are L1TV-LAD reconstructed images with λ = 0.4, 0.7, and 1.0,
respectively. The vendor-provided image shows some zig-zag appearance (white arrow head). The
LSMR reconstruction causes a higher level of noise (white arrow head). The vendor-provided image
and least-squares reconstruction have some signs of the Gibbs artifact near the skull inner table and
the falx.

Figure 6. BLADE MRI with cooperative patients. (A) Erroneous correction for motion in the vendor-
provided reconstruction, where the basilar artery is distorted and brain structures are overshadowed
by artifacts (arrow heads). (B) Least-squares reconstruction without correcting motion. (C) L1TV-LAD
reconstruction without correcting motion shows smooth imagery with a lower level of noise.
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Figure 7. Boxplots of the absolute scores by two readers. box: the first and the third quantile,
bold lines: mean, whisker: maximum and minimum (may overlapped with the box in most cases).
Medians are overlapped by the box. �: outliers. * p < 0.01, ** p < 0.001.

Figure 8. Boxplots of the relative scores by two readers. box: the first and the third quantile, bold
lines: mean, whisker: maximum and minimum (may overlap with the box in most cases). Medians
are overlapped by the box. �: outliers. ** p < 0.001.

4. Discussion

This study confirmed that L1TV-LAD improves the image quality of T2 weighted
BLADE MRI in a clinical setting. The improvement is likely due to the change of data
fidelity terms from the OLS to the LAD. Our finding is consistent with previous results
and the recent robust compressed sensing method in computer vision [43], in which
the introduction of the robust data fidelity improved the image quality even for the TV
regularization. Hence, this study suggests that robust statistics may be considered for
BLADE MRI, without resorting to more dedicated regularization methods.
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This patient study was limited by the clinical research protocol, which does not allow
intervention or impose any additional risks to patients. First, due to the nature of the inverse
problems, no ground-truth images available in a clinical MRI scanning, and calculating
L1/L2 norms and the SSIM were not possible on patient data. Hence, the simulation-based
approach was included in this study. On the one hand, the simulation-based numerical
image quality metrics provide ground-truth images, and standard numerical metrics,
such as L1/L2 norms and the SSIM, can be used for evaluation. However, the numerical
results can be influenced by different levels of zoom-in and noise, and other variants of
SSIM [44,45] have been developed. Still, a simulation-based study is also limited because it
might not accurately emulate the coil sensitivity profiles. On the other hand, a radiologist’s
assessment of the absolute and relative image scoring can be a useful tool for evaluating
a reconstruction method without ground-truth images, although no standard numerical
metrics can be used because of the lack of ground-truth images.

Second, the raw data were collected from cooperative patients, and motion artifacts
were not noticeable. We have simulated the condition of 30% missing-BLADE rejection.
However, this simulation may be an inadequate approach to studying the motion artifacts.
For uncooperative patients, motion artifacts have been well solved [1]. Therefore, the
current evidence suggests that if patients are uncooperative, the vendor-provided motion
correction algorithm can reliably restore the images. Without motion artifacts, L1TV-LAD
may be used to improve the static BLADE MRI. Since switching between two reconstruction
algorithms does not require a second scanning, this limitation need not prolong the total
scanning time of a patient in a clinical setting.

Third, the algorithm was robust to a wide range of regularization strengths (λ = 0.4–1.0),
which may well reconstruct BLADE with different thicknesses, noise-levels, or numbers
of blades. However, this speculation requires future study to confirm its validity. In addi-
tion, we have not applied the algorithm to acquisition methods beyond the BLADE MRI,
where readers could seek the compressed sensing MRI [46] using the iterative L1 regu-
larization [47] when images are sparse. We have not compared compressed sensing with
the L1TV-LAD for BLADE MRI. According to the Dohono-Tanner phase diagram [48,49],
the compressed sensing algorithm may not reconstruct BLADE MRI faithfully because it
comprises a high ratio of non-zeros in the data and images. In this non-sparse scenario,
L1TV-LAD could be used instead.

