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Abstract: This paper investigates the application of fault attacks to the authenticated encryption
stream cipher algorithm MORUS. We propose fault attacks on MORUS with two different goals:
one to breach the confidentiality component, and the other to breach the integrity component. For the
fault attack on the confidentiality component of MORUS, we propose two different types of key
recovery. The first type is a partial key recovery using a permanent fault model, except for one of
the variants of MORUS where the full key is recovered with this model. The second type is a full
key recovery using a transient fault model, at the cost of a higher number of faults compared to the
permanent fault model. Finally, we describe a fault attack on the integrity component of MORUS,
which performs a forgery using the bit-flipping fault model.

Keywords: MORUS; CAESAR; authenticated encryption; key recovery; forgery; fault attack

1. Introduction

MORUS [1,2] is a family of stream cipher based authenticated encryption (AE) algorithms and is
a third-round candidate in the CAESAR Authenticated Encryption (AE) competition [3]. There are
three variants: MORUS-640-128, MORUS-1280-128 and MORUS-1280-256; where the first and second
integers represent the state size and the key size, respectively. The cipher is intended to provide both
confidentiality and integrity assurance for the input data. Despite being in the final round of the
competition, there is little public analysis of the security of this algorithm. This motivates our research.

This paper investigates the application of fault attacks on MORUS [1]. A fault attack is a type
of side channel attack applied to the physical implementation of a cryptographic algorithm which
introduces some errors in the implementation of the underlying algorithm. The adversary can compare
multiple faulty outputs, or a faulty output with a fault-free output; which may reveal some information
that can compromise the security of the algorithm. Fault attacks with two different goals on MORUS
are proposed in this paper. The goal of our first fault attack is to perform a secret key recovery by
injecting faults into the confidentiality component, using either the permanent or the transient fault
model. The permanent fault model partially recovers the secret key, while the transient fault model
recovers the entire secret key. The goal of our second fault attack is to perform a forgery (without key
recovery) by injecting faults into the integrity component.

This paper is organized as follows. Section 1.1 describes the notations and operations used in
this paper. Section 2 provides a description on the working principle of MORUS. Section 3 discusses
the existing analysis of MORUS. Section 4 provides an overview of fault attacks in general. Section 5
discusses the application of fault-based key recovery attacks on different variants of MORUS. Section 6
discusses the fault-based forgery attack on MORUS. Finally, Section 7 concludes this paper.
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1.1. Notations and Operations

Notations and operations used in this paper are as follows:

• ⊕: Bit-wise XOR operation.
• ⊗: Bit-wise AND operation.
• Word: A sequence of 32 bits or 64 bits, for MORUS-640 and MORUS-1280, respectively.
• Block: A sequence of 128 bits or 256 bits, for MORUS-640 and MORUS-1280, respectively.
• ls: Length of a block set to 128 bits or 256 bits for MORUS-640 and MORUS-1280, respectively.
• Rotl_xxx_yy(x, b): Divide a xxx-bit block x into 4 yy-bit words and rotate each word to the left by

b bits.
• K: The secret key of size lk bits.
• V: The initialization vector of size 128 bits.
• const0: A 128-bit constant in hexadecimal format 0x000101020305080d1522375990e97962.
• const1: A 128-bit constant in hexadecimal format 0xdb3d18556dc22ff12011314273b528dd.
• Mt: The external input to the state at step t.
• Pt: The input plaintext block at step t.
• Dt: The input associated data block at step t.
• Ct: The output ciphertext block at step t.
• msglen: Length of the plaintext/ ciphertext in bits where 0 ≤ msglen < 264.
• adlen: Length of the associated data in bits where 0 ≤ adlen < 264.
• lp: Number of input plaintext blocks.
• ld: Number of input associated data blocks.
• τ: Authentication tag.
• St: The internal state at step t.
• St

j : The internal state at the jth round of step t.

• St
j,k: kth element of state St

j .
• X: A sequence of length lX .

•
←−
X

r
: Left rotation of X by r bits.

2. Description of MORUS

The internal state of MORUS consists of five state elements S0,0, . . . , S0,4. These state elements are
of length 128 bits or 256 bits, for MORUS-640 and MORUS-1280, respectively. This gives the cipher a
total internal state size of 640 and 1280 bits, for MORUS-640 and MORUS-1280, respectively.

The MORUS family of stream ciphers supports a key K of either 128 bits or 256 bits.
The initialization vector V is 128 bits for all the variants of MORUS. The cipher takes an input
plaintext P of arbitrary length. Confidentiality is achieved by encrypting the plaintext P by XOR-ing
with the output keystream generated by the cipher to obtain the ciphertext C. The cipher also takes
associated data D of arbitrary length as input. The associated data is not encrypted. MORUS provides
integrity assurance for both the plaintext P and associated data D.

MORUS uses different component functions in the different operation phases of the cipher.
Sections 2.1 and 2.2 discuss the component functions and operation phases of MORUS, respectively.

2.1. MORUS Component Functions

The operations performed in different phases of MORUS are based on several component functions.
These are: 1. State Update Function 2. Keystream Generation Function and 3. Combining Function.
Figure 1 shows the different component functions of MORUS in generic form.
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Figure 1. Generic Diagram of MORUS.

2.1.1. State Update Function

MORUS uses the state update function Update(St, Mt) to update the contents of the state elements.
Figure 1 shows the operations involved in the state update function. At each step t, there are 5 rounds
with similar operations. Two of the state elements St

j,k are updated at each round. The operations in
the state update function include AND, XOR and rotation operation. MORUS uses the bitwise left
rotation

←−
X

wi
which is a simple rotation of the input X to the left by wi bits, where 0 ≤ i ≤ 4. It also

uses the Rotl_xxx_yy(x, bi) operation which divides a xxx-bit block input x into 4 yy-bit words and
rotates each word to the left by bi bits, where 0 ≤ i ≤ 4. The rotation constants bi and wi are listed in
Table 1.
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Table 1. Rotation Constants Used in MORUS

MORUS-640 MORUS-1280

b0 5 13
b1 31 46
b2 7 38
b3 22 7
b4 13 4
w0 32 64
w1 64 128
w2 96 192
w3 64 128
w4 32 64

The state update function takes inputs from the internal state and also an external input M.
Depending on the phase the cipher is in, the external input M can be: all zero, the associated data,
the plaintext, or a representation of the length of the associated data and the plaintext.

