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Abstract: The reduction in costs associated with performing RNA-sequencing has driven an increase
in the application of this analytical technique; however, restrictive factors associated with this tool
have now shifted from budgetary constraints to time required for data processing. The sheer scale
of the raw data produced can present a formidable challenge for researchers aiming to glean vital
information about samples. Though many of the companies that perform RNA-sequencing provide
a basic report for the submitted samples, this may not adequately capture particular pathways of
interest for sample comparisons. To further assess these data, it can therefore be necessary to utilize
various enrichment and mapping software platforms to highlight specific relations. With the wide
array of these software platforms available, this can also present a daunting task. The methodology
described herein aims to enable researchers new to handling RNA-sequencing data with a stream-
lined approach to pathway analysis. Additionally, the implemented software platforms are readily
available and free to utilize, making this approach viable, even for restrictive budgets. The resulting
tables and nodal networks will provide valuable insight into samples and can be used to generate
high-quality graphics for publications and presentations.

Keywords: transcriptomics; data processing; RNA-sequencing; network; mapping; cytoscape; en-
richment analysis; database; protocol

1. Introduction

With the increased availability and relatively low cost of modern RNA-sequencing
(RNA-seq), the restricting factors in utilizing such an assessment tool have shifted from
financial budgeting to data processing time. This is primarily due to the sheer quantity
of data generated by the comparison of even a single experimental sample against its
respective control, which is only further compounded when examining multiple experi-
mental sample groups. The resulting challenge therefore becomes how to sift through the
data for comparative elements that contain relevant and meaningful information about
the submitted samples. Fortunately, some organizations that offer RNA-seq services also
provide a rudimentary analysis of the output data based on certain databases. For example,
the company Novogene includes in its services a comprehensive report that identifies
pathways of interest (PoIs) based on pathway enrichment using KEGG database pathways
and potential gene ontology (GO) relations. However, this report may not capture all PoIs,
particularly if the utilized databases are limited, and thus, a more extensive examination of
the data may be necessary. For this reason, such reports serve ideally as a foundation for
further evaluation of the normalized differentially expressed gene values. This will not
only allow for the fine tuning of relevant pathways and systems, but will also permit the
generation of graphics and tables that best illustrate important comparative characteristics.
This cross-referencing of normalized data using multiple enrichment tools serves to bolster
both the accuracy and extent of detail for the resulting conclusions. While a wide array
of such software tools exists for enriching gene sets against given databases, the more
user-friendly options will be the focus of this article. Furthermore, only those tools that are
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readily available and free to users will be examined, since paid software can substantially
inflate budget requirements for a study and may not necessarily provide the desired output,
i.e., specific relationships or polished graphics. The data processing flow described in this
work will be based on data generated by Novogene; however, the methods should be
applicable for any large gene expression data set. It should be noted that the described
protocol operates on normalized datasets for differentially expressed genes, and therefore,
may not be applicable for research focused on gene discovery in nonmodel organisms or
phylo-transcriptomics, which require examination of raw RNA-seq data [1,2]. The most
vital aspect of this processing plan will be to clearly define the extent of pathway searching
within the context of a specific set of research questions and confine information mining
to these parameters. This is essential, as a common issue in assessment of massive data
pools is the development of conclusions that inaccurately portray the relationship between
samples due to selection bias and the cherry-picking of obscure pathways that strengthen
preconceived conclusions. For example, if a study intends to assess an experimental mate-
rial that is anticipated to enhanced cellular adherence, the scope of at least the initial data
processing should be limited to pathways related to this biological function, and extraneous
connections should be logged as potential PoIs for later examination. This can prevent
developing correlations that obscure the original hypothesis.

2. Experimental Design
2.1. Data Processing

Data output from transcriptomic-based analyses like RNA-seq can initially appear
intimidating due to file size and complexity. Therefore, the formation of a central set of
research questions to establish general parameters for pathway and gene ontology (GO)
selection is a critical initial step. This collection of hypotheses, hereafter denoted as the
focal parameter set, will encompass the expectations of relations that will be examined
between sample groups to narrow the focus of downstream pathway enrichment and
mapping functions. Following initial data assessment with a single focal parameter set,
this process can be repeated with new foci to examine intergroup relations associated with
different biological processes. Segmenting the evaluation of the original data in this manner
can help to narrow the focus of individual analyses and minimize off-target selections,
which may result in fishing expeditions (also known as multiple testing) [3]. For example,
the exploration of complex disease pathways may not be relevant for data produced by
cell monolayer samples, so selecting these pathways during downstream analysis could
lead to misleading interpretations.

Apart from focal parameter set selection, the formatting of data also represents an
essential pre-analysis step, as this divides initial information into more manageably sized
files and helps to fine-tune comparative assessments downstream. A simple method for this
is the separation to three discrete datasets based on gene fold expression values, dividing
the initial normalized gene data to categories of upregulated, static, and downregulated
expression. The upper and lower threshold of the “static” subset will, in some cases,
be predetermined if the data is being provided by a commercially available processing
source, but will be largely dependent on the extent to which the investigator wants to
scrutinize data bands [4,5]. For the purpose of displayed examples, this threshold has
been set to an increase or decrease of two-fold difference for the static expression dataset,
based on Novogene’s suggestion. Gene relations above and below these thresholds are
considered to be up- and down- regulated, respectively. The isolation of these independent
groups to corresponding data spreadsheets will allow for convenient and rapid access.
As a final formatting step, attention should be given to the identifier type available for the
gene sets. As Ensembl and Entrez IDs are the most common input methods for gene data
entry on pathway enrichment and mapping software platforms, converting the current
gene identifiers to one or both of these formats will help to improve software recognition.
Conveniently, there are multiple readily available conversion tools for gene IDs, with both
the software DAVID (Database for Annotation, Visualization, and Integrated Discovery)
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and SynGo online platforms providing a means to generate complimentary lists of Ensembl
and Entrez IDs for input gene lists, thereby providing a rapid means for establishing these
common identifiers for data [6–8].