Last, the pilot research collected patient data without positive findings, which pre-
cluded severe brain conditions, such as traumatic brain injuries, tumor, post-surgery,
meaning that sensitivity, specificity, and the area-under-curve (AUC) of the receiver operat-
ing characteristic (ROC) curve of the disease could not be measured in this study. Although
we did not explore the influence of patient demographics (such as age, gender, disease, etc.),
the principle of using BLADE MRI remains unchanged regardless of patient demographics
and diseases. It is likely that similar reconstruction parameters could apply to most patient
groups. In future studies, it will be essential to collect data on specific diseases with positive
MRI findings, from which statistical parameters can be derived.

Future study involves evaluating statistical measures, such as sensitivity, specificity,
the AUC/ROC curve for brain diseases and other locations. Since PROPELLER MRI has
been used in musculoskeletal imaging, liver imaging, lung imaging and body imaging,
this algorithm may enhance the image quality of static BLADE MRI. Moreover, subtle
pathology may be better identified without being overshadowed by noise. Because the
reconstruction apparatus is a separate module outside the pulse sequence, the T2 FLuid
Attenuated Inversion Recovery (T2-FLAIR) can be developed further. Beyond the iterative
reconstruction method, image reconstruction may be accelerated by leveraging recent
machine learning frameworks [50]. Nonetheless, radiologists should further evaluate image
quality following the integration of software frameworks whose different implementations
may greatly influence the image quality, causing perceptible visual changes and degraded
diagnostic values.
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5. Conclusions

We demonstrated the image quality of the L1TV-LAD algorithm for BLADE MRI is
better than those of the vendor-provided image and the least-squares, but both readers
reported that the noisy images were still of diagnostic value.
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Abbreviations
The following abbreviations are used in this manuscript:

ACS Auto-Calibration Signal
ANOVA Analysis of variance
CNR Contrast-to-noise ratio
DICOM Digital Imaging and Communications in Medicine
ESPIRiT Eigenvalue Approach to Autocalibrating Parallel MRI approach
ICC Intraclass correlation coefficient
LAD Least absolute deviation
MRI Magnetic resonance imaging
OLS Ordinary least squares
PROPELLER Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction
RSS Root-sum squared
SENSE SENSitivity Encoding
SSIM Structural Similarity
T2 FLAIR T2 FLuid Attenuated Inversion Recovery

Appendix A. Parallel MRI Encoding Using the Indexed Tensor Notation

Einstein’s summation convention [51] is the mathematical notation which is used to
describe multi-dimensional geometry. The index tensor notation provides a tool for anno-
tating multi-dimensional operators beyond common second order tensors, i.e., matrices.
Index notation was previously found useful in diffusion MRI for simultaneously consid-
ering the position and orientation [52]. In this study, we used indexed tensor notation to
clearly identify different spatial and coil dimensions without risk of confusion.

The primary rule of tensor contraction is to contract identical Greek alphabets which
simultaneously appear in two tensors as superscripts and subscripts. The superscripts and
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subscripts unambiguously annotate the multi-dimensional tensor operators. For example,
a matrix-vector product is represented as the following index tensor notation:

yς ← Aς
ρxρ (A1)

The contravariant ς is the first dimension (row) of matrix A. The covariant ρ is the
second dimension (column) of matrix A. This representation is equivalent to the element-
wise matrix-vector multiplications of Ax = y:

y(ς) =
P

∑
ρ=1

A(ς, ρ) · x(ρ), ρ = 1, 2, . . . , P (A2)

A introduction to Einstein notation can be found in the materials of tensor calculus [53].
The index tensor notation for 2D fast Fourier transform reads as follows:

yκλ ← F1κ
αF2λ

β xαβ (A3)

F1κ
αF2λ

β = Fκλ
αβ is the 2D Fourier transform. The meaning of this representation is that

the 2D image xαβ is transformed by F1κ
α along the first axis (normally known as the x-axis)

and the second axis by F2λ
β (normally known as the y-axis). The k-space is spanned by the

κ, λ axes, which are normally denoted as the kx, ky in the MRI community
Extending the Cartesian k-space to non-Cartesian is straightforward. By reformatting

the spatial encoding as tensor operators, the non-Cartesian Fourier transform is well
described as the interpolation in k-space:

yµ ← δ
µ
µ1µ2 V2

µ2
λ V1

µ1
κ Fκλ

αβ xαβ (A4)

in which the Kronecker delta is defined as:

