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Abstract: We present attacks on 21-rounds of SIMON 32/64, 21-rounds of SIMON 48/96, 25-rounds
of SIMON 64/128, 35-rounds of SIMON 96/144 and 43-rounds of SIMON 128/256, often with direct
recovery of the full master key without repeating the attack over multiple rounds. These attacks result
from the observation that, after four rounds of encryption, one bit of the left half of the state of 32/64
SIMON depends on only 17 key bits (19 key bits for the other variants of SIMON). Further, linear
cryptanalysis requires the guessing of only 16 bits, the size of a single round key of SIMON 32/64.
We partition the key into smaller strings by focusing on one bit of state at a time, decreasing the cost
of the exhaustive search of linear cryptanalysis to 16 bits at a time for SIMON 32/64. We also present
other example linear cryptanalysis, experimentally verified on 8, 10 and 12 rounds for SIMON 32/64.

Keywords: SIMON; linear cryptanalysis; super round

1. Introduction

Lightweight cryptography is a rapidly growing area of research, emerging to fill the need
for securing highly-constrained devices such as RFID tags and sensor networks. The limited
hardware and software resources require that the cryptographic primitives be highly efficient. In 2013,
the U.S. National Security Agency introduced two families of lightweight block ciphers for this
effort: SIMON and SPECK that have a simple design and perform well on constrained software
environments [1]. Since then, both block ciphers have attracted the attention of researchers and have
been the subject of many security investigations.

In this paper, we propose an extension of the classical linear cryptanalytic approach which uses
multiple linear approximations and Matsui’s second algorithm. The standard approach, of extending
the linear approximation by a single round of decryption (encryption), comes at the cost of guessing
the last round (first round) key: O(2n) for an n-bit round key for SIMON block size 2n. We propose
extending the linear approximation by a super-round—which, in the case of SIMON, is four rounds
with a total cost O(n2b), for b ≤ n, depending on the SIMON variant, leading to the determination of
four round keys, instead of the single round key obtained through the traditional approach. Directly
applying Matsui’s approach by appending four rounds would require a cost of O(24n)); but this is
not necessary because of the weakness in SIMON, which we express as a super round. Thus we
demonstrate a simple, efficient extension of the key recovery attack using Matsui’s second algorithm,
and recover multiple round keys, including the entire master key in some cases. For this reason, we
compare our results with other results in the literature that were obtained using the classical simple
Matsui’s second algorithm without recourse to linear hull approaches.
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1.1. Our Contributions

In this paper we present an attack on reduced-round SIMON, illustrating it in detail for SIMON

32/64, and providing a sketch of it for other variants. Our attack is based on the observation that,
after four rounds of encryption, one bit of the left half of the state of SIMON 32/64 depends on only
17 key bits, and linear cryptanalysis requires the guessing of only 16 bits, the size of a single round
key. A single bit of right half state similarly depends on 8 key bits (seven need to be guessed for linear
cryptanalysis). By focusing on a single bit of the state at a time, we are able to partition the key into
smaller strings, enabling us to more efficiently apply exhaustive search to perform linear cryptanalysis,
doing it 16 (or 7) bits at a time. We are able to determine multiple round keys, which corresponds to a
large fraction of the independent master key bits. This approach extends to other variants of SIMON

as well. We summarize the approach below for SIMON 32/64.
We define the super round—four rounds of encryption with output limited to a single bit—and the

corresponding super key limited to the relevant 16 (or 7) bits. For each bit of state, we extend the super
round with an appropriate linear approximation with one active input bit. We carry out Matsui’s second
cryptanalysis using the super round instead of a single round and obtain the corresponding super key
by performing an exhaustive search over 16 (or 7) bits. We do this for all 32 bits of the state. Thus,
the use of the super round significantly improves the overall time complexity of linear cryptanalysis
of SIMON.

We thus obtain 16 super keys of size 16 each (left half) and 16 super keys of size 7 each (right half),
with considerable overlap among the key bits, as there are only 48 independent master key bits in the
four-round cipher extended by the linear approximation. Consequently, we obtain 368 related key
bits representing 48 independent key bits, which allows for error correction. We can further extend
the super round and the linear approximation with an additional two rounds at the end, to obtain 60
independent key bits, which can be used to obtain up to 60 master key bits.

