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Abstract: Due to the complex shape of the vertebrae and the background containing a lot of interfer-
ence information, it is difficult to accurately segment the vertebrae from the computed tomography
(CT) volume by manual segmentation. This paper proposes a convolutional neural network for
vertebrae segmentation, named Verte-Box. Firstly, in order to enhance feature representation and
suppress interference information, this paper places a robust attention mechanism on the central
processing unit, including a channel attention module and a dual attention module. The channel
attention module is used to explore and emphasize the interdependence between channel graphs
of low-level features. The dual attention module is used to enhance features along the location and
channel dimensions. Secondly, we design a multi-scale convolution block to the network, which
can make full use of different combinations of receptive field sizes and significantly improve the
network’s perception of the shape and size of the vertebrae. In addition, we connect the rough
segmentation prediction maps generated by each feature in the feature box to generate the final
fine prediction result. Therefore, the deep supervision network can effectively capture vertebrae
information. We evaluated our method on the publicly available dataset of the CSI 2014 Vertebral
Segmentation Challenge and achieved a mean Dice similarity coefficient of 92.18 ± 0.45%, an intersec-
tion over union of 87.29 ± 0.58%, and a 95% Hausdorff distance of 7.7107 ± 0.5958, outperforming
other algorithms.

Keywords: CT image; vertebrae segmentation; feature enhancement; multi-scale; convolutional
neural network

1. Introduction

Automatic vertebrae segmentation from medical images is critical for spinal disease
diagnosis and treatment, e.g., assessment of spinal deformities, surgical planning, and post-
operative assessment; computed tomography (CT) is one of the most commonly used
imaging methods in clinical practice [1], and the convolutional neural network has become
the best choice for processing such images.

In practice, vertebrae segmentation from volumetric CT image suffers from the fol-
lowing challenges:

• Inter-class similarity: Shape and appearance similarities appear in the neighboring
vertebrae from the sagittal view. It is difficult to distinguish the first lumbar vertebra
(L1) and the second lumbar vertebra (L2) (as shown in Figure 1a);

• Unhealthy vertebrae, such as deformity or lesions (as shown in Figure 1b);
• Interference information: there are several soft tissues whose gray-scale is similar to

the vertebrae area (as shown in Figure 1c,d).
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(a) (b) (c) (d)

Figure 1. The challenges of vertebrae segmentation. (a) Inter-class similarity. (b) Unhealthy vertebrae.
(c,d) Interference information.

Vertebrae segmentation has been approached predominantly as a model-fitting prob-
lem using statistical shape models (SSM) [2,3] or active contour methods [4,5] in the early
stage. However, most traditional methods are only suitable for high-quality CT images
in which the vertebrae are healthy, and they cannot perform well in the complex scenario
shown in Figure 1. Subsequently, machine learning has been widely used. Chu et al. [6]
detected the center of the vertebral bodies using random forest and Markov random fields
and then used these centers to obtain fixed-size regions of interest (ROI), in which ver-
tebrae were segmented using random forest voxel classification. Korez et al. [7] used a
convolution neural network to generate a probability map of vertebrae, and these maps
were used to guide the deformable model to segment each vertebra. Although machine
learning methods outperform the traditional approaches in speed and efficiency, they have
no obvious advantage in segmentation accuracy.