2.1.2. Keystream Generation Function

The keystream generation function is used during the encryption phase of MORUS. It outputs a
keystream block at each step of the encryption phase. This is computed as a function of the first four
state elements S0,0, . . . , S0,3 of MORUS. The keystream generation function is defined as:

Zt = St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3) (1)

where w2 is a left rotation constant, set to 96 bits or 192 bits for MORUS-640 and
MORUS-1280, respectively.

2.1.3. Combining Function

The combining function used during the encryption phase of MORUS is a simple XOR operation.
That is, the ciphertext block is computed by XOR-ing the input plaintext and keystream block.

2.2. MORUS Operation Phases

Operations performed in MORUS can be divided into five phases: Initialization,
Processing associated data, Encryption, Finalization, and Decryption and tag verification. Note that
there are two versions of the MORUS family of authenticated encryption cipher: MORUSv1 [1] and
MORUSv2 [2]. The two versions differ only in the finalization phase, and this difference does not affect
the analysis provided in this paper. The general description of the MORUS operation phases provided
in this section are based on MORUSv2 [2].

2.2.1. Initialization

At the beginning of the initialization phase, the state elements of MORUS are loaded with the
key, initialization vector and two constants. Particularly, for MORUS-640, the state elements St=0

0,0 , St=0
0,1 ,

St=0
0,2 , St=0

0,3 , St=0
0,4 are loaded with the 128-bit initialization vector V, 128-bit key K, sequence of 128 bits of

value 1, const0 and const1, respectively.
Similar to MORUS-640, in the initialization phase the state elements of MORUS-1280 are loaded

with the key, initialization vector and some constant values. There are two key sizes that can be used
with MORUS-1280. When a 128-bit key is used, the state elements St=0

0,0 , St=0
0,1 , St=0

0,2 , St=0
0,3 , St=0

0,4 are loaded
with V||0128, K||K, 1256, 0256 and const0||const1, respectively (where K is 128 bits in length). When a
256-bit key is used, the state elements St=0

0,0 , St=0
0,1 , St=0

0,2 , St=0
0,3 , St=0

0,4 are loaded with V||0128, K, 1256, 0256

and const0||const1, respectively (where K is 256 bits in length).
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After this, the state update function Update(St, Mt) of MORUS is applied 16 times. During these
updates the external input Mt is set to zero and the cipher does not produce any output. After these
16 updates the content of state element St=16

0,1 is XOR-ed with the key. The state value formed after this
process is the initial internal state of MORUS.

2.2.2. Processing Associated Data

At the beginning of the associated data processing phase, the internal state of MORUS is the
initial internal state. For MORUS-640, the input associated data is divided and processed in blocks of
size 128 bits. For MORUS-1280 the processing of associated data handling is similar to MORUS-640,
except that the input associated data is divided and processed in blocks of size 256 bits for this instance.
If the last associated data block is not a full block, then it is padded with zeroes to create a 128-bit or
256-bit block, for MORUS-640 and MORUS-1280, respectively.

At each step the cipher takes an input associated data block Dt and uses this as the external
input Mt to update the state of MORUS. This process is continued ld times where ld is the number
of associated data blocks. Note that during this process the cipher does not produce any output.
This phase is not performed if the length of the associated data is zero.

2.2.3. Encryption

After completing the associated data processing phase, MORUS processes the input plaintext.
Similar to the associated data processing, the plaintext Pt is also divided and processed in blocks of size
128 bits (for MORUS-640) or 256 bits (for MORUS-1280). If the last plaintext block is not a full block,
then it is padded with zeroes to create a 128-bit or 256-bit block, for MORUS-640 and MORUS-1280,
respectively. At each step t of the encryption phase, MORUS computes a 128-bit output keystream
block using Equation (1). This output keystream block Zt is XOR-ed with the plaintext block Pt to
compute the respective ciphertext block. The ciphertext computation is shown in Equation (2).

Ct = Pt ⊕ Zt

= Pt ⊕ St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3)

(2)

After computing the ciphertext block, the input plaintext block Pt is used as the external input Mt

to update the state of MORUS. This process is continued until all of the plaintext blocks are processed,
i.e., lp times where lp is the number of plaintext blocks.

2.2.4. Finalization

After processing all of the input plaintext, the cipher goes through the finalization phase to
generate the authentication tag. The first step of the finalization phase is updating state element St

4,0
by XOR-ing its content with the content of state element St

0,0, i.e., St
4,0 = St

4,0 ⊕ St
0,0. The internal state

is then updated 10 times using the state update function Update(St, Mt) of MORUS. The external
input Mt is set as adlen||msglen for these 10 iterations. During these 10 updates the cipher does not
produce any output. Finally, the tag τ is computed by using Equation (3), and sent to the receiver with
the message.

τ = St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3) (3)

2.2.5. Decryption and Tag Verification

To carry out the decryption, first the initialization process is performed to obtain the initial internal
state. The associated data processing phase is also performed as described in Section 2.2.2, if the length
of associated data adlen > 0. At each step t of the decryption process the output keystream block is
computed using Equation (1). This output keystream block Zt is XOR-ed with the ciphertext block Ct
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to compute the corresponding decrypted plaintext block. The recovered plaintext block computation
is shown in Equation (4).

Pt = Ct ⊕ Zt

= Ct ⊕ St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3)

(4)

At each step, the recovered plaintext block Pt is used as the external input Mt to update the
state. This process is continued lc times to process all the ciphertext blocks, where lc is the number
of ciphertext blocks. After processing all the ciphertext blocks, the tag is generated following the
procedure discussed in Section 2.2.4.