We extend the above attack to other variants of SIMON. We also perform an experimental
verification of our attack on 8, 10 and 12-round SIMON 32/64. Using the capacity-based projections
of the relationship of bias to the number of P/C pairs [2], we predict the determination of the entire
master key of 20-round SIMON 32/64, with 232 P/C pairs and time complexity 260. We are also able
to determine all 64 master key bits of 8-round SIMON using a meet-in-the-middle attack with one
super round of encryption and one super round of decryption, with data complexity 25.58 and time
complexity 234.58.

We need to point out that [3] has an observation similar to ours: that a single bit after four rounds
of encryption is affected only by 18 bits, and they use it to define a related-key attack. We had derived
this result independently.

1.2. Comparison with Other Work

We now compare our results with those of Alizadeh et al. [4], which are improvements on their
peer-reviewed work in [5] and are currently the best peer-reviewed attacks on SIMON that use the
classical Matsui’s second algorithm and multiple approximations. As we mentioned earlier, linear
hull attacks are able to go deeper; here, we focus on our improvement on the classical approach
without recourse to linear hulls. ([6] claims better work than [4], but is not peer-reviewed and has been
criticized in the literature so we are not sure if the results hold; see Section 3.) Alizadeh et al. present
two types of linear cryptanalysis: one using Matsui’s second algorithm and the other using multiple
linear cryptanalysis. They do not use both attacks simultaneously as we do in this paper. For a fair
comparison with our work, we had to make changes to how the data complexity was computed in
their work. As we are using multiple linear approximations, we used the capacity model [2] for both
our work and theirs. This generally helped improve their numbers. We computed the cost of using n
approximations, each corresponding to a shift of one bit, which enabled the computation of all the key
bits we were able to compute. Additionally, they present the average case complexity of their attacks:
each guessed key bit involved in an XOR is counted as half a bit. In the literature, it is standard to
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count each key bit guessed as a single bit, whether it is included only in an ANDed expression or not.
We hence present two sets of comparisons.

1. Table 1 shows the comparisons using average case complexity in counting guessed key bits,
as used in their work. Key bits in a bitwise AND operation are counted as half a bit each, whereas
all other key bits are counted as a single bit each. Their argument is that when we have an
expression such as k0 & k1, if we guess k0 as a zero there is no need to continue guessing the
second bit because the ANDed value will be zero independent of the value of k1. Using this
computation of the time complexity, we are able to go deeper than [4] for all SIMON versions.

2. Table 2 shows a comparison of worst-case time complexity, which is the standard in the literature.
Each key bit guessed is counted as a single key bit, and we recomputed their numbers in order to
accurately reflect this in both our work and theirs. We are able to go deeper for SIMON 32/64,
SIMON 64/128 and SIMON 128/256, and in the other versions, even though we cryptanalyze the
same number of rounds, the time complexity of their attacks is worse than brute force attacks.

Note that, in our proposed model, we only use independent linear approximations; as a result, we
avoid the issue described in [7], about using dependent approximations in another work on SIMON.

It might be worth investigating how to combine our model with more general multidimensional
cryptanalysis, where approximation independency is not assumed [8].

Table 1. Comparison of previous results using Matsui’s second algorithm and multiple linear
cryptanalysis (without recourse to linear hull) on SIMON.

Average Case Computations

Simon Number of Rounds Data Complexity Time Complexity Presented in

32/64
21-round 232 259.23 Appendix B

17-round 227 257.5 [4]

48/72
20-round 245.42 271.5 Appendix C.1

19-round 239.42 268 [4]

48/96
21-round 245.42 286 Appendix C.2

20-round 239.42 284.5 [4]

64/96
23-round 251 294 Appendix D.1

22-round 251 289 [4]

64/128
25-round 263 2109.5 Appendix D.2

23-round 251 2106 [4]

96/144
35-round 293.42 2132.5 Appendix E

34-round 286.42 2134.5 [4]

128/192
42-round 2128 2189 Appendix F.1

40-round 2120 2174.5 [4]

128/256
43-round 2128 2210 Appendix F.2

42-round 2120 2233.5 [4]



Cryptography 2020, 4, 9 4 of 34

Table 2. Comparison of previous results using Matsui’s second algorithm and multiple linear
cryptanalysis on SIMON without recourse to linear hull (* indicates that the complexity of [4] is
worse than brute force attack).