More recently, the deep learning model U-Net [8] has achieved great success in the task
of medical image segmentation, which has become one of the most popular models in this
field. Kim et al. [9] proposed a deep learning algorithm to detect ankle fractures from X-rays
and CT scans and achieved quite good results.Their work proved the powerful ability of
deep learning in AI-assisted diagnosis and treatment. Moreover, Holbrook et al. [10] and
Yogananda et al. [11] proposed two improved U-Net networks for tumor segmentation
respectively. In order to improve the segmentation accuracy, many models based on a
cascade structure were proposed. Sekuboyina et al. [12] presented a two-stage lumbar
vertebrae segmentation algorithm, which first extracted the ROI of lumbar vertebrae
using the multi-layer perceptron (MLP) and then performed instance segmentation within
these regions. Similarly, Janssens et al. [13] segmented the five lumbar vertebrae using
two-cascade 3D U-Net. However, these methods are not designed for spinal CT images
that have a varying number of visible vertebrae and can only be used to segment the
lumbar vertebrae. In order to solve the problem of a prior unknown number of vertebrae,
Lessmann et al. [14] proposed an iterative vertebrae instance segmentation method, which
slides a window over the images until a complete vertebra is visible, and then performed
instance segmentation and saved it to the memory module. This process was repeated
until all fully visible vertebrae were segmented. Unfortunately, there is a deficiency in this
method, which requires a lot of memory during training.

In this study, we aim to propose a novel neural network applied to the vertebrae
segmentation task. Firstly, the size and position of the vertebrae are not fixed in CT volumes.
The 3 × 3 filter is too small to extract global information. Simply expanding the kernel size
will quickly increase the number of parameters. We explore using a different combination
of receptive field sizes to improve the network perception concerning the shape and size
of vertebrae. Secondly, treating the representations on the different spatial positions and
channels in the feature map equally will result in a large amount of computation cost and
lower segmentation accuracy. At the same time, in order to enhance feature representation
and suppress interference information, we introduce an attention mechanism to explore
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and emphasize the interdependencies between channel maps. Finally, a coarse-to-fine
strategy is employed in the prediction stage: every decoded feature will produce a coarse
segmentation and then concatenate them to generate the final fine prediction.

2. Materials and Methods
2.1. Architecture

The architecture of Verte-Box is depicted in Figure 2. The network can be divided
into three stages: feature extraction, middle-processing, and prediction. In the first stage,
a semantic feature extractor is used to generate the semantic image representation by five
consecutive max-pooling and multi-scale convolutions; every time, the number of channels
is doubled, and the feature map size is reduced by half. In the middle-processing stage,
the channel attention module and dual attention module contained in the central processing
unit are responsible for enhancing feature representation and suppressing interference
information. In the prediction stage, every feature in the feature box will produce a coarse
segmentation and then concatenate them to generate the final fine prediction.

Figure 2. The top is a schematic drawing of our Verte-Box architecture. The bottom left is the central
processing unit which a contains channel attention module (CAM) and dual attention module (DAM).
L0–L3 are auxiliary segmentation loss terms, and Lp is a main loss. ‘Verte’ denotes vertebrae, and
‘box’ denotes feature box.

2.2. Attention Mechanism

In this work, we propose a new dual attention mechanism. As illustrated in Figure 3,
this attention mechanism uses a parallel structure: the top is the position attention module
(PAM), and the bottom is the channel attention module (CAM). In order to make the two
attention modules complementary, we aggregate the features from these two attention
modules. Concretely, we perform an element-wise sum to accomplish feature fusion. Given
an input feature map X ∈ RC×H×W , the overall attention mechanism can be summarized as

X̂ = FC(X) + FP(X) (1)

where FC denotes CAM, and FP denotes PAM.
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Figure 3. Illustrating the pipeline of dual attention module (DAM). (1) form the PAM in the yellow
dashed box. (2) form the CAM in the blue dashed box. Weights are represented in different colors.

For channel attention module, given an input X, a convolutional operator [15] can be
written as follows:

ui = ki ∗ X =
C

∑
s=1

ks
i ∗ xs (2)

where ∗ denotes convolution X =
[
x1, x2, · · · , xC], ki =

[
k1

i , k2
i , · · · , kC

i
]
, ki refers to the

parameters of the i-th kernel, and ui ∈ RH×W denotes the i-th channel of output feature map.
ks

i is a 2D spatial kernel representing a single channel ki that acts on the corresponding
channel of X. It can be found that convolution is a summation through all channels;
channel dependencies are implicitly embedded in every kernel ki. Meanwhile, affected
by the receptive field of each filter, the channel relationships modeled by convolution are
local. To alleviate those issues, we need to do two things. First, we need to provide the
network with access to global information of each channel. Concretely, a channel descriptor
zC ∈ R2C is generated by global average pooling and max pooling:

zC =


1

H×W ∑H
i=1 ∑W

j=1 xs(i, j) 1 ≤ s ≤ C
max

i,j
xs(i, j) C + 1 ≤ s ≤ 2C (3)