δ
µ
µ1µ2 =

{
1, i f µ = µ1 = µ2

0, otherwise
(A5)

yµ is the 1D non-Cartesian data. Fκλ
αβ is the 2D Fourier transform. δ

µ
µ1µ2 V2

µ2
λ V1

µ1
κ

indicates the tensor operators for interpolating grid data to the off-grid coordinates. The
current notation looks different from the previous Einstein’s notation introduced in the
tensor conjugate gradient method [54], in which a single high-order tensor represents the
multi-dimensional interpolation.

To elucidate the similarity between the current separated tensors and the previous
representation we define V′:

V′µκλ = δ
µ
µ1µ2 V2

µ2
λ V1

µ1
κ (A6)

V′µκλ represents the 2D interpolator as a single higher-order tensor, which is similar to
the notation in [54].

The index tensor operators of the general non-Cartesian k-space can be further decom-
posed if the k-space acquisition has shown certain periodicity in the acquisition order. The
PROPELLER MRI [1] oversamples the center of the k-space and rotational or translational
motion compensations can be made before the final reconstruction. Each BLADE is a
rotated Cartesian k-space. The tensor operator for PROPELLER is as follows:

yµνθc ← δθ
θ1θ2

δ
µ
µ1µ2 δν

ν1ν2
E1µ1ν1θ1

α E2µ2ν2θ2
β δ

β
β0β1

δα
α0α1

Sα1β1cxα0β0 (A7)

where E1µ1ν1θ1
α and E2µ2ν2θ2

β are fourth-order tensors, indicating the tensor encoding oper-

ators for the x, y axes, respectively. δθ
θ1θ2

, δ
µ
µ1µ2 and δν

ν1ν2
are Kronecker delta functions to

select the “coincidence” when µ = µ1 = µ2, ν = ν1 = ν2 and θ = θ1 = θ2. yµνθc indicates
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the data of the c-th coil, which are acquired at angle θ, phase encoding distance ν and radial
distance µ.

E1µ1ν1θ1
α = exp[−2π j{µ1 −Mc

Mmax
cosθ1 −

ν1 − Lc

Mmax
sinθ1}(α− αc)]

E2µ2ν2θ2
β = exp[−2π j{µ2 −Mc

Mmax
cosθ2 +

ν2 − Lc

Mmax
cosθ2}(β− βc)]

(A8)

αc, βc are the center of the 2D spatial dimensions, Mc, Lc are the center for the frequency
and the phase encoding directions.

The operators E1 and E2 can be further decomposed into sub-tensor operators:

E1µ1ν1θ1
α = δθ1

θ′1θ”1
δα′α”

α E1′µ1θ′1
α′ E1”ν1θ”1

α”

E2µ2ν2θ2
β = δθ2

θ′2θ”2
δ

β′β”
β E2′µ2θ′2

β′ E2”ν2θ”2
β”

(A9)

which shows that the x-y directional tensors are composed of the frequency-encoding
tensor (as in radial MRI) and the phase-encoding tensor.

Appendix B. Parallel Imaging Reconstruction

Sensitivity Encoding (SENSE) [55] acquires low-resolution images from prescans or
self-calibrating k-space, and using Eigenvalue Approach to Autocalibrating Parallel MRI
approach (ESPIRiT) [40] is a popular method of extracting the coil sensitivity profiles from
the coil images. In ESPIRiT, the coil sensitivities were solved by moving the auto-calibrating
signal (ACS) windows in k-space, and the right singular vectors are reformatted as the
smooth bases of the coil images. The ESPIRiT method solves the eigenvector on top of the
images smoothed by SPIRiT kernels, which perform well for magnitude imagery. However,
the eigenvectors are non-unique and the numerical instabilities can cause phase variations.
Recently, other modified coil estimation methods [28,36] have been proposed. GRAPPA
type non-Cartesian k-space has also been proposed [56].