Worst Case Computations

Simon Number of Rounds Data Complexity Time Complexity Presented in

32/64
20-round 232 260 Section 7

* 17-round 226 266 [4]

48/72
18-round 235.42 271 Appendix C.1

* 18-round 239.42 278 [4]

48/96
20-round 243.42 294 Appendix C.2

* 20-round 239.42 297 [4]

64/96
22-round 251 295 Appendix D.1

* 22-round 251 2101 [4]

64/128
24-round 262 2122 Appendix D.2

23-round 251 2123 [4]

96/144
34-round 293.42 2136 Appendix E

* 34-round 286.42 2149 [4]

128/192
40-round 2128 2187 Appendix F.1

40-round 2120 2192 [4]

128/256
43-round 2128 2240 Appendix F.2

42-round 2120 2236 [4]

1.3. Organization

This paper is organized as follows. Section 2 summarizes the SIMON cipher and Section 3 describes
related work. Section 4 presents the idea of the super round and the associated super key and Section 5
the approximations we used. Section 6 presents experimental verification, and Section 7 projected
results. Section 9 concludes. The Appendices A–F contain derivations and the linear attacks of SIMON

48, SIMON 64, SIMON 96 and SIMON 128.

2. SIMON

SIMON is a family of lightweight block ciphers designed by U.S. National Security Agency (NSA)
in 2013 [9], which aims to provide lightweight resource-constrained devices with needed security.
It supports a variety of block and key sizes which is denoted by SIMON2n/mn, where n is the word
size, m is the number of key words and 2n is the block size. The following Table 3 lists other variants:



Cryptography 2020, 4, 9 5 of 34

Table 3. SIMON parameters.

Block Size 2n Key Size mn Word Size n Key Words m Number of Rounds

SIMON 32 64 16 4 32

SIMON 48 72 24 3 36
96 4 36

SIMON 64 96 32 3 42
128 4 44

SIMON 96 96 48 2 52
144 3 54

SIMON 128
128 64 2 68
192 3 69
256 4 72

It is designed based on a Feistel structure with the key-dependent round function, (see Figure 1):

(XLj+1, XRj+1) = Rkj(XLj, XRj) = (XRj ⊕ F(XLj)⊕ kj, XLj). (1)

The specification of each block cipher is determined by the two main functions, the round function,
and the key schedule. Thus, the round function F consists of three operations: bitwise XOR ⊕, bitwise
AND &, and left circular shift by j bits≪ j. It can be expressed as:

F(XLj) = [(XLj ≪ 1)&(XLj ≪ 8)]⊕ XLj ≪ 2) (2)

Figure 1. SIMON round function.
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The key schedule takes the master key K as an input and generates r subkeys k0, k1, ....kr−1.
The first w subkeys are initialized with the master key words, kw−1...k0. Depending on the number of
key words w, a different procedure is applied as the following:

For w = 2:

ki+2 = ki ⊕ (ki+1 ≫ 3)⊕ (ki+1 ≫ 4)⊕ c⊕ (zj)i

For w = 3:

ki+3 = ki ⊕ ki+1 ⊕ (ki+2 ≫ 3)⊕ (ki+1 ≫ 1)⊕ (ki+2 ≫ 4)⊕ c⊕ (zj)i

For w = 4:

ki+4 = ki ⊕ ki+1 ⊕ (ki+3 ≫ 3)⊕ (ki+1 ≫ 1)⊕ (ki+3 ≫ 4)⊕ c⊕ (zj)i.

As it is shown above, the generated subkey is XOR-ed with a constant c which is equal to
2n − 4 = 0x f f ... f c and the ith bit of (zj), where the choice of (zj) depends on SIMON versions. Thus,
these constants are added to prevent slide attacks and eliminate circular shift symmetries. There are
five constant sequences (z0),(z1),(z2),(z3), and (z4), which take the following values:

z = [11111010001001010110000111001101111101000100101011000011100110,

10001110111110010011000010110101000111011111001001100001011010,

10101111011100000011010010011000101000010001111110010110110011,

11011011101011000110010111100000010010001010011100110100001111,

11010001111001101011011000100000010111000011001010010011101111].

3. Related Work

We focus in this paper on linear cryptanalysis. The best linear results on SIMON are obtained
using linear hulls.