Second, in order to explicitly capture channel-wise dependencies, a simple gating
mechanism (a bottleneck with two fully connected layers) with a sigmoid activation
is applied:

S = σ(W2δ(W1zc)) (4)

where δ refers to the ReLU function, W1 ∈ R(C/4)×C, and W2 ∈ RC×(C/4).
Finally, the output Fc is obtained by rescaling X with the activations S:

FC(X) = X
⊗

S (5)

where ⊗ refers to channel-wise multiplication.
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Similarly, for position attention module, the network needs global information of different
channels. Three position descriptors zi

p ∈ RH×W , i ∈ {1, 2, 3} are generated by average
pooling, max pooling along the channel dimension, and a 1 × 1 convolution operation:

zi
P =


max

s=1,2,··· ,C
xs i = 1

∑C
s=1 xs i = 2

k1×1 ∗ X i = 3

(6)

Finally, the output FP is obtained by

FP(X) = X⊗ σ(k3×3 ∗ zP) (7)

where zP =
[
z1

P, z2
P, z3

P
]
.

2.3. Multi-Scale Convolution

We design a new multi-scale convolution whose structure is shown in Figure 4a.
The cascading of one 3 × 3 convolution and two Res2net modules can further expand the
receptive field of the network. Meanwhile, the Res2net [16] module was used to extract
multi-scale features to obtain the local and global information. Figure 4b shows the
structure of the Res2net module. After a 1× 1 convolution, the input feature map is split
into S feature map subsets, denoted by Xi ∈ R(C/S)×H×W , {1 ≤ i ≤ S}. The feature subset
Xi is added with the output Yi−1 and then fed into layer. In order to reduce parameters, Y1
is obtained from X1 by identity mapping. The output of the Res2net module, the Y, can be
represented by Equation (5):

Yi =


Xi i = 1

f 3×3(xi) i = 2
f 3×3(xi + Yi−1) 2 < i ≤ S

(8)

Y = f 1×1({Y1, Y2, · · · , YC, }) (9)

Notice that Yi is obtained by Xi after a 3× 3 convolution, its receptive field is larger
than Xi, and benefiting from the hierarchical residual-like structure, Yi could potentially
receive feature information from all feature subsets

{
Xj, j ≤ i

}
. Due to the combinatorial

explosion effect, Y contains a different number and different combination of receptive field
scales of all the subsets

{
Xj, 1 ≤ j ≤ S

}
. The hyperparameter of S is related to the number

of channels, and in this work, the first three layers of the downsampling and the last two
layers of the up-sampling, S, are set to 4. With the increase of the number of channels,
the last two layers of the down-sampling and the first two layers of the up-sampling, S, are
set to 6.

2.4. Deep Supervision

In the training process, we use deep supervision; λi and λP are the weights of each
loss term. For each auxiliary segmentation term Li and the final output LP, we use the
Dice-loss, which performs well in eliminating the impact of class imbalance. The loss is
calculated by

L =
4

∑
i=1

λiLi + λPLP (10)

L(y, P) = 1− 1
C

C

∑
j

2 ∑N
i yijPij

∑N
i yij + ∑N

1 pij
(11)

where C is the number of classes, and y and P denote the one-hot encoding of ground truth
and the predicted result, respectively. N is the number of pixels in each image. In the test
process, we choose the final output LP as our prediction result.
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(a)

(b)

Figure 4. Multi-scale convolution. (a) Multi-scale convolution. (b) Res2net module structure, where
circle C denotes 3 × 3 convolution.