The index tensor form allows the eigendecomposition to be reliably estimated, since a
2D image tensor xα0β0 to be multiplied by the coil sensitivity profile can be written as a 3rd
tensor Sα1β1c:

x′αβc ← δ
β
β0β1

δα
α0α1

Sα1β1cxα0β0 (A10)

as illustrated in Figure A1.

Figure A1. Parallel imaging shown as the index tensor operators. xα0 β0 is the spatial distribution
of the transverse magnetization for the object. Sα1 β1c is a 3rd tensor for coil sensitivity profiles.
α, αi, i = 0, 1 indicates the first spatial dimension. β, βi, i = 0, 1 indicates the second spatial dimension.
c is the dimension for coil.

The index notation is well adapted to multislice parallel imaging reconstruction.
Consider the encoding tensor operator for multislice 2D PROPELLER MRI:

yµνθγ′c ← Mµνθγ′c
αβγ xαβγ (A11)
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µ is the radial distance, ν is the phase encoding direction, θ is the angle, c is the coil

dimension, γ and γ′ indicate the slice dimension. Mµνθγ′c
αβγ consists of non-Cartesian Fourier

encoding and multislice coil sensitivities.

Calibrating the coil sensitivities requires a subtensor Msub
µ′ν′θ′

αβ which performs 2D
encoding around the center of k-space (as ACS in ESPIRiT). A pseudo-inverse operator
Msub

†αβ
µ′ν′θ′ indicates the reconstruction process which generates low-resolution coil images:

zαβγ′c ← Msub
†αβ
µ′ν′θ′{ysub}µ′ν′θ′γ′c (A12)

{ysub}µ′ν′θ′γ′cis the Cartesian or non-Cartesian rawdata in the k-space, zαβγ′c is the smoothed
coil images. Msub

†αβ
µ′ν′θ′ can be approximated by a direct or iterative solver, e.g., the sampling

density compensation method, iterative least-squares solvers or singular-value decomposition.
Equipped with the pseudo-inverse operator, the power iteration computes the coil sen-

sitivity profile Sα0β0γ0c0 by evaluating the lower resolution image zc
α2β2γ′2

in every iteration:

Given S(0)α0β0γ0c0 , f or k = 0, 1, . . . , iterate until convergence

S(k)′αβγc ← δαα2
α0α1 δ

ββ2
β0β1

δ
γγ′2
γ0γ′1

zc
α2β2γ′2

z̄α1β1γ′1
c0 S(k)α0β0γ0c0

σαβγ ←
∥∥∥S(k)′αβγc

∥∥∥
c

S(k + 1)α0β0γ0c0 ← δα0
αα′δ

β0
ββ′δ

γ0
γγ′S(k)

′αβγc0 σ−1α′β′γ′

(A13)

where
∥∥S(k)′αβγc

∥∥
c represents the Frobenius norm along the coil dimension, zc

α2β2γ′2
in-

dicates the low resolution image and z̄α1β1γ′1
c0 is its conjugate. The iteration stops at a

satisfactory convergence.
With power iterations for estimating coil-sensitivities in the image domain, numerical

instabilities and phase fluctuations can corrupt the quality of the coil-sensitivities. Although
the problem of phase singularity is minimal in magnitude images, it can severely degrade
the image quality of phase images. To circumvent the phase singularity in the power
iteration, one can leverage the index tensor form and replace the low resolution image by the
k-space data. This approach transforms Equation (A12) into the following tensor iteration:

Uαβγc
α0β0γ0c0

= δ
γ′1
γ′2

δ
µ′1µ′3
µ′0µ′2

δ
ν′1ν′3
ν′0ν′2

δ
θ′1θ′3
θ′0θ′2
{F−1

subD}αβγ

µ′3ν′3θ′3
{ysub}µ′2ν′2θ′2γ′2c{ȳsub}µ′1ν′1θ′1γ′1c0

{DFsub}
µ′0ν′0θ′0
α0β0γ0

Given S(0)α0β0γ0c0 , f or k = 0, 1, . . . , iterate until convergence

S(k)′αβγc ← Uαβγc
α0β0γ0c0

S(k)α0β0γ0c0

σαβγ ←
∥∥∥S(k)′αβγc

∥∥∥
c

S(k + 1)α0β0γ0c0 ← δα0
αα′δ

β0
ββ′δ

γ0
γγ′S(k)