Though there are a multitude of enrichment software packages available, with some
allowing free access and others requiring purchase, many operate based on similar collec-
tions of pathway and GO databases. It is therefore important to become familiar with some
of the more commonly utilized of these databases in order to understand the limitations of
downstream analyses, as well as to be able to determine the optimal software for assessing
a given dataset and focal parameter set. The following described databases represent some
of the more robust and commonly referenced sources. Critically, some of these are limited
in information that would be required to adequately characterize certain species or systems,
resulting in insufficient pathway/gene ontology data. A basic understanding of these core
databases can therefore help to minimize loss of time and funds during the processing
of datasets.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a massive pathway
database that includes compounds, reactions, and full pathway maps for a wide array
of species [9,10]. This particular database is utilized by many enrichment programs and
should be considered an essential reference for any pathway analysis. Other pathway
databases, such as WikiPathway, Pathway Integration Database (PID), and Reactome,
can also serve as useful reference material, particularly when examining some disease
models [11–14]. Apart from defined pathway references, examination of gene ontology
(GO) is similarly critical for these types of studies and works to correlate gene sets to
biological processes [15,16]. Knowledge of these databases and their limitations can greatly
improve the ability to select an appropriate enrichment software, which, in turn, enhances
the accuracy of downstream data exploration.

2.2. Pathway Analysis Tools

The selection of enrichment software platforms best suited for the established gene
set lists and their defined focal parameter set can be challenging, as differing reference
databases can result in variations for generated pathways of interest (PoI) lists. For this
reason, it is highly beneficial to implement multiple enrichment tools for each individual
dataset and cross-reference these output data to elucidate common PoIs, which will serve as
primary targets for analysis. These target PoIs can then be further examined and mapped
to develop conclusions and graphics. The following are some of the common and user-
friendly software tools that can be utilized for effective pathway analysis. In addition to
these described tools, there are a wide array of other user-friendly tools such as FunRich and
GSEA-MSigDB that are not further covered in this protocol [17,18]. These pathway analysis
platforms can be explored and implemented alongside or in-place of those described here
to optimize this workflow for the target experiment. Apart from the ConsesusPathDB
(CPDB) program, the output of these tools will be largely processed in data spreadsheets,
with elements requiring sorting based on significance and relevance.

The Integrated Molecular Pathway Level Analysis (IMPaLA) program offers a user-
friendly and rapid means for generating pathway lists associated with a specific gene list,
either through entry of genes IDs alone or with associated expression fold values [19–21].
Additionally, this software provides the potential to overlap these pathways with related
pathways from input metabolite data, though this is beyond the scope of this work and
will not be further discussed. The input gene IDs can be in several forms, including
both Ensembl and Entrez formats, and can be directly pasted as text from spreadsheets
along with corresponding values. The produced pathway list from running the Wilcoxon
pathway enrichment analysis can be then downloaded as a data spreadsheet and edited to
select PoIs.

The KEGG Orthology-based Annotation System (KOBAS) program offers a means
for rapidly generating pathway list tables from gene enrichment data, accepting Fasta Nu-
cleotide Sequences, Ensembl ID, Entrez ID, Gene Symbol, and NONCODE ID formats [22].
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The software operates based on annotation and pathway network information from the
KEGG database, thereby offering the ability to assess data from a large number of species,
whereas many databases are restricted to pathways and GO for human, mouse, and yeast
systems [23–25]. In addition to gene enrichment functions observed in other software plat-
forms, the same gene list can be further modified through the KOBAS Annotate application.
This can provide beneficial insight into the related pathways and Gene Ontology connec-
tions associated with the set. The data output for gene enrichment includes pathways with
corrected p-values and the list of associated genes. These data are presented in a text file
that can be downloaded and imported into a spreadsheet for editing.

As with the previously discussed software, the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) program offers a means for generating pathway and
GO tables from gene lists. The data output is robust compared to similar enrichment
software platforms, with DAVID offering the ability to enrich data using both KEGG
and Reactome databases. Heatmaps are also generated, which can aid in visualization
of the genes associated with certain pathways [26–28]. The pathway and GO lists can
then be downloaded and imported to a spreadsheet. In particular the false discovery rate
(FDR) column will be most applicable for establishing lists of significant pathways and
Gene Ontology for the three primary gene lists. As FDR values represent the statistical
likelihood that a comparison with a statistically significant p-value is accurate, these values
are essential for selection of PoIs [29].

The Consensus Path Database (CPDB) program offers one of the most robust tools for
assessing gene and metabolite data sets, including an effective network graphic generator
with a user-friendly input [30–33]. The gene analysis section of the site includes both
over representation and enrichment analysis methods that can be utilized to evaluate PoIs
associated with a data set. Gene IDs in Ensembl, Entrez, Gene Symbol, or Uniprot formats
can be entered to generate a list of potential target pathways, with corresponding corrected
p-values and the source database. One of the key features that separates CPDB from other
enrichment software platforms is the board spectrum of integrated databases, which are
listed on the home page of the platform. This wealth of reference material substantially
enhances the accuracy for detecting significantly impacted pathways in experimental data;
however, it should be noted that CPDB analysis is limited to human, yeast, and mouse
genomes. The initial list of generated pathways, in contrast with previously discussed
software platforms, is expressed as an interactive webpage that can be sorted based on
significance, with the option to then select relevant pathways by checking associated boxes.
The selected PoIs can then be visualized in an editable network graphic that displays
the interconnectivity among the chosen pathways. These networks can then be saved as
standard image files using the print screen function after organizing nodes and cropping
accordingly. The PoIs and their associated significance values can then be cross-referenced
with the output from other software tools, with pathway interconnectivity graphics offering
supplemental information.