3. Results
3.1. Dataset and Implementation Details

We evaluated our model on a public dataset provided by the CSI 2014 Vertebral
Segmentation Challenge [17]. The dataset contains 20 CT scans. Those scans cover the entire
thoracic and lumbar spine, the in-plane resolution is between 0.31 and 0.45 mm, and the
slice thickness is 1 mm. In this paper, all scans are resampled to 1 mm × 1 mm × 1 mm,
14 scans are used as a training set, and the remaining 6 scans are used as a test set. We
sliced the training set scans along the axial plane, and the image size was resized to
256 × 256. There are a total number of 5980 slice images which are divided into a training
set and validation set by a 4:1 ratio. For data augmentation during training, the images
were randomly rotated (±0.1 rad) and flipped; we also employed contrast adjustment and
Gaussian noise. The loss weights λi and λp are all set to 1. We trained the network using
the AdamW optimizer with a learning rate of 0.001 and a mini-batch of 16 on an Intel(R)
Xeon(R) workstation with an NVIDIA RTX 3070 running Ubuntu Linux. During training,
if the validation set Dice value does not rise for 10 consecutive epochs, the learning rate is
halved. The maximum number of training epochs is 100. All implementations were done
in Pytorch 1.8.0.

3.2. Metrics

In terms of the segmentation accuracy, the most commonly used evaluation metrics
include the Dice similarity coefficient (DSC), intersection over union (IOU), and 95%
Hausdorff Distance (95% HD).

Given the set A and another set B, their Dice coefficients can be defined as follows.
The Dice coefficient measures the overlap between segmentation results and ground truth,
which is not affected by the class-imbalance. Dice values range from 0 to 1, with values
closer to 1 indicating better segmentation.

DSC(A, B) =
2× |A ∩ B|
|A|+ |B| (12)
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Similar to DSC, IOU is also used to measure the overlap between two sets, as shown
in Equation (13):

IOU(A, B) =
|A ∩ B|
|A ∪ B| (13)

The 95% HD: The maximum Hausdorff distance is the maximum distance of set A to
the nearest point in the other set B, and it is a good reflection of the difference between the
split result and the GT boundary, defined as

H(A, B) = max(h(A, B), h(B, A)) (14)

h(A, B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
(15)

h(B, A) = max
b∈B

{
min
a∈A
{d(b, a)}

}
(16)

where d is the Euclidean distance between the pixels a and b, so the unit of 95% HD is the
distance between two pixels. The 95% HD is similar to the maximum HD, and it is based on
the calculation of the 95th percentile of the distance between boundary points in A and B.

3.3. Experimental Data Analysis

We compare our model with four related state-of-the-art methods, SegNet [18], U-Net,
Attention U-Net (AU-Net) [19], and U-Net++ [20]. The segmentation results visualization
is shown in Figure 5, and the quantitative segmentation results are shown in Table 1.
The leftmost column consists of the slice images in the axial view of the CT scan.

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Visual comparison. (a) Original image. (b) Ground truth. (c) SegNet. (d) AU-Net. (e) U-Net.
(f) U-Net++. (g) Verte-Box.

As shown in the first row of Figure 5, the segmentation results of SegNet, U-Net,
AU-Net, and U-Net++ are under-segmentation in the vertebrae body compared with the
ground truth. The second row shows that none of these methods can segment the right
transverse process, indicating that these methods are less capable of segmenting smaller
objects, while our method can be well aware of and segment these small objects. In the third
row, all methods are focused on the lesions area (brighter area) and ignore the real vertebrae,
which results in under-segmentation. Only our model has successfully segmented the
whole vertebrae. The fourth row is illustrated to show the strong ability of our model
in suppressing the background interference (the bright circle above the vertebrae body).
Although the performance of U-Net++ is better than these methods, it is not as good as
ours. Our method can exclude the background interference and focus on the real object to
be segmented. In general, the above segmentation results show that our model performs
best in all cases and shows good segmentation stability.
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The quantitative comparison of different methods can be found on Table 1, where all
values are mean and standard deviation, and the best performances are bolded. Figure 6
includes the box plots with statistical annotations. Table 2 gives the p value of each metric
that was calculated using different methods and our model. To vividly illustrate the
training process of our model, Figure 7 gives the training and validation DSC curves.