First introduced by [10], the linear hull is a set of linear approximations with the same input
and output masks. Abdelraheem et al. [4] generalized the method of converting any differential
characteristic to a linear characteristic for SIMON, and investigated the security of SIMON against
different variants of linear cryptanalysis, classical, multiple and linear hull. Using linear hull, they
present attacks on the reduced-round of 21, 21, 29, 36, and 50 rounds of SIMON 32/64, SIMON 48/96,
SIMON 64/128, SIMON 96/144, and SIMON 128/256.

Shi et al. [11] by using the method of automatic enumeration of differential and linear
approximations Mixed-integer Linear Programming presented in [12], they present linear hull
crytpanalysis on the reduced-round 21, 21, 29 rounds for SIMON 32/64, SIMON 48/96, SIMON

64/128 respectively.
Then, Abdelraheem et al. [13] proposed a time-memory trade-off method to search for highly

biased linear trails. Hence, they found 14-round and 17-round linear approximations for SIMON 32
and SIMON 48 respectively. As a result, they present 24, 23 and 24 rounds of SIMON 32/64, SIMON

48/72 and SIMON 48/96. Additionally, Sun et al. [12] present a 16-round linear hull for SIMON 48/96,
which used to break up 23 rounds.

The best linear hull attacks presented in [7] by using a dynamic key-guessing technique which
first proposed to improve the differential cryptanalysis in [14]. They apply the dynamic- key-guessing
method to reduce the number of key bits required guessing, and they present linear hull attacks on the
reduced-round 23, 25, 31, 38 and 53 for SIMON 32, SIMON 48, SIMON 64, SIMON 96 and SIMON 128
respectively. An interesting future work direction would be to examine the combination of linear hulls
and super rounds. Table 4 summarizes the linear hull attack results on SIMON.

Moreover, there are other results using different attack methods such as Zero-correlation linear
cryptanalysis. Bogdanov et al. [15] propose an extension of linear cryptanalysis based on linear



Cryptography 2020, 4, 9 7 of 34

approximations with correlation Zero, called Zero-correlation linear cryptanalysis. [16] present
Zero-correlation linear cryptanalysis on all versions of SIMON. Hence, they successfully present
attacks on 19, 20, 22, 23, 25, 28, 33, and 34 rounds for SIMON 32/64, SIMON 48/72, SIMON 48/96,
SIMON 64/96, SIMON 64/128, SIMON 96/144, SIMON 128/192 and SIMON 128/256 respectively.

Wang et al. [17] also present improved results using zero-correlation with the help of
divide-and-conquer technique on 20, 21 and 21 rounds of SIMON 32/64, SIMON 48/72, SIMON 48/96.
Then, Sun et al. [18] improved Zero-correlation linear cryptanalysis presented in [17] on SIMON 32/64,
SIMON 48/72, SIMON 48/96 and the first to apply it on the larger variants of SIMON. Hence, they
attack 21, 21, 22, 23, 24, 28, 32 and 34 rounds of SIMON 32/64, SIMON 48/72, SIMON 48/96, SIMON

64/96, SIMON 64/128, SIMON 96/144, SIMON 128/192 and SIMON 128/256 respectively.

Table 4. Summary of linear hull results.

Simon Total Attacked Data Time Reference
Rounds Rounds Complexity Complexity

SIMON 32/64 32

21 230.56 255.56 [4]
21 - - [11]
23 230.59 250 [13]
23 231.19 261.84 A + 256E [7]

SIMON 48/72 36
20 244.11 270.61 [4]
23 247.78 262.10 [13]
24 247.92 267.89 A + 265.34E [7]

SIMON 48/96 36

21 244.11 287.11 [4]
21 - - [11]
24 247.78 283.10 [13]
23 247.92 292.92 [12]
25 247.92 289.89 A + 288.28E [7]

SIMON 64/96 42
27 262.53 288.53 [4]
30 263.53 293.62 A + 288.13E [7]

SIMON 64/128 44
29 262.53 2123.53 [4]
29 - - [11]
31 263.53 2119.62 A + 2120E [7]

SIMON 96/96 52 37 295.2 267.94 A + 288E [7]

SIMON 96/144 54
36 294.2 2135.2 [4]
38 295.2 298.94 A + 2136E [7]

SIMON 128/128 68
36 2124 2124 [11]
49 2127.6 287.77 A + 2120E [7]

SIMON 128/192
69

48 2126.6 2187.6 [4]
43 2127 - [11]
51 2127.6 2155.77 A + 2184E [7]

SIMON 128/256 72
50 2126.6 2242.6 [4]
53 2127.6 2239.77 A + 2248E [7]

‘-’ refers to not given, A refers to number of additions, E refers to number of encryptions.