The Cytoscape software platform represents a vast array of built-in tools and databases
for constructing and visualizing nodal networks [34–42]. Additionally, the program can be
outfitted with a wide variety of plug-ins for enriching, fine-tuning, and polishing output
networks. The basal software can be downloaded from the Cytoscape website, with plug-
in applications available for download from both this site and through the in-program
App Manager function [43]. These applications, in addition to the core tools available in
Cytoscape, allow for rapid transformation of input fasta files into well annotated net-
work maps that can be further polished for use as publication and presentation graphics.
To accomplish this, the organism-specific biological data available through the BioGrid
database can be utilized to generate basal networks into which experimental data can be
imported [44]. This not only overlays input data with a defined nodal network, but also
assigns basic annotations for biological functions and pathway relations. These gener-
ated networks for individual gene sets can then be manipulated and distilled to highlight
relations and functional groupings of interest.
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2.3. Nodal Network Generation

One of the key complicating factors associated with generating transcriptomic-based
networks is scale. Attempts to input all available data can rapidly lead to massive collec-
tions of nodes and pathways, obscuring relevant information and making downstream
analysis and presentation of results highly difficult. Additionally, these large files will
require increased load time and can cause software crashes, all of which further emphasize
the importance of separating data to manageable portions. This can best be accomplished
by dividing data into the previously discussed pools of upregulated, downregulated,
and static gene expression categories, which will allow the assessment of intra-pool gene
sets and pathways. Conclusions regarding impacted biological pathways and functions
can then be drawn based on the differences observed among these groups [45,46].

An effective technique for developing networks from collections of differentially ex-
pressed genes is to utilize a preconstructed network for the target organism onto which
experimental data can be integrated. As previously mentioned, datasets available through
the online source BioGrid offer invaluable basal pathway configurations for a wide va-
riety of species and can be readily downloaded and imported into Cytoscape. Once the
basal network has been established, experimental data can then be integrated with the
BioGrid information to produce a filtered network of target nodes that maintain pathway
interconnective elements. Repeating these steps for each of the defined gene sets will
yield network files that accurately represent the connective pathway links present in the
experimental data.

The raw nodal networks generated through the previously described steps, though
comprehensive in displayed data, often require a level of modification to develop graphics
that are aesthetically appealing and can be utilized in publications. Cytoscape readily
allows for the inclusion of both image- and text-based annotations, network color-coding,
and node positional arrangement, all of which will enable network clean-up and enhance
the readability of output graphics. First and foremost, the necessary magnification and
resolution of the downstream graphics must be determined. For figures intending to display
general pathway information, magnification of the network can be substantially reduced,
whereas graphics meant to indicate interactions of specific genes must be magnified to
at least an extent to make gene names legible. When attempting to increase resolution of
pathway data through magnification, excess network data may need to be pruned and
nodes rearranged to best display the interactions of interest without obstruction. In cases
where additional annotation is not required, these graphics can be captured using the
export function in Cytoscape, which will generate a PNG file (default) of the current section
of the on-screen network (it is important to note that only the information on-screen for the
network will be exported as an image).

To further enhance the appearance of networks, the stringApp application, which
is a plug-in for Cytoscape, can be used to integrate the existing network with protein-
protein interaction data [47,48]. This application also converts the standard Cytoscape
node design to a graphically appealing protein ribbon structure overlaid on marble-like
image. Additional plug-ins such as CyAnimator, offer the ability to define frame-by-frame
pans through a network that can be exported as a high-resolution video file [49]. This
is particularly effective for presentation graphics that are intended to step an audience
though a general process.

Apart from these specialized applications, the use of background graphics and other
annotation tools for network maps can be a highly effective method for data organization.
Implementation of blank plot formats onto which network data can be overlain offer a
means for expressing output data with more context than possible with an unannotated
network. This can be further enhanced by the adding color gradients, located in the style
panel of the software, which increases visibility of impacted pathways and relations.
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3. Procedure
3.1. Data Processing

1. Locate and open the files containing the differentially expressed gene lists for a sample
comparison.

2. Copy and paste provided gene identifiers directly into SynGO conversion tool [7] and
select corresponding identifier type and species from drop-down menus.

3. Press Start ID Conversion and download resulting table to text file.
4. Import text file to new spreadsheet and integrate data with differentially expressed

gene list document resulting in enhanced gene identifier options for downstream
enrichment programs.

5. Establish expression thresholds for gene sets to clearly define upregulated, downregu-
lated, and static expression sets (this can be based on pre-existing thresholds provided
by company or modified based on relevant literature).

6. Segment master gene list to three separate spreadsheets based the classification of
whether the gene is upregulated, downregulated, or statically expressed between the
experimental group and respective control in comparison.

7. Repeat steps 1–6 for all comparisons to be examined.
8. For each comparison set, determine biological functions/pathways most likely to be

impacted based on the overarching hypothesis for the study (i.e., samples derived
from cells treated with a compound intending to enhance osteogenesis would be
examined focally for variations in osteoblastic differentiation or cellular adhesion
pathways) and classify these functions/pathways as the focal parameter set.

9. Record the established focal parameter set for use in later enrichment steps.
10. Open a blank spreadsheet and designate as “Enrichment Analysis Master List” (this

will be the repository for downstream enrichment data results from pathway analysis
tools).

3.2. Pathway Analysis
3.2.1. IMPaLA Analysis

• Open IMPaLA homepage [50].
• Input gene identifiers and respective expression values, select gene identifier type

from drop-down menu, select Wilcoxon pathway enrichment analysis, and press Start
Analysis.

• Verify that an adequate percentage of the genes were detected and mapped (a low
percentage may indicate input error).

• Sort resulting table by Qgenes and download pathway list as a spreadsheet; see Figure
1.

• Remove list items above designated significance threshold based on Qgenes value and
transfer remaining pathways to “Enrichment Analysis Master List”.
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Figure 1. IMPaLA home page and resulting output data table for gene list. Data provided in the
output table (from left to right) are pathway name, the source database for the pathway, the number
of input genes in pathway, IDs for input genes involved in pathway, total number of genes in pathway,
p-value associated with number of input genes involved in pathway, and corrected significance value
that accounts for false discovery rate.