Table 1. Quantitative comparison of different methods on the test set.

Method DSC IOU 95% HD

SegNet 0.8977 ± 0.0066 0.8312 ± 0.0087 12.1561 ± 1.4937
AU-Net 0.8981 ± 0.0062 0.8377 ± 0.0092 12.4024 ± 2.9603
U-Net 0.9069 ± 0.0029 0.8478 ± 0.0036 10.7243 ± 0.2378

UNet++ 0.9085 ± 0.0038 0.8511 ± 0.0042 9.7663 ± 0.3086
Ours 0.9218 ± 0.0045 0.8729 ± 0.0058 7.7107 ± 0.5958

The best performances are bolded. Our model achieved the best results in every metric.

According to the quantitative results shown in Table 1, our model has an improve-
ment of 1.5% in terms ofDSC and 2.5% in IOU over U-Net, which means that our model
can segment vertebrae accurately from the background. From the point of view of the
95% Hausdorff distance, it also improves the boundary contour effectively, because the
smaller the 95% HD value, the more consistent the boundary between the predicted result
and the label.

(a) (b) (c)

Figure 6. The box plots of metrics between Verte-Box and other algorithms. (a) DSC coefficient
comparison; (b) IOU coefficient comparison; (c) 95% HD coefficient comparison. The central red lines
indicate median values, green triangles the average values, boxes the interquartile range, whiskers
the smallest and largest values, and data points (+) outliers. * indicates a significant difference
between the corresponding experiments, with ** p ≤ 0.01, and * p ≤ 0.05 (paired t-test).

Table 2. p value of different methods.

Method SegNet-Ours AU-Net-Ours U-Net-Ours UNet++-Ours

DSC 0.0065 0.0023 0.0117 0.0089
IOU 0.0021 0.0024 0.0039 0.0022

95% HD 0.0081 0.0437 0.0002 0.0022

As shown in the DSC box plot of Figure 6a, the experimental results of SegNet and
AU-net are scattered, indicating that their segmentation stability is poor. U-Net and U-Net++
are at a similar level in general. Although the distribution of the results is compact, there
are many outliers. Our method has achieved the highest mean value and a suitable data
distribution. The IOU box plot of Figure 6b is similar to the DSC box plot. On the 95% Haus-
dorff distance (95% HD) box plot of Figure 6c, the mean value of our method is significantly
lower than that of the above methods, and the data distribution is more compact.

It can be clearly seen from Table 2 that there is a significant difference between our
Verte-Box and other compared methods. For example, U-Net achieves an average DSC
of 0.9069 ± 0.0029, whereas our model achieves 0.9218 ± 0.0045 (p = 0.0117). For IOU,
U-Net obtains 0.8478 ± 0.0036, and our model obtains 0.8729 ± 0.0058 (p = 0.0039). For 95%
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HD, U-Net obtains 10.7243 ± 0.2378, and Verte-Box obtains 7.7107 ± 0.5958 (p = 0.0002).
These data show that our Verte-Box is statistically significantly better than other deep
learning models.

(a) (b)

Figure 7. Training and validation DSC curves of Verte-Box and other algorithms. (a) Training curve;
(b) validation curve.

As shown in Figure 7, in the training process, our DSC value is higher than the
other algorithms. The training results are in good agreement with the test results. In the
validation process, the fluctuation of our model is lowest, proving that our model has a
better segmentation stability.