Finally, for the tag verification, the received tag is compared with the tag generated after the
decryption process. If the received tag is not the same as the tag computed after the decryption
process then the tag verification fails, and the ciphertext and computed tag should not be released.
Otherwise the tag verification process is considered successful.

3. Existing Analysis of MORUS

There is little public analysis of MORUS. In this section we briefly discuss the existing
cryptanalysis of MORUS.

3.1. Distinguishing Attack on MORUS

Mileva et al. [4] described the existence of a distinguisher for MORUS-640 which can analogously
be used for MORUS-1280. Their analysis shows that, for a given ciphertext C1 computed on a message
(D1, P), an adversary can predict 125 bits of a different ciphertext C2 computed over message (D2, P),
where D1 and D2 differ in one bit. However, these distinguishers are obtained when message (D1, P)
and message (D2, P) are processed using the same key and initialization vector. This falls under the
nonce-reuse scenario for which the designer of MORUS does not claim any security.

3.2. State Collisions and Forgery Attack on MORUS

Mileva et al. [4] also analysed the state update function of MORUS, reporting collisions in the
internal state. To obtain the collision, an adversary needs to be capable of injecting specific differences
in both the internal state and the external input. The designer of MORUS claims that this type
of collision can not be achieved in practice because the adversary can only manipulate and inject
differences in the external input.

Mileva et al. [4] also described a tag forgery attack by producing the state collision discussed
above. The analysis is performed by generating and solving a system of equations which satisfies the
state collision criterion. However, they reported no solutions were found apart from the trivial one
where the difference between the input messages is zero.

3.3. Rotational and Differential Cryptanalysis of MORUS

Dwivedi et al. [5] applied differential and rotational cryptanalysis on a reduced version of
MORUS, where the initialization phase is reduced from 16 to 3.6 steps. Their application of differential
cryptanalysis on MORUS-1280-256 with 18 initialization rounds (3.6 steps) can recover the 256-bit
key with a complexity of 2253. They have also described a rotational attack on MORUS-1280-256 with
8 initialization rounds (1.6 steps) which can recover the key with a complexity of 2251. Both of these
attack complexities are almost the same as exhaustive key search attack.
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3.4. SAT Based State Recovery

Dwivedi et al. [6] analysed the complexity of SAT based state recovery for MORUS-640.
Their approach based on SAT solver requires a complexity of 2370. The SAT based approach does not
work for MORUS because it requires more time complexity than the exhaustive key search.

3.5. Cube Attack on MORUS

In our previous work [7], we have applied a cube attack on a reduced version of MORUS,
where the initialization phase is reduced from 16 steps to 4 steps. This cube attack can recover the
secret key for this reduced version of the cipher with a complexity of 210 and 29 for MORUS-640 and
MORUS-1280-128, respectively. This work also demonstrated a distinguishing attack for 5 steps of the
initialization phase of MORUS-1280, with a complexity of 28. To date this is the best result published
for a reduced version of MORUS.

4. Fault Attack

A fault attack [8] is an active attack which introduces errors/faults in the underlying cryptographic
algorithm. An adversary can compare the faulty output with the original output or compare multiple
faulty outputs, which may reveal information related to the secret key or internal states. The goal of
the attack can be key recovery, state recovery, or to create a forgery.

The fault injection techniques can be categorised as non-invasive, invasive, and semi-invasive.
The non-invasive techniques do not cause any physical damage to the device, while the invasive
techniques tamper the device and may even destroy the device. The semi-invasive technique falls in
between non-invasive and invasive technique. These techniques can use different means of physical
tampering, such as changing the power supply voltage, tampering with the clock signal, optical fault
injections, electromagnetic pulses, temperature or light radiation.

4.1. Fault Attack Model

The fault model determines the characteristics of the underlying fault. This can be catagorised
based on the required number of faulty bits, fault type, control on the fault location and time and
duration of the fault [9]. These are discussed below.

Fault type: The fault type defines the type of the error introduced in the underlying cryptographic
implementation. This can be mainly divided into three types: Stuck-at fault, bit flipping fault and
random fault.

• Stuck-at faults set the faulty bits to a specific value, of either zero or one. This type of fault can
also be referred as set-to-zero or set-to-one fault.

• Bit flipping fault flips/complements bit(s) to introduce error(s) in the cryptographic algorithm.
• Random fault introduces a random error in the cryptographic algorithm. With this type of fault

the faulty bits can be set to either zero or one with equal probability.

Number of faults: Based on the fault model, the number of bits required to be affected may be a
single bit, multiple bits or may be even multiple words.

Control on the Fault Location and Time: The adversarial model based on the precision of the
fault location and time can be categorised in three types: precise, loose and random.

• In the precise control model, the adversary is assumed to have access to fault injection techniques
that can inject faults at a precise location of the internal components. The adversary can introduce
these faults at a specific time of the operation of the algorithm. This is the strongest model based
on the fault location.

• In the loose control model, the adversary has some control on the fault injection location and time.
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• In the random model, the adversary does not have any control on the fault injection location
and time. In this model, the adversary can just introduce fault(s) at a random time in a random
location of the internal components of the cryptographic algorithm.

Duration of the Fault: The duration of the fault determines the time period that the fault remains
active. The fault model can be categorised into transient and permanent.

• For a transient fault, the faulty bits are changed for a certain period of time. This is also known as
a temporary fault, since the fault remains active temporarily.

• For a permanent fault, the faulty bits are changed for the entire duration in the underlying
hardware platform. This is also known as a hard fault.

4.2. Feasibility of Fault Attacks

A permanent fault may be easier to apply than a transient fault, as it can be obtained by
destroying the memory cells. An adversary with access to the physical implementation could do this.
The cost associated with different fault models varies depending on the fault injection technique [9].
The permanent fault injection can be achieved by simply cutting a wire [10] or by using sophisticated
technology such as using laser beam as adopted in [11]. Injecting the faults with laser beam will require
a higher cost but possibly provides more accuracy [9].