3.2.2. KOBAS Analysis

• Open KOBAS homepage [51] and navigate to gene enrichment analysis (Enrichment
→ Gene-list Enrichment).

• Enter target species, select gene identifier type for menu (note that KOBAS is capable
of accepting Fasta type files), input gene identifiers, select KEGG Pathway (K), Reactome
(R), GO (G) database options, and press Run.

• Sort table items by corrected p-value and download list using Download Total Terms
function to generate a text file that can be imported to “Enrichment Analysis Master
List”; see Figure 2.

• Click Visualization of Filtered Terms (note that this function is currently in demo state and
will likely be improved in the future) to generate circular network, barplot, and bubble
plot representations of data.

• Save graphics of interest with the save feature at bottom right of each image (these
graphics can be stored for supplemental data).
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Figure 2_V3  Figure 2. KOBAS data output. Original text file ouput from KOBAS and imported text into spread-
sheet for editable file. Provided information (from left to right) are name of pathway/GO, source
database for pathway/GO, ID for pathway/GO, number of input genes involved in pathway/GO,
number of total genes in pathway/GO, p-value associated with pathway/GO, corrected significance
value accounting for false discovery rate, IDs of input genes involved in pathway/GO, and hyperlink
to source database file for pathway/GO.

3.2.3. DAVID Analysis

• Open DAVID homepage [52] and navigate to gene enrichment analysis (Start Analysis
→ Upload).

• Input gene identifiers, select identifier type from drop-down menu, specify list as gene
list, and press Submit List.

• Select species to filter output data (In Gene List Manager tab select the target species
name→ click Select Species→ for Select List to: click Use)

• Select Functional Annotation Tool and utilize DAVID default search criteria (Search
criteria can be modified to further expand pathways/biological functions examined.
To edit the search parameters, such as utilized pathway databases, expand annotation
categories and select/deselect search parameters).

• Open Functional Annotation Clustering and download cluster data to text file for im-
porting to “Enrichment Analysis Master List”; see Figure 3.

• For saving heatmaps of high enrichment score clusters, open heatmap of interest and
print resulting webpage to PDF for supplemental data file.
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Figure 3_V3 Figure 3. DAVID gene set analysis page (a), resulting data overview page (b), functional annotation
cluster results (c), and output text file imported to spreadsheet (d). Data provided in the output table
indicates enrichment value associated with the annotated cluster, with each cluster detailing a set of
biological functions and corresponding significance values.

3.2.4. CPDB Analysis

• Open CPDB homepage [53] and navigate to gene enrichment analysis (Gene Set Analy-
sis→ Enrichment Analysis).

• Input gene identifiers and respective expression values, select identifier type from
drop-down menu, and press proceed.
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• Verify that an adequate percentage of the genes were detected and mapped (a low
percentage may indicate input error).

• Select 1-next neighbor, pathways as defined by pathway databases, gene ontology level 2
categories, and sets of genes whose products are found together in protein complexes from the
following page to establish the extent of the enrichment analysis.

• Sort the resulting list by q-value and select pathways/biological functions relating to
focal parameter set; see Figure 4.

• Download selected pathway/biological functions to text file and import to “Enrich-
ment Analysis Master List”.

• On CPDB, press visualize selected sets to generate a nodal network detailing the connec-
tive elements among selected pathways/biological functions; see Figure 5.

• Modify node position and connective edge filter settings to best display data.
• Select graph legend to insert legend onto network image.
• Capture network image with screen print function and edit/save final graphic using

PowerPoint software.

3.2.5. Enrichment Analysis Cross-Referencing

• Organize data within “Enrichment Analysis Master List” spreadsheet so that path-
ways/biological functions and respective corrected significance values from IMPaLA,
KOBAS, DAVID, and CPDB are in side-by-side lists.

• Sort each list by corrected significance value and remove all line items above desig-
nated significance threshold.

• Based on focal parameter set, highlight all PoIs using the cell highlighting tool in
spreadsheet application.

• Sort each list by cell color (this will bring all highlighted cells to the top of lists) and
remove unhighlighted line items.

• Manually compare lists for commonalities and highlight with a new color any PoIs
shared by two or more pathway analysis tools (using a different color to denote that a
PoI is common to two, three, or four pathway analysis tools).

• Generate a new document designated as “Ranked PoIs” categorizing PoIs by com-
monality among pathway analysis tools and sorted by corrected significance values.

• Repeat steps 3.2.1–3.2.5 for the upregulated, downregulated, and statically expressed
gene lists for each comparison being assessed.

• For each set of upregulated, downregulated, and statically expressed gene lists, con-
struct composition spreadsheet for top-ranked PoIs (those observed across multiple
pathway analysis tools) that includes a column of gene symbol names for all genes
associated with selected PoIs and columns headed with each PoI name for developing
a search index in Cytoscape (entering YES in the PoI name column for genes associated
with it will permit rapid categorization downstream).
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Figure 4. CPDB gene set analysis over-representation page and resulting output data table
for gene list. Data provided in the output table (from left to right) are pathway name, total
number of genes in pathway, the number of input genes in pathway, p-value associated
with number of input genes involved in pathway, corrected significance value that ac-
counts for false discovery rate, and the source database for the pathway. The left-most
column of check boxes can be selected to determine which pathways will be visualized in
the generated network graphic.

3.2.6. Cytoscape Mapping

• Open Cytoscape homepage [54] and download the most recent version of Cytoscape
software (can periodically check homepage for updated versions if already down-
loaded).

• Install stringApp application through in-software or online app manager (other plug-
ins can be install and explored for effectiveness in modifying data).

• Open BioGRID homepage [55] and download the most recent zip file for “BIOGRID-
ORGANISM-(Update Number).psi25”.