3.4. Ablation Study

In order to illustrate the role of the attention mechanism and multi-scale convolution,
we have done ablation experiments. Figure 8 gives the segmentation results visualization
of different modules. The baseline is U-Net. Table 3 shows the quantitative results of the
ablation study on the test set; all values are mean and standard deviation. Figure 9 includes
the box plots with statistical annotations. Table 4 gives the p value of each metric that was
calculated using different components and the overall model. AM denotes the attention
mechanism, and MSC denotes multi-scale convolution. DS denotes deep supervision.

As shown in columns (d) and (e) of Figure 8, both AM and MSC improved segmenta-
tion results compared with the baseline method. Although the segmentation results of the
attention mechanism have small over-segmentation or under-segmentation in the first and
fourth row, the presence of multi-scale convolution can eliminate this negative effect, so
the overall model performs the best. The second row shows that the attention mechanism
can effectively suppress the background interference. The third row demonstrates that
multi-scale convolution performs well on small objects. The quantitative results of the
ablation study can be found below.

Table 3. Quantitative segmentation results of ablation study.

AM MSC DS DSC IOU 95%HD

0.9069 ± 0.0029 0.8478 ± 0.0036 10.7243 ± 0.2378
X 0.9107 ± 0.0025 0.8566 ± 0.0037 9.1597 ± 0.7115

X 0.9137 ± 0.0065 0.8572 ± 0.0075 10.2084 ± 1.4339
X X 0.9177 ± 0.0039 0.8628 ± 0.0037 8.7667 ± 0.7739
X X X 0.9218 ± 0.0045 0.8729 ± 0.0058 7.7107 ± 0.5958

The best performances are bolded.
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(a) (b) (c) (d) (e) (f) (g)

Figure 8. Examples from the ablation study. (a) Original image. (b) Ground truth. (c) Baseline.
(d) AM only. (e) MSC only. (f) AM+MSC. (g) Overall model (AM + MSC + DS).

As shown in the second row of Table 3, a lower 95% HD value demonstrates that the at-
tention mechanism can effectively keep the boundary contour, while the over-segmentation
or under-segmentation phenomenon limits its Dice score. The third row shows that the
multi-scale convolution plays an important role in improving the accuracy, but a weak
anti-interference ability produces a large deviation on the boundary contour of some test
images. In the fourth row, we incorporate both into one model, so their strengths be-
come well-balanced, and the overall model performs best. The fifth row shows that deep
supervision can further strengthen the segmentation accuracy of the model.

(a) (b) (c)

Figure 9. The box plots of metrics of ablation study. (a) DSC coefficient comparison; (b) IOU
coefficient comparison; (c) 95% HD coefficient comparison. * indicates a significant difference
between the corresponding experiments, with *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, and ns p ≤ 1
(paired t-test).

Table 4. p value of different components.

Method Baseline AM MSC AM + MSC

DSC 0.0117 0.0053 0.0137 0.1937
IOU 0.0039 0.0078 0.003 0.0396

95% HD 0.0002 0.0463 0.0294 0.0888

As shown in the Figure 9a DSC box plot, compared with U-Net, both attention
mechanism (AM) and multi-scale convolution (MSC) can greatly improve the segmentation
result, but the effect of multi-scale convolution is better, indicating its good ability in
improving the segmentation accuracy.The combination of the above components achieves
better performance, while at the same time, it also leads to a scattered data distribution.
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After adding deep supervision (DS), this problem has been significantly alleviated, and the
mean value is still improved. From the Figure 9b IOU box plot, the effects of the attention
mechanism and multi-scale convolution are almost equal, and the improvement after
the combination of both is still limited. However, under the role of deep supervision,
their advantages have been brought into full play, with a higher mean and closer data
distribution. In the Figure 9c 95% Hausdorff distance (95% HD) box plot, the effect of multi-
scale convolution is not as good as the attention mechanism, which plays an important role
in keeping the boundary contour. The combination of both lays a good foundation for the
overall model, whose data are more stable, and the mean value is the highest.