For the transient faults, adversary needs access to the physical implementation of the algorithm
as well as additional equipment to apply the attack. This model can work with low budget equipment
such as simple flashgun or laser pointer to set or reset bit(s) of SRAM in a microcontroller [12].

In terms of the type of faults, the random fault model seems to be the most practical one.
This model has been applied in several research papers and shown to work in the actual hardware [9,12].
The stuck at fault models has been reported to require a comparatively higher cost for a precise
application of the fault injection [9]. The bit-flipping fault model has been applied on a 8-bit
micro-controller [13], however; this model is still considered largely theoretical for a precise application
of the fault location.

5. Fault Based Key Recovery Attacks on MORUS

This section describes our fault-based key recovery attacks on MORUS. We propose two different
fault-based key recovery attack on MORUS. The first is a permanent fault attack, whereas the second
is a transient fault attack.

For MORUS the initialization phase is updated 16 times to mix the key and initialization vector
into the 640 bits internal state. However after these 16 operations the key is directly XOR-ed to update
the contents of state element St=16

0,1 . The state element St=16
0,1 may then be used in the computation of the

first block of output keystream generated at time t = 16 (see Equation (1)). We discuss a scenario in
which these key bits can be revealed. This is the goal of our fault attacks.

MORUS processes the input plaintext after completing the initialization and associated data
processing phase. During the associated data processing phase no output keystream is generated.
Output keystream bits are generated only during the encryption phase. If the associated data
processing phase is skipped (when there is no associated data) then the key bits will be directly
XOR-ed in the output keystream function while processing the first plaintext block and faults can be
applied to reveal the secret key bits. On the other hand, if the associated data processing phase is
performed, then the key bits will get mixed with the contents of other state elements before appearing
in the output keystream. In that case, the fault attack will not directly reveal the key bits.

When there is no associated data processing phase, Equation (2) for the first plaintext block of
MORUS can be represented as:

C16 = P16 ⊕ S16
0,0 ⊕

←−−−−−
(S16

0,1 ⊕ K)
w2
⊕ (S16

0,2 ⊗ S16
0,3) (5)
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In Equation (5), if we can remove the effect of St=16
0,0 , St=16

0,1 , St=16
0,2 and St=16

0,3 then the first ciphertext
block Ct=16 will just be the XOR of the first plaintext block Pt=16 and the key K. In such a scenario an
adversary can apply set-to-zero faults in specific state elements to recover the key bits under a known
plaintext model. In the following we discuss the effect of removing these state elements by introducing
faults in some of the internal states of the cipher.

5.1. Permanent Fault Attack on MORUS-640

To remove the effect of St=16
0,0 , St=16

0,1 , St=16
0,2 and St=16

0,3 , an adversary can introduce permanent faults to
set the contents of some specific registers of MORUS-640 to zero, thereby deleting the register contents.
The locations that we target for our fault attack are shown in Figure 2 and discussed in detail below.

We observe that during the 16th step (last update step) of the initialization phase, destroying the
last 64 registers (i.e., register 64 to 127) of state element St=15

3,1 will result in all zero bits in the state
element St=15

4,1 . This is due to the fact that at the fourth round of each step, the contents of S3,1 are
rotated left by 64 bits. The left rotation will bring the zero valued contents of the last 64 bits (faulty
bits valued zero) into the first 64 register bits of state element St=15

4,1 . Since the last 64 registers are
permanently set to zero, the rotation will not have any effect on these bits. After the left rotation there
are no changes in the state element St=15

4,1 for that step, i.e., St=15
4,1 = St=16

0,1 .
The key bits are XOR-ed with the contents of the state element St=16

0,1 after 16 updates in the
initialization phase. As a result, at the end of the initialization phase the first 64 bits of state element
St=16

0,1 will contain the first 64 bits of the key bits. Due to the permanent fault, XOR-ing of the last
64 bits of the key will have no effect on the corresponding bits of this state element. Note that in the
encryption phase, the combining function rotates the contents of this state element by 96 bits. Thus the
first 64 key bits will actually be XOR-ed at the bit position 32, . . . , 95 during the ciphertext computation.
To recover the first 64 bits of the corresponding key we must eliminate the effect of bits 32, . . . , 95 of
state elements St=16

0,0 , St=16
0,2 and St=16

0,3 from the first ciphertext block, using a similar technique to that
used for state element St=16

0,1 .
To eliminate the effect of bits 32, . . . , 95 of state element St=16

0,0 in the keystream computation,
one can permanently set bits 32, . . . , 63 of state element St=15

2,0 to zero (i.e., destroy the register bit 32
to 63). At the third round of each step, contents of state element S2,0 goes through a left rotation of
96 bits. The left rotation will bring the zero valued contents of the bit 32, . . . , 63 (faulty bits) into the
register bits 64, . . . , 95 of state element S3,0. The left rotation will not have any effect on the register
bits 32, . . . , 63 due to the permanent fault. As a result bits 32, . . . , 95 of state element St=16

0,0 will be set to
zero, since there are no changes in state element S3,0 after the third round of each step.

In addition, in Equation (5) observe that St=16
0,2 and St=16

0,3 are multiplied bitwise and used in the
ciphertext computation. Therefore setting bits 32, . . . , 95 of either of these two state elements to zero
will eliminate the effect of both in the keystream computation. To introduce zero valued contents in
bits 32, . . . , 95 of state element St=16

0,2 , one can permanently set bits 64, . . . , 95 of state element St=15
4,2 to

zero, i.e., destroy the corresponding registers. At the fifth round of each step, contents of state element
S4,2 goes through a left rotation of 32 bits. The left rotation will bring the zero valued contents of state
bits 64, . . . , 95 (faulty bits) into the register bits 32, . . . , 63 of state element S0,2. The left rotation will
not have any effect on the register bits 64, . . . , 95 due to the permanent fault. As a result bits 32, . . . , 95
of state element St=16

0,2 will be set to zero, which will eliminate the effect of state St=16
0,2 and St=16

0,3 in the
keystream computation.