• Import BioGRID Homo Sapiens XML document from zip file into Cytoscape (File→
Import→ Network from File→ Select Homo Sapiens XML Document); see Figure 6.
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of interest. Nodes can be organized to most effectively display pathway interconnectivity data.
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data set.

• Import upregulated, downregulated, and statically expressed gene lists for target
comparison and overlay with BioGRID basal network (File → Import → Table from
File→ Select Gene List Name→ Select To selected networks only for Where to Import
Table Data → Select BioGRID basal network from Network List → Select Node Table
Columns for Import Data as→ Select Short Label for Key Column for Networks→ Keep
Case Sensitive Key Values selected→ Find the gene symbol name column of gene list
and click on column to edit→ Set as Key with the key shaped icon under Meaning in
the drop-down menu→ Press OK to import and overlay data).

• Import composition spreadsheet for data set and overlay with network for PoI search
index (File→ Import→ Table from File→ Select Composition Spreadsheet Name→
Select To selected networks only for Where to Import Table Data→ Select BioGRID basal
network from Network List→ Select Node Table Columns for Import Data as→ Select
Short Label for Key Column for Networks→ Keep Case Sensitive Key Values selected→
Find the gene symbol name column of composition spreadsheet and click on column
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to edit→ Set as Key with the key shaped icon under Meaning in the drop-down menu
→ Press OK to import and overlay data).

• Highlight gene list data nodes from newly constructed network by selecting them
from Node Table (sorting the table by a column of values not in the original BioGRID
data such as the entrez ID or HGNC ID will bring all gene list data to the top of table).

• Generate new network from selected nodes and edges for data-specific nodal network
(File→ New Network→ From Selected Nodes, Selected Edges).

• Remove duplicate edges (Edit→ Remove Duplicate Edges . . . → Select target network
and press OK).

• Remove self-loops (Edit→ Remove Self-loops . . . → Select target network and press
OK).

• Clone data-specific network to maintain unmodified version of network for reference
(File→ New Network→ Clone Current Network).

• Add color gradient to editable data-specific network nodes based on associated expres-
sion value to establish (Style tab→ Fill Color drop-down menu→ Select expression
fold change value column for Column→ Select Continuous Mapping for Mapping Type
→ Select colors for low, high, and static expression to form gradient→ Press OK to
apply).

• Separate color-coded network nodes by associated PoI using search index columns in
node table (sort each PoI column to isolate nodes associated with it, then click and
drag these clusters to independent regions on the mapping panel).

• Organize PoI clusters either manually or using one of the automated formatting
options under the Layout tab.

• Annotate resulting node map with figures and text as needed using the Annotation
tab.

• For protein-protein annotation data and enhanced node graphics, clone the current
network (covered in a previous step) and apply the stringApp plug-in to the resulting
map (this will replace nodes with high resolution graphics of the associated protein
structure and add protein-protein data to network annotation, but may reorganize
network orientation).

• Once annotation and organization of nodal network is complete, export network map
as image for use in presentations/publications (File→ Export→ Network to Image→
Save as .PNG file for high resolution).

4. Expected Results

The described protocol, an overview of which can be observed in Figure 7, will pri-
marily yield a set of three “Ranked PoIs” documents for each comparison being examined,
distilling original upregulated, downregulated, and statically expressed gene lists to con-
densed lists of significantly impacted pathways/biological functions; see Figure 8. These
“Ranked PoIs” documents will be further supplemented by heatmap and plot graphics
generated by DAVID and CPDB platforms, which can be utilized in presentation and
publications to support and convey complex data. Additionally, the described network
generation and polishing procedural steps listed for Cytoscape can be employed to create
network graphics such as those displaying in Figures 9 and 10. These networks will serve
as effective visual representations of pathways/biological functions impacted within a
particular comparison group. These example images depict differing magnification and an-
notation styles, illustrating the various options available for presenting pathway relations.



Methods Protoc. 2021, 4, 21 14 of 18

Methods Protoc. 2021, 4, x FOR PEER REVIEW 14 of 18 
 

 

as effective visual representations of pathways/biological functions impacted within a 

particular comparison group. These example images depict differing magnification and 

annotation styles, illustrating the various options available for presenting pathway rela-

tions. 

 

Figure 7. Workflow overview of pathway analysis protocol for RNA-seq data. Input data of normalized differentially 

expressed genes lists for samples (Top) is subjected to Data Processing and Pathway Analysis steps to generate both ranked 

lists and nodal network maps of biological functions and pathways of interest (Bottom). 

 

Figure 8. Example of Ranked PoI spreadsheet displaying (From Left to Right) PoI name, enrichment tools used for detec-

tion, and a list of genes involved in the pathway/biological function for each rank set. 

Ranked PoIs IMPaLA KOBAS DAVID CPDB Associated Genes

Rank 1 PoIs

PoI 1 X Gene Identifier List

PoI 2 X Gene Identifier List

PoI 3 X Gene Identifier List

PoI 4 X Gene Identifier List

PoI 5 X Gene Identifier List

…

Rank 2 PoIs

PoI 6 X X Gene Identifier List

PoI 7 X X Gene Identifier List

PoI 8 X Gene Identifier List

PoI 9 X X Gene Identifier List

PoI 10 X X Gene Identifier List

…

Rank 3 PoIs

PoI 11 X X X Gene Identifier List

PoI 12 X X Gene Identifier List

PoI 13 X X X Gene Identifier List

PoI 14 X X X Gene Identifier List

PoI 15 X X X Gene Identifier List

…

Rank 4 PoIs

PoI 16 X X X X Gene Identifier List

PoI 17 X X X X Gene Identifier List

PoI 18 X X X X Gene Identifier List

PoI 19 X X X X Gene Identifier List

PoI 20 X X X X Gene Identifier List

…

(PoIs Detected on All 4x Enrichment Analysis Tool)

(PoIs Detected on 1x Enrichment Analysis Tool)

(PoIs Detected on 2x Enrichment Analysis Tool)

(PoIs Detected on 3x Enrichment Analysis Tool)

Figure 7. Workflow overview of pathway analysis protocol for RNA-seq data. Input data of normalized differentially
expressed genes lists for samples (Top) is subjected to Data Processing and Pathway Analysis steps to generate both ranked
lists and nodal network maps of biological functions and pathways of interest (Bottom).
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and a list of genes involved in the pathway/biological function for each rank set.