In Table 4, the AM+MSC component achieves an average DSC of 0.9177 ± 0.0039,
which is worse than that of the overall model (0.9218 ± 0.0045). No significant difference is
found (p = 0.1937). For IOU, AM+MSC obtain 0.8628 ± 0.0037, and the overall model obtains
0.8729 ± 0.0058, with p = 0.0396. For the 95% HD, AM + MSC obtains 8.7667 ± 0.7739, and
the overall model obtains 7.7107 ± 0.5958 with no significant difference observed (p = 0.0888).
In fact, AM+MSC is only one deep supervision away from the overall model, so they have
very high similarity.In general, the overall model can generate better segmentation results
when compared with the single component.

4. Discussion

In this paper, we proposed a novel convolutional neural network to segment vertebrae
from computed tomography images. By comparing the performance of the five methods
regarding segmentation results using image assessment metrics, it was demonstrated
that our model generated superior segmentation predictions compared to the other four
methods, with the highest segmentation accuracy and stable segmentation ability.

It is worth noting that the neural network works like a ‘black box’: all data in this
paper are statistically obtained several times. From the box plot of Figure 6, it can be seen
clearly that the superiority of our model does not happen occasionally or accidentally. The
ablation study demonstrates that the multi-scale convolution and attention mechanism
have made a great contribution to the overall model. Multi-scale convolution is respon-
sible for improving the segmentation accuracy, while the attention mechanism plays an
important role in keeping the boundary contour. Under deep supervision, their advantages
have been brought into full play. Similarly, their role can be verified from the box plot of
Figure 9.

The main purpose of this paper is to present a deep-learning-based model, so we
only compare it with four related networks. Unlike classification tasks, the annotation for
vertebrae segmentation is so difficult and professionally demanding that open access and
high-quality segmentation datasets are rare. To our knowledge, CSI 2014 was annotated
by doctors and covers the entire thoracic and lumbar spine. Thus, we chose it as the
experimental dataset to verify our model. Compared with participating algorithms, our
method generated predicted results through only one neural network, so the efficiency is
significantly higher. Table 5 gives the comparison between our model and participating
algorithms regarding the processing time per case.

Table 5. Comparison with participating algorithms.

Method Segmentation Strategy Runtime

Method 1 [21] Machine Learning (multi-atlas) 12 min per case (GPU)
Method 2 [22] Traditional (mean shape model) 45 min per case (GPU)
Method 3 [23] Traditional (mean shape model) 10 min per case (GPU)
Method 4 [24] Deep Learning (CNN) 10 min per case (GPU)

Verte-Box Deep Learning (CNN) 6 min per case (GPU)

From the view of expandability, our model seems more similar to a segmentation
framework. Obviously, it can be easily transformed into a 3D segmentation network.
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Furthermore, both multi-scale convolution and attention mechanisms are expandable.
For example, self-attention [25,26] realized a more accurate similarity measurement be-
tween two feature representations by dot product calculation. Some studies [27,28] have
achieved fairly good results based on this. Although the computational complexity is very
high, it is still worth exploring in future work. For multi-scale convolution [29,30], the key
point is the parameter. ASPP [31] and PPM [32], respectively, used atrous convolution and
pyramid pooling to capture the local and global information in the image. Thus, multi-scale
feature extraction with fewer parameters can also be applied to our model.

5. Conclusions

Computed tomography is recognized as a gold standard technique to evaluate spinal
disease. Automatic vertebrae segmentation from CT images is critical for spinal disease
diagnosis and treatment. In this paper, we presented a novel convolutional neural network
Verte-Box for the vertebrae segmentation task. Multi-scale convolution was used to extract
complex shape features of vertebrae. The interference information contained in the image
was suppressed by the attention mechanism that also performs feature representation
enhancement at the same time. By experimentation analysis, our model was proven to be
better and more stable on segmentation accuracy and stability. Moreover, the method in
this paper is quite succinct and more efficient compared with other vertebrae segmentation
algorithms. Applying this model to other medical image segmentation tasks and other
medical imaging modalities is the next research direction.
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