In summary, an adversary using this technique must introduce a total of 128 bits of permanent
faults in the 640-bit internal state of MORUS-640 to recover the first 64 bits of the key. One can recover
the remaining 64 key bits by exhaustive search, which will require a complexity of about 264. Note that
it is not possible to recover the full key of MORUS-640 using only permanent faults, as the faults
applied to St=15

3,1 will result in permanent zero values in 64 bits of St=16
0,1 , even after the key K has been

XOR-ed with this state word. In particular, the attack described above is unable to recover bits 64 to
127 of the key, as these bits of St=16

0,1 have been permanently set to zero.
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However, it is possible to obtain the full key of MORUS-640 by using a combination of permanent
and transient faults. With an additional 128 faults (combination of permanent and transient faults) in
carefully chosen parts of the state, the entire keystream output for that step will be the key. That is,
for St=15

2,0 registers 32, . . . , 63 and now additionally 96, . . . , 127 are permanently zero, and for St=15
4,2

registers 64, . . . , 95 and now additionally 0, . . . , 31 are permanently zero. For St=15
3,1 registers 0, . . . , 127

are temporarily set to zero. These 64 permanent faults in each of St=15
2,0 and St=15

4,2 , together with
128 transient faults in St=15

3,1 would remove the contribution of the internal state values to the output
and allow the full key to be obtained.

Figure 2. Inducing Permanent Fault at the Last Step of the Initialization Phase of MORUS-640.
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5.1.1. Attack Algorithm

The steps involved in recovering 64 bits of the secret key of MORUS-640 using 128 permanent
faults are outlined in Algorithm 1. The steps involved in recovering the full 128-bit secret key using
256 faults (combination of permanent and transient faults) are outlined in Algorithm 2.

Algorithm 1 Algorithm for Partial Key Recovery Attack on MORUS-640 using a Permanent Fault Model.

1: Load key and initialization vector and continue the initialization phase.

2: Insert permanent set to zero faults in registers 32 to 63 of state element St=15
2,0 .

3: Insert permanent set to zero faults in registers 64 to 127 of state element St=15
3,1 .

4: Insert permanent set to zero faults in registers 64 to 95 of state element St=15
4,2 .

5: Complete the initialization phase and construct the first block of the keystream.

6: Output bit 32 to 95 of the keystream as the first 64 bits of the secret key.

Algorithm 2 Algorithm for Full Key Recovery Attack on MORUS-640 using a Combination of
Permanent and Transient Fault Model.

1: Load key and initialization vector and continue the initialization phase.

2: Insert permanent set to zero faults in registers 32 to 63 and 96 to 127 of state element St=15
2,0 .

3: Insert transient set to zero faults in registers 0 to 127 of state element St=15
3,1 .

4: Insert permanent set to zero faults in registers 64 to 95 and 0 to 31 of state element St=15
4,2 .

5: Complete the initialization phase and construct the first block of the keystream.

6: Rotate the keystream to the left by 32 bits and output this as the 128-bit secret key.

5.2. Permanent Fault Attack on MORUS-1280

Similar to the technique used for MORUS-640, if the associated data processing phase is skipped,
i.e., there is no input associated data, then the key bits will be directly XOR-ed in the output keystream
function while processing the first plaintext block. In Equation (5), an adversary can apply permanent
set to zero faults to eliminate the effect of St=16

0,0 , St=16
0,1 , St=16

0,2 and St=16
0,3 and recover the secret key of

MORUS-1280, under a known plaintext model. The locations that we target for our fault attack are
shown in Figure 3 and discussed in detail below.

During the last step of the initialization phase, destroying the last 128 registers (i.e., register 128 to
255) of state element St=15

3,1 will result in all zero bits in the state element St=15
4,1 . There are no changes

in the state element St=15
4,1 for that step, that is St=15

4,1 = St=16
0,1 . Since the secret key is XOR-ed with the

contents of this state element after these 16 steps, the first 128 bits of state element St=16
0,1 will contain

the first 128 bits of the secret key. Due to the permanent fault, XOR-ing of the last 128 bits of the secret
key will have no effect on these bits.

Note that in the encryption phase, the combining function rotates the contents of this state
element by 192 bits. Following a similar technique to that used for MORUS-640, an adversary
can select the relevant bits of state element St=16

0,0 , St=16
0,2 and St=16

0,3 based on the rotation distance of
MORUS-1280, and apply permanent set to zero faults in the corresponding bits. By introducing such
faults, an adversary can easily recover the first 128 bits of the secret key under a known-plaintext
scenario. Recall that this is the entire key when the key size is 128-bit, while it represents the first
128 bits of the key when the key size is 256-bit.

An adversary using this technique must introduce a total 256 bits of permanent fault in the
1280 bits internal state of MORUS-1280. An adversary recovers the whole key when the key size
is 128-bit, whereas an adversary recovers the first 128 bits of the key when the key size is 256-bit.
An adversary can recover the remaining bits of the key for MORUS-1280-256 by exhaustive search,
which will require a complexity of about 2128.
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Figure 3. Inducing Permanent Fault at the Last Step of the Initialization Phase of MORUS-1280.

Note that similar to MORUS-640 it is not possible to recover the full key of MORUS-1280-256 using
only permanent faults, as the faults applied to St=15

3,1 will result in permanent zero values in 128 bits of
St=16

0,1 , even after the key K has been XOR-ed with this state word. In particular, the attack described
above is unable to recover bits 128 to 255 of the key, as these bits of St=16

0,1 have been permanently set
to zero.