Methods Protoc. 2021, 4, 21 15 of 18Methods Protoc. 2021, 4, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 9. Annotated network with integration of STRING application intended to show general gene numbers detected 

within associated pathways and interconnective elements between pathways. 
Figure 9. Annotated network with integration of STRING application intended to show general gene numbers detected
within associated pathways and interconnective elements between pathways.



Methods Protoc. 2021, 4, 21 16 of 18
Methods Protoc. 2021, 4, x FOR PEER REVIEW 16 of 18 
 

 

 

Figure 10. Annotated network data set with pathway associated genes organized within propellor plot diagram for 

demonstrating expression changes and significance of target genes in multiple experimental groups as compared to a 

common control. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not Applicable 

Informed Consent Statement: Not Applicable 

Data Availability Statement: Not Applicable 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Kornobis, E.; Cabellos, L.; Aguilar, F.; Frías-López, C.; Rozas, J.; Marco, J.; Zardoya, R. TRUFA: A User-Friendly Web Server for 

de novo RNA-seq Analysis Using Cluster Computing. Evol. Bioinform. 2015, 11, EBO.S23873, doi:10.4137/ebo.s23873. 

2. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et 

al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 

46, W537–W544, doi:10.1093/nar/gky379. 

3. Torson, A.S.; Dong, Y.-W.; Sinclair, B.J. Help, there are ’omics’ in my comparative physiology! J. Exp. Biol. 2020, 223, 191262. 

4. Chen, L.; Fei, C.; Zhu, L.; Xu, Z.; Zou, W.; Yang, T.; Lin, H.; Xi, D. RNA-seq approach to analysis of gene expression profiles in 

dark green islands and light green tissues of Cucumber mosaic virus-infected Nicotiana tabacum. PLoS ONE 2017, 12, e0175391, 

doi:10.1371/journal.pone.0175391. 

5. Warden, C.D.; Yuan, Y.-C.; Wu, X. Optimal calculation of RNA-Seq fold-change values. Int. J. Comput. Bioinform. Silico Modeling 

2013, 2, 285–292. 

6. DAVID Gene ID Conversion Tool. Available online: https://david.ncifcrf.gov/conversion.jsp (accessed on 15 March 2021). 

7. SYNGO ID Conversion Tool. Available online: https://syngoportal.org/convert.html (accessed on 15 March 2021).  

Figure 10. Annotated network data set with pathway associated genes organized within propellor plot diagram for
demonstrating expression changes and significance of target genes in multiple experimental groups as compared to a
common control.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kornobis, E.; Cabellos, L.; Aguilar, F.; Frías-López, C.; Rozas, J.; Marco, J.; Zardoya, R. TRUFA: A User-Friendly Web Server for de

novo RNA-seq Analysis Using Cluster Computing. Evol. Bioinform. 2015, 11, EBO.S23873. [CrossRef] [PubMed]
2. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et al.

The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46,
W537–W544. [CrossRef]

3. Torson, A.S.; Dong, Y.-W.; Sinclair, B.J. Help, there are ‘omics’ in my comparative physiology! J. Exp. Biol. 2020, 223, 191262.
4. Chen, L.; Fei, C.; Zhu, L.; Xu, Z.; Zou, W.; Yang, T.; Lin, H.; Xi, D. RNA-seq approach to analysis of gene expression profiles in

dark green islands and light green tissues of Cucumber mosaic virus-infected Nicotiana tabacum. PLoS ONE 2017, 12, e0175391.
[CrossRef]

5. Warden, C.D.; Yuan, Y.-C.; Wu, X. Optimal calculation of RNA-Seq fold-change values. Int. J. Comput. Bioinform. Silico Model.
2013, 2, 285–292.

6. DAVID Gene ID Conversion Tool. Available online: https://david.ncifcrf.gov/conversion.jsp (accessed on 15 March 2021).
7. SYNGO ID Conversion Tool. Available online: https://syngoportal.org/convert.html (accessed on 15 March 2021).

http://doi.org/10.4137/EBO.S23873
http://www.ncbi.nlm.nih.gov/pubmed/26056424
http://doi.org/10.1093/nar/gky379
http://doi.org/10.1371/journal.pone.0175391
https://david.ncifcrf.gov/conversion.jsp
https://syngoportal.org/convert.html


Methods Protoc. 2021, 4, 21 17 of 18

8. Koopmans, F.; van Nierop, P.; Andres-Alonso, M.; Byrnes, A.; Cijsouw, T.; Coba, M.P.; Cornelisse, L.N.; Farrell, R.J.; Goldschmidt,
H.L.; Howrigan, D.P.; et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019, 103,
217–234.e4. [CrossRef] [PubMed]

9. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]

10. Aoki-Kinoshita, K.F.; Kanehisa, M. Gene Annotation and Pathway Mapping in KEGG. Methods Mol. Biol. 2007, 396, 71–91.
[CrossRef] [PubMed]

11. Kutmon, M.; Riutta, A.; Nunes, N.; Hanspers, K.; Willighagen, E.L.; Bohler, A.; Mélius, J.; Waagmeester, A.; Sinha, S.R.; Miller, R.;
et al. WikiPathways: Capturing the full diversity of pathway knowledge. Nucleic Acids Res. 2016, 44, D488–D494. [CrossRef]

12. Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al.
WikiPathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018, 46,
D661–D667. [CrossRef]