′αβγc0 σ−1α′β′γ′

(A14)
in which the pseudo-inverse operator Msub

†αβγ
µ′ν′θ′ = {F

−1
subD}αβγ

µ′ν′θ′ consists of the inverse

Fourier transform of the center of k-space (F−1
sub) and the sampling density compensation

function (D).
In the current approach, we find that tensor iteration appears better than ESPIRiT

because the power iterations evaluate the non-Cartesian data in every iteration. Therefore,
the eigenvector is stabilized by the constraint of the k-space center, which mitigates the
phase singularity of power iterations in image domain. Empirical results show that the
iteration converges within 20 iterations.
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Appendix C. Optimization Algorithms

The LSMR and the L1 total-variation LAD algorithms were integrated into the recon-
struction pipeline to solve the least-squares problem. These two algorithms were selected
based on the basis of previous visual observations, in which no stair-casing, oil-painting
or blocky artifacts were noticed in the two solvers. The L1TV-LAD reconstruction in-
volves minimizing the cost function, which consists of the data consistency term and the
regularization term. A slight modification of the L1TV-LAD is that we regularized the
data consistency term in the non-Cartesian Fourier domain, as opposed to the adjoint
transformed images in the previous implementation L1TV regularization [34]. In single
coil fast-spin echoes imaging, adjoint transformed images are all real-values, but complex
values exist when coil sensitivities are considered. Furthermore, the multi-coil problem is
considered together with the non-Cartesian k-space. Therefore it is advantageous to refor-
mulate the problem into the index tensor form. Using the tensor operators, we proceeded
to formulate the LAD version of the split-Bregmen method [41] for non-Cartesian k-space:

Kι1η1 = Fι1η1
α1 β1

(µ(AH DA)
α1 β1
α0 β0
− λ∆α1 β1

α0 β0
+ γIα1 β1

α0 β0
)F−1α0 β0

ι0η0
I ι0η0

Initialize : u(0)αβγ = (A†)
αβ
µνθc f µνθγc,

dx(0)α′βγ = dy(0)αβ′γ = bx(0)α′βγ = by(0)αβ′γ = 0

b f (0)
µνθγc = d f (0)

µνθγc = 0

f or k = 0, 1, . . . iterate until convergence :

rhs(k)αβγ = µ(A†)
αβ
µνθc( f (k) + d f (k)− b f (k))

µνθγc + λ∇Tα
α′ (dx(k)α′βγ − bx(k)α′βγ)+

λ∇T β
β′ (dy(k)αβ′γ − by(k)αβ′γ)

u(k + 1)αβγ = (F−1K−1F)αβ
α′β′ rhs(k)α′β′γ

dx(k + 1)α′βγ = max(s(k + 1)α′βγ − 1/λ, 0)� (∇α′
α u(k + 1)αβγ + bx(k)α′βγ)�

s(k + 1)α′βγ

dy(k + 1)αβ′γ = max(s(k + 1)αβ′γ − 1/λ, 0)� (∇β′

β u(k + 1)αβγ + by(k)αβ′γ)�

s(k + 1)αβ′γ

d f (k + 1)µνθγc = shrink(Aµνθγc
αβγ u(k + 1)αβγ + b f (k)

µνθγc, 1/µ)

bx(k + 1)α′βγ = bx(k)α′βγ + (∇α′
α u(k + 1)αβγ − dx(k + 1)α′βγ)

by(k + 1)αβ′γ = by(k)αβ′γ + (∇β′

β u(k + 1)αβγ − dy(k + 1)αβ′γ)

b f (k + 1)µνθγc = b f (k)
µνθγc + (Aµνθγc

αβγ u(k + 1)αβγ − d f (k + 1)µνθγc)

f (k + 1)µνθγc = f (k)µνθγc + f µνθγc − Aµνθc
αβ u(k + 1)αβγ

(A15)

Here, we used the tensor operators � and � to indicate the Hadamard product and
division. The directional gradient operators of the non-curved coordinates ∇x,∇y are

represented as ∇α′
α ,∇β′

β .
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