However, it is possible to obtain the full key of MORUS-1280-256 by using a combination of
permanent and transient faults. With an additional 256 faults (combination of permanent and transient
faults) in carefully chosen parts of the state, the entire keystream output for that step will be the
key. That is, for St=15

2,0 registers 64, . . . , 127 and now additionally 192, . . . , 255 are permanently zero,
and for St=15

4,2 registers 128, . . . , 191 and now additionally 0, . . . , 63 are permanently zero. For St=15
3,1
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registers 0, . . . , 255 are temporarily set to zero. These 128 permanent faults in each of St=15
2,0 and St=15

4,2 ,
together with 256 transient faults in St=15

3,1 would remove the contribution of the internal state values to
the output and allow the full key of MORUS-1280-256 to be obtained.

5.2.1. Attack Algorithm

The steps involved in recovering 128 bits of the secret key of MORUS-1280 using 256 permanent
faults are outlined in Algorithm 3. The steps involved in recovering the full 256-bit secret key
of MORUS-1280 using 512 faults (combination of permanent and transient faults) are outlined in
Algorithm 4.

Algorithm 3 Algorithm for Key Full Recovery Attack on MORUS-1280-128/Partial Key Recovery
Attack on MORUS-1280-256 using a Permanent Fault Model.

1: Load key and initialization vector and continue the initialization phase.

2: Insert permanent set to zero faults in registers 64 to 127 of state element St=15
2,0 .

3: Insert permanent set to zero faults in registers 128 to 255 of state element St=15
3,1 .

4: Insert permanent set to zero faults in registers 128 to 191 of state element St=15
4,2 .

5: Complete the initialization phase and construct the first block of the keystream.

6: Output bit 64 to 191 of the keystream as the first 128 bits of the secret key.

Algorithm 4 Algorithm for Full Key Recovery Attack on MORUS-1280-256 using a Combination of
Permanent and Transient Fault Model.

1: Load key and initialization vector and continue the initialization phase.

2: Insert permanent set to zero faults in registers 64 to 127 and 192 to 255 of state element St=15
2,0 .

3: Insert transient set to zero faults in registers 0 to 255 of state element St=15
3,1 .

4: Insert permanent set to zero faults in registers 128 to 191 and 0 to 63 of state element St=15
4,2 .

5: Complete the initialization phase and construct the first block of the keystream.

6: Rotate the keystream to the left by 64 bits and output this as the 256-bit secret key.

5.3. Reducing the Required Number of Permanent Faults

The attacks presented in Sections 5.1 and 5.2 demonstrate that it is possible to fully recover the
key using a combination of permanent and transient faults, but if the number of faults is reduced,
then partial key recovery is possible using only a permanent fault model. For example, in MORUS-640
256 faults were required for full key recovery using a combination of permanent and transient faults,
whereas 128 permanent faults permitted recovery of 64 bits of the 128-bit key.

Alternatively, we could take a probabilistic approach to key recovery, based on the bias of the
AND operation in the combining function. The combining function for the first plaintext block of
MORUS described in Equation (5) has three XOR operations and an AND operation. During the
processing of the first input plaintext block, the AND operation in Equation (5) takes input from the
state elements St=16

0,2 and St=16
0,3 . The output of the AND operation is heavily biased towards zero, so we

can remove the output of the AND operation from Equation (5) with a high probability. Equation (5)
can be rewritten as

C16 = P16 ⊕ S16
0,0 ⊕

←−−−−−
(S16

0,1 ⊕ K)
w2

(6)

For MORUS-640, the output of the first 64 bits of the AND operation is zero with a probability of
(3/4)64 ≈ 2−26.56. In this case, applying a modified version of Algorithm 1 (with step 4 omitted) an
adversary needs to introduce 96 permanent faults at the last step of the initialization phase in order to
recover the first 64 bits of the key with a probability of 2−26.56. Similarly, applying a modified version
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of Algorithm 2 (with step 4 omitted) an adversary needs to introduce 192 faults at the last step of the
initialization phase in order to recover the entire 128-bit key with a probability of 2−53.12.

Alternatively, for MORUS-1280 the output of the corresponding 128 bits of the AND operation
is zero with a probability of (3/4)128 ≈ 2−53.1. Therefore applying a modified version of Algorithm 3
(with step 4 omitted) an adversary needs to introduce 192 permanent faults at the last step of the
initialization phase in order to recover the first 128 bits of the key with a probability of 2−53.1. Similarly,
applying a modified version of Algorithm 4 (with step 4 omitted) an adversary needs to introduce
384 faults at the last step of the initialization phase in order to recover the entire 256-bit key with a
probability of 2−106.25.

5.4. Transient Fault Attacks on MORUS

The observation from the above sections can be extended in an approach that induces transient
faults in the MORUS states to recover the secret key. An adversary can introduce transient set to zero
faults at specific times and locations to eliminate the effect of the contents from state elements St=16

0,0 ,
St=16

0,2 and St=16
0,3 . Following this adversary can observe the corresponding bit in the first keystream

block to recover one bit of the secret key.
The contents of state elements St=16

0,2 and St=16
0,3 are multiplied bitwise and used in the keystream

generation function. Setting any of the bits of these two state elements to zero (inducing transient set
to zero fault) will set the output of the bitwise multiplication for the corresponding bits to zero.

In particular, the adversary needs to introduce three bits of faults to recover a single bit of the
secret key. To recover the jth bit of the secret key an adversary can introduce a one bit transient fault on
the jth register of state element St=15

4,1 and ((ls − w2 + j) mod ls)th register of state elements St=15
4,0 and

St=15
4,3 , where ls is the block size of 128-bit or 256-bit for MORUS-640 and MORUS-1280, respectively.

The transient fault introduced here is a set to zero fault which temporarily resets the corresponding bits
to zero. With the introduction of these three bit faults in state elements St=15

4,0 , St=15
4,1 , St=15

4,3 , an adversary
can recover the jth bit of the secret key. At each time step, an adversary needs only three faults in
specific locations, but depending on the key size this process must be repeated 128 or 256 times in
order to reveal the whole key.