13. Schaefer, C.F.; Anthony, K.; Krupa, S.; Buchoff, J.; Day, M.; Hannay, T.; Buetow, K.H. PID: The Pathway Interaction Database.
Nucleic Acids Res. 2009, 37, D674–D679. [CrossRef]

14. Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al.
The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [CrossRef] [PubMed]

15. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [CrossRef]
16. The Gene Ontology Resource: 20 years and still Going strong. Nucleic Acids Res. 2019, 47, D330–D338. [CrossRef]
17. Pathan, M.; Keerthikumar, S.; Ang, C.-S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.;

Salim, A.; et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics
2015, 15, 2597–2601. [CrossRef]

18. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

19. Kamburov, A.; Cavill, R.; Ebbels, T.M.D.; Herwig, R.; Keun, H.C. Integrated pathway-level analysis of transcriptomics and
metabolomics data with IMPaLA. Bioinformatics 2011, 27, 2917–2918. [CrossRef]

20. Li, C.; Han, J.; Yao, Q.; Zou, C.; Xu, Y.; Zhang, C.; Shang, D.; Zhou, L.; Zou, C.; Sun, Z.; et al. Subpathway-GM: Identification of
metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids
Res. 2013, 41, e101. [CrossRef] [PubMed]

21. Cruickshank-Quinn, C.I.; Jacobson, S.; Hughes, G.; Powell, R.L.; Petrache, I.; Kechris, K.; Bowler, R.; Reisdorph, N. Metabolomics
and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci. Rep. 2018, 8, 17132. [CrossRef]

22. Wu, J.; Mao, X.; Cai, T.; Luo, J.; Wei, L. KOBAS server: A web-based platform for automated annotation and pathway identification.
Nucleic Acids Res. 2006, 34, W720–W724. [CrossRef]

23. Yang, X.; Zhu, S.; Li, L.; Zhang, L.; Xian, S.; Wang, Y.; Cheng, Y. Identification of differentially expressed genes and signaling
pathways in ovarian cancer by integrated bioinformatics analysis. OncoTargets Ther. 2018, 11, 1457–1474. [CrossRef]

24. Shen, S.; Kong, J.; Qiu, Y.; Yang, X.; Wang, W.; Yan, L. Identification of core genes and outcomes in hepatocellular carcinoma by
bioinformatics analysis. J. Cell. Biochem. 2019, 120, 10069–10081. [CrossRef]

25. Bao, Y.; Wang, L.; Shi, L.; Yun, F.; Liu, X.; Chen, Y.; Chen, C.; Ren, Y.; Jia, Y. Transcriptome profiling revealed multiple genes and
ECM-receptor interaction pathways that may be associated with breast cancer. Cell. Mol. Biol. Lett. 2019, 24, 38. [CrossRef]

26. Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation,
Visualization, and Integrated Discovery. Genome Biol. 2003, 4, R60. [CrossRef]

27. Feng, H.; Gu, Z.-Y.; Li, Q.; Liu, Q.-H.; Yang, X.-Y.; Zhang, J.-J. Identification of significant genes with poor prognosis in ovarian
cancer via bioinformatical analysis. J. Ovarian Res. 2019, 12, 35. [CrossRef] [PubMed]

28. Sun, C.; Yuan, Q.; Wu, D.; Meng, X.; Wang, B. Identification of core genes and outcome in gastric cancer using bioinformatics
analysis. Oncotarget 2017, 8, 70271–70280. [CrossRef] [PubMed]

29. Li, J.; Witten, D.M.; Johnstone, I.M.; Tibshirani, R. Normalization, testing, and false discovery rate estimation for RNA-sequencing
data. Biostatistics 2011, 13, 523–538. [CrossRef] [PubMed]

30. Kamburov, A.; Wierling, C.; Lehrach, H.; Herwig, R. ConsensusPathDB–a database for integrating human functional interaction
networks. Nucleic Acids Res. 2009, 37, D623–D628. [CrossRef] [PubMed]

31. Kamburov, A.; Pentchev, K.; Galicka, H.; Wierling, C.K.; Lehrach, H.; Herwig, R. ConsensusPathDB: Toward a more complete
picture of cell biology. Nucleic Acids Res. 2010, 39, D712–D717. [CrossRef]

32. Kamburov, A.; Stelzl, U.; Lehrach, H.; Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res.
2012, 41, D793–D800. [CrossRef]

33. Herwig, R.; Hardt, C.; Lienhard, M.; Kamburov, A. Analyzing and interpreting genome data at the network level with Consensus-
PathDB. Nat. Protoc. 2016, 11, 1889–1907. [CrossRef] [PubMed]

34. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J.
ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics
2009, 25, 1091–1093. [CrossRef]

http://doi.org/10.1016/j.neuron.2019.05.002
http://www.ncbi.nlm.nih.gov/pubmed/31171447
http://doi.org/10.1093/nar/gkw1092
http://doi.org/10.1007/978-1-59745-515-2_6
http://www.ncbi.nlm.nih.gov/pubmed/18025687
http://doi.org/10.1093/nar/gkv1024
http://doi.org/10.1093/nar/gkx1064
http://doi.org/10.1093/nar/gkn653
http://doi.org/10.1093/nar/gkx1132
http://www.ncbi.nlm.nih.gov/pubmed/29145629
http://doi.org/10.1093/nar/gku1179
http://doi.org/10.1093/nar/gky1055
http://doi.org/10.1002/pmic.201400515
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1093/bioinformatics/btr499
http://doi.org/10.1093/nar/gkt161
http://www.ncbi.nlm.nih.gov/pubmed/23482392
http://doi.org/10.1038/s41598-018-35372-w
http://doi.org/10.1093/nar/gkl167
http://doi.org/10.2147/OTT.S152238
http://doi.org/10.1002/jcb.28290
http://doi.org/10.1186/s11658-019-0162-0
http://doi.org/10.1186/gb-2003-4-9-r60
http://doi.org/10.1186/s13048-019-0508-2
http://www.ncbi.nlm.nih.gov/pubmed/31010415
http://doi.org/10.18632/oncotarget.20082
http://www.ncbi.nlm.nih.gov/pubmed/29050278
http://doi.org/10.1093/biostatistics/kxr031
http://www.ncbi.nlm.nih.gov/pubmed/22003245
http://doi.org/10.1093/nar/gkn698
http://www.ncbi.nlm.nih.gov/pubmed/18940869
http://doi.org/10.1093/nar/gkq1156
http://doi.org/10.1093/nar/gks1055
http://doi.org/10.1038/nprot.2016.117
http://www.ncbi.nlm.nih.gov/pubmed/27606777
http://doi.org/10.1093/bioinformatics/btp101


Methods Protoc. 2021, 4, 21 18 of 18

35. Demchak, B.; Otasek, D.; Pico, A.R.; Bader, G.D.; Ono, K.; Settle, B.; Sage, E.; Morris, J.H.; Longabaugh, W.; Lopes, C.; et al.
The Cytoscape Automation app article collection. F1000Research 2018, 7, 800. [CrossRef]

36. Huang, L.J.; Law, J.N.; Murali, T.M. Automating the PathLinker app for Cytoscape. F1000Research 2018, 7, 727. [CrossRef]
37. Mustafin, Z.S.; Lashin, S.A.; Matushkin, Y.G.; Gunbin, K.V.; Afonnikov, D.A. Orthoscape: A cytoscape application for grouping

and visualization KEGG based gene networks by taxonomy and homology principles. BMC Bioinform. 2017, 18 (Suppl. 1), 1427.
[CrossRef]

38. Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; et al.
Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc.
2019, 14, 482–517. [CrossRef]

39. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2013, 13, 2498–2504.
[CrossRef]

40. Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network
analysis. Genome Biol. 2019, 20, 185. [CrossRef] [PubMed]

41. Treister, A.; Pico, A.R. Identifier Mapping in Cytoscape. F1000Research 2018, 7, 725. [CrossRef] [PubMed]
42. Wu, Y.; Liu, F.; Luo, S.; Yin, X.; He, D.; Liu, J.; Yue, Z.; Song, J. Co-expression of key gene modules and pathways of human breast

cancer cell lines. Biosci. Rep. 2019, 39, 39. [CrossRef]
43. Politano, G.; Benso, A.; Savino, A.; Di Carlo, S. ReNE: A Cytoscape Plugin for Regulatory Network Enhancement. PLoS ONE

2014, 9, e115585. [CrossRef]
44. Wolfien, M.; Rimmbach, C.; Schmitz, U.; Jung, J.J.; Krebs, S.; Steinhoff, G.; David, R.; Wolkenhauer, O. TRAPLINE: A stand-ardized

and automated pipeline for RNA sequencing data analysis, evaluation and annotation. BMC Bioinform. 2016, 17, 21. [CrossRef]
45. Bebek, G. Identifying gene interaction networks. Breast Cancer 2011, 850, 483–494.
46. Merico, D.; Gfeller, D.; Bader, G.D. How to visually interpret biological data using networks. Nat. Biotechnol. 2009, 27, 921–924.

[CrossRef] [PubMed]
47. Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics

Data. J. Proteome Res. 2019, 18, 623–632. [CrossRef] [PubMed]
48. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;

Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef] [PubMed]

49. Morris, J.H.; Vijay, D.; Federowicz, S.; Pico, A.R.; Ferrin, T.E. CyAnimator: Simple Animations of Cytoscape Networks.
F1000Research 2015, 4, 482. [CrossRef] [PubMed]

50. Integrated Molecular Pathway Level Analysis. Available online: http://impala.molgen.mpg.de/ (accessed on 15 March 2021).
51. KEGG Orthology-Based Annotation System. Available online: http://kobas.cbi.pku.edu.cn/kobas3 (accessed on 15 March 2021).
52. DAVID Bioinformatics Resources 6.8. Available online: https://david.ncifcrf.gov/home.jsp (accessed on 15 March 2021).
53. ConsensusPathDB. Available online: http://cpdb.molgen.mpg.de/ (accessed on 15 March 2021).
54. Cytoscape. Available online: https://cytoscape.org/ (accessed on 15 March 2021).
55. BioGRID. Available online: https://thebiogrid.org/ (accessed on 15 March 2021).

http://doi.org/10.12688/f1000research.15355.1
http://doi.org/10.12688/f1000research.14616.1
http://doi.org/10.1186/s12859-016-1427-5
http://doi.org/10.1038/s41596-018-0103-9
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1186/s13059-019-1758-4
http://www.ncbi.nlm.nih.gov/pubmed/31477170
http://doi.org/10.12688/f1000research.14807.2
http://www.ncbi.nlm.nih.gov/pubmed/30079244
http://doi.org/10.1042/BSR20181925
http://doi.org/10.1371/journal.pone.0115585
http://doi.org/10.1186/s12859-015-0873-9
http://doi.org/10.1038/nbt.1567
http://www.ncbi.nlm.nih.gov/pubmed/19816451
http://doi.org/10.1021/acs.jproteome.8b00702
http://www.ncbi.nlm.nih.gov/pubmed/30450911
http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.12688/f1000research.6852.1
http://www.ncbi.nlm.nih.gov/pubmed/26937268
http://impala.molgen.mpg.de/
http://kobas.cbi.pku.edu.cn/kobas3
https://david.ncifcrf.gov/home.jsp
http://cpdb.molgen.mpg.de/
https://cytoscape.org/
https://thebiogrid.org/

	Introduction 
	Experimental Design 
	Data Processing 
	Pathway Analysis Tools 
	Nodal Network Generation 

	Procedure 
	Data Processing 
	Pathway Analysis 
	IMPaLA Analysis 
	KOBAS Analysis 
	DAVID Analysis 
	CPDB Analysis 
	Enrichment Analysis Cross-Referencing 
	Cytoscape Mapping 


	Expected Results 
	References