Consider the scenario where an adversary can induce such faults to different locations of the
initial internal states, which are computed from the same key but with different initialization vectors.
For MORUS-640, an adversary can select 128 different initial states computed from the same key but
different initialization vectors, and for each initial state induce the faults in 3 specific location of state
elements St=15

4,0 , St=15
4,1 , St=15

4,3 . With this the adversary can recover the whole secret key of MORUS-640-128.
This will require 128× 3 = 384 bits of transient faults.

For MORUS-1280-128, an adversary can select 128 different initial states computed from the same
key but different initialization vectors, and for each initial states induce the transient set to zero faults
in 3 specific location of state elements St=15

4,0 , St=15
4,1 , St=15

4,3 . With this the adversary can recover all the
secret key of MORUS-1280-128. This will also require 128× 3 = 384 bits of transient faults.

Similarly for MORUS-1280-256, an adversary needs to introduce transient set to zero faults in
3 specific location of state elements St=15

4,0 , St=15
4,1 , St=15

4,3 , and continue this process 256 times with 256
different initial states computed from the same key but with different initialization vectors. This will
require 256× 3 = 768 bits of transient faults to recover the 256-bit secret key of MORUS-1280-256.

5.4.1. Attack Algorithm

The steps for the transient fault-based key recovery attack are outlined in Algorithm 5.
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Algorithm 5 Algorithm for Transient Fault Based Key Recovery Attack.

1: Repeat steps 2 to 5 for j = 0, . . . , lk − 1.

2: Load the key and a fresh initialization vector and continue the initialization phase.

3: Insert transient set to zero fault in register j of state element St=15
4,1 .

4: Insert transient set to zero faults in register ((ls −w2 + j) mod ls) of state elements St=15
4,0 and St=15

4,3 .

5: Complete the initialization phase and construct the first block of the keystream.

6: Output keystream bit ((ls − w2 + j) mod ls) as the jth bit of the secret key.

5.5. Comparison of Fault Based Key Recovery Attacks

We described two fault-based key recovery attacks on different variants of MORUS. The first
attack uses permanent set to zero fault injection into the internal state of MORUS. The second attack
uses transient set to zero fault injection into the internal state of MORUS. The results from these fault
attacks are presented in Table 2.

Table 2. Summary of Fault Attacks on MORUS.

Key Size Type of Fault Number of Faults Recovered Key Bits

MORUS-640 128 Permanent 128 64
MORUS-640 128 Permanent & Transient 256 128
MORUS-640 128 Transient 384 128

MORUS-1280-128 128 Permanent 256 128
MORUS-1280-128 128 Transient 384 128
MORUS-1280-256 256 Permanent 256 128
MORUS-1280-256 256 Permanent & Transient 512 256
MORUS-1280-256 256 Transient 768 256

The fault model for these stuck-at fault-based key recovery attacks requires fault injections at a
specific time and location. This can be achieved using optical fault injection. The difference between the
permanent fault and the transient fault is in the number of faults and the number of key bits recovered.

With permanent faults, the adversary is able to recover at least half the secret key. If the entire key
is not recovered, then the remaining key bits may be obtained through exhaustive search. Alternatively,
a larger number of faults (combination of permanent and transient faults) may reveal the entire key.
The key recovery using permanent fault model or a combination of permanent and transient fault
model requires fewer faults than that for transient fault model. For the transient fault, an adversary
can recover the entire key; however, this requires up to three times as many faults compared to the
permanent fault attacks.

The adversary needs to have access to the physical implementation of the algorithm to apply these
fault attacks. Also note that both of these transient and permanent fault attacks described in this paper
are based on the assumption that there is no associated data. These attacks are not feasible otherwise.

The fault model described here requires an adversary to use faults which set specific bits of
the registers to zero, i.e., set to zero fault. These results are theoretical, and we did not perform
any experiments since the results are straightforward given that the faults can be applied in the
implementation of the algorithm. However, we note that the fault models for our proposed key
recovery attacks have been shown to work in hardware [12], and also adopted in several other research
papers [11,14].

6. Fault Based Forgery Attack on MORUS

This section discusses a fault-based forgery attack on MORUS. The goal of the attack is to modify
the input message by flipping specific message bit(s) and have this modified message accepted
as legitimate at the receiver side. The modification can be either in the associated data or in the
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plaintext. In order to achieve this, we require the production of the appropriate tag value for the
modified message.

Fault based forgery attacks on the authenticated encryption ciphers CLOC and SILC were
introduced by Roy et al. [15]. Later, in the CAESAR Google discussion forum it was pointed out
by Iwata et al. [16] that any authenticated encryption scheme can be forged using faulty encryption
queries. This requires an adversary to inject faults in the inputs submitted to the encryption oracle
and then use the output of the encryption oracle with the faulty inputs to continue with the forgery.
We describe here a similar fault injected forgery, however; we propose the injection of faults into the
internal state instead of the inputs, and apply this fault injection based forgery to MORUS.

In the associated data processing and encryption phases of MORUS, the input associated data
and the plaintext are loaded into the internal state of the cipher. Therefore, any changes in the input
associated data or the plaintext will affect the internal state. An adversary can apply a forgery attack
by injecting faults into the internal state of MORUS to reflect the changes made in either the associated
data or in the plaintext. For the following discussion we use the term M to represent either the
associated data or the plaintext.

Suppose the adversary wants to modify the ith bit of the message block Mt as received by the
receiver. Let M′t denote the modified message block, where the modification is a bit flip in the ith
bit of the original message block Mt. We observe that the input message block Mt is XOR-ed with
the contents of state element St

1,1, St
2,2, St

3,3 and St
4,4. Thus XOR-ing M′t with the contents of the state

element St
1,1, St

2,2, St
3,3 and St

4,4 will flip the ith bit of the respective state element.
To perform a forgery attack on the message Mt, the adversary can apply bit flipping faults to the

ith bit of the state elements St
1,1, St

2,2, St
3,3 and St

4,4. This is equivalent to modifying the input message
block from Mt to M′t at the sender’s device, where the modification is a complementation of the ith
bit of the original input message block Mt. Figure 4 illustrates the locations of the fault injections to
achieve the fault-based forgery attack on MORUS.

Let τ′ denote the tag generated for the fault induced version of the state. The adversary can use
this faulty tag τ′ to perform the forgery attack. Note that the fault was introduced in the internal state
bits after the computation of the ciphertext block Ct, and so the fault does not affect the transmitted
ciphertext. Therefore, an adversary needs to also modify the ith bit of the corresponding ciphertext
block Ct (by flipping the ith bit) in the case where Mt is a plaintext block. Similarly an adversary
needs to modify the ith bit of the corresponding associated data block Dt in the case where Mt is an
associated data block. The adversary can simply intercept and change the transmitted message block
Mt to M′t, and send it with the faulty tag τ′ as the output. The adversary does not need to apply any
faults at the receiver’s side.

In the decryption and tag verification phase, the receiver will XOR the recovered message
block with the state element St

1,1, St
2,2, St

3,3 and St
4,4 of MORUS. The modified ciphertext block C′t,

or the modified associated data block D′t ensures that the recovered message will be the same as
M′t. The recovered message M′t is then XOR-ed with the state elements St

1,1, St
2,2, St

3,3 and St
4,4,

which complements the ith bit of the respective state elements. So the internal state contents in the
receiver’s device are now the same as those after applying the bit-flipping faults at the sender’s device.

Once the message is processed, the finalization process at the receiver side generates the tag τ′′.
Clearly, both of the tags are generated from the same state contents; thus, the tag τ′′ generated at the
receiver is the same as the tag τ′ sent by the sender. Therefore using the faulty tag τ′ the modified
message will be accepted as legitimate at the receiver.

Let n f denote the number of bits flipped in an input message block Mt. Then the total number of
faults required for the forgery attack is equal to 4× n f . This is because a single bit flip in the input
affects four bits in the state of MORUS.
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Figure 4. Fault based Forgery Attack on MORUS

6.1. Attack Algorithm for Fault Based Forgery

The steps involved in the fault-based forgery attack on MORUS are outlined in Algorithm 6.

Algorithm 6 Algorithm for Fault Based Forgery Attack on MORUS.

1: Insert bit flipping faults at the ith bit of state element St
1,1, St

2,2, St
3,3 and St

4,4 of the sender device.

2: Continue the finalization process at the sender and observe the faulty tag τ′t.

3: Modify the ith bit of the associated data block Dt to D′t, if the goal is associated data modification.

Alternatively, modify the ith bit of the ciphertext block Ct to C′t.
4: Send the modified associated data D′t or the modified ciphertext C′t, with the faulty tag τ′.

6.2. Feasibility of Fault Based Forgery Attack on MORUS

The fault-based forgery attack applied in this paper requires precise application of bit-flipping
faults. This model imposes a restrictive criteria on the adversary’s capability since it requires the
injection of the bit-flipping faults in a precise location. Note that bit-flipping faults have been applied
in practice [13]; however, the fault may affect more than a single bit. Therefore, our fault model does
not prohibit the adversary from applying the bit-flipping faults, but application of these faults in
precise location may not be achieved yet in practice. This paper demonstrates a vulnerability in the
integrity component of MORUS if such a fault model can be applied in practice.

7. Conclusions

This paper examines the applicability of fault attacks on the authenticated encryption cipher
MORUS. In particular, we described fault attacks with two different goals: one to breach the
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confidentiality component of MORUS and the other to breach the integrity component. This is a
first attempt at analysing the security of MORUS with respect to fault attacks, and although these
attacks are relatively direct applications of the fault models, it may be possible to augment this for
more effective attacks. This is planned as future work.

We introduced a fault-based key recovery attack on MORUS-640-128 which can recover 64 bits
of the secret key by introducing 128 bit permanent faults in the 640-bit internal state. Similarly,
we introduced a fault attack for MORUS-1280, which can recover 128 bits of the secret key with 256 bits
of permanent faults. This is the entire key for MORUS-1280, if the key size is 128-bit. We demonstrated
that permanent faults can be also combined with transient faults to recover the entire secret key for all
the variants of MORUS.

We analysed the injection of transient faults into the internal state of MORUS. Our analysis shows
that the secret keys of MORUS-640-128 and MORUS-1280-256 can be recovered, with 384 and 768 bits
of transient faults, respectively. Note that all of these fault-based key recovery attacks apply only when
there is no associated data. These attacks are not feasible when there is associated data input.

We also introduced a fault-based forgery attack on MORUS. This is a simple and trivial attack
which works by flipping specific bits of the message during transmission and introducing bit flipping
faults in the corresponding bit(s) of state elements at the sender’s device. The adversary can use the
faulty tag to have the modified message accepted as legitimate. This attack works because the message
is directly XOR-ed into the state. This attack requires the introduction of four bits of faults in the
MORUS state elements, for a single bit flip in the input message.

We demonstrated that physical attacks such as fault injections can be powerful against all variants
of MORUS. The fault-based key recovery attack on MORUS works because the secret key of MORUS
is XOR-ed with a particular component of the internal state after performing the last round of the
initialization phase. This operation is performed to prevent a key recovery attack when the initial
internal state is recovered. To provide security against the fault-based key recovery of MORUS,
an additional state update step can be introduced after this operation and before generating keystream.

The fault attacks proposed in this paper do not require nonce-reuse. Thus, the designer restrictions
on nonce-reuse do not prohibit these attacks. However, these are attacks on the implementation rather
than the algorithm itself. Therefore, it is important to have appropriate physical protection for
cryptographic devices to prevent these type of fault attacks.
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