There are works that focused on the classical linear cryptanalysis. The first work to look at is [19]
by Abed et al., where they analyze the linear properties of SIMON round function. Hence, they linearize
the only non-linear part which is the bitwise AND operation, and present this linear approximation:
[F(x)) = (x ≪ 2)], which holds with probability 3/4, and bias ε = 2−2.

Moreover, following this approach they generate linear trails to a larger number of rounds and
to all SIMON versions. Hence, they successfully present linear cryptanalysis of length 11, 14, 16, 20
and 23 on SIMON 32, SIMON 48, SIMON 64, SIMON 96 and SIMON 128 respectively. Since their attack
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is considered Matsui’s first algorithm, the required number of plaintext and ciphertext pairs is what
determines the complexity of the attack. Accordingly, the required data complexity were 223, 247, 261,
295 and 2125 for SIMON 32, SIMON 48, SIMON 64, SIMON 96 and SIMON 128 respectively.

Improved results in terms of covering more rounds have been presented by Alizadeh et al. in [20],
where they exploit a direct connection between linear characteristics and differential characteristics.
So given an r-round differential characteristic, an equivalent r-round linear characteristic can be
constructed. Given this observation, they derived improved linear trails and then mounted linear
cryptanalysis using Matsui’s first algorithm with a reported success probability of 0.997 for 12, 15, 19,
28 and 35 rounds for SIMON 32, SIMON 48, SIMON 64, SIMON 96, and SIMON 128 respectively.

Because in these two works [19,20], they apply Matsui’s first algorithm, they were only able to
determine a parity bits of the subkeys, where a represents the number of approximations that have
been used, which is equal to the block size 32, 48, 64, 96 and 128.

In [4], they consider the classical linear cryptanalysis and multiple linear cryptanalysis. So, they
extend the previous results to cover more rounds and launch key recovery attacks using Matsui’s
second algorithm, and recover 27.5 key bits of SIMON 32, and the average of 32.5, 41.5, 42.5, and 78
key bits for SIMON 48, SIMON 64, SIMON 96 and SIMON 128. Thus, they have successfully introduced
attacks on 17, 20, 23, 34 and 42 rounds for all versions of SIMON 32, SIMON 48, SIMON 64, SIMON 96
and SIMON 128 respectively. Moreover, they apply multiple linear cryptanalysis and present attacks on
18, 20, 22, 33 and 39 rounds of respective block sizes of 32, 48, 64, 96, and 128 bits respectively, and they
can determine n parity bits of the subkeys.

The most recent results were presented in [6] by Ashur. They describe a new method to compute
the bias of linear trails, which was then used to obtain longer linear approximations than what previous
works have obtained. The literature calls into question the correctness of the results presented in this
work. In particular, from [7], “it uses the correlation when all the subkeys are zero as the expected
correlation under random key situations, which is not exact. Moreover, if the potential of each linear
hull of the cipher is smaller than that of random permutations, then the combination of these linear
hulls can not distinguish between the cipher and a random permutation.”

4. The Cryptanalytic Model

In this section we describe the idea of a super round and its super key, and the use of this idea in
linear cryptanalysis as well as for a brute force attack on eight rounds on SIMON 32/64.

We first establish some notation. Superscripts denote round number beginning with 0,
and subscripts denote bit number from left to right, also beginning with 0. We denote by XLj and
XRj the left and right half inputs respectively to the j-th cipher round (and hence the outputs of the
(j− 1)-th round), and by kj

i the i-th bit of the j-th round key. Left and right plaintext and ciphertext
halves are denoted PL, PR, CL and CR respectively.

4.1. Central Observation

We observe that, after four rounds of SIMON 32/64 encryption, one bit of the left half of the state
depends on only 16 key bits—the size of one round key. One bit of the right half depends on only 7 key
bits. On the other hand, the 32-bit state after four rounds of encryption depends on all 64 master key
bits. Thus, by focusing on a single bit of the state, we are able to partition the key into smaller pieces.
This enables us to more efficiently apply exhaustive search, doing it 16 (or 7) bits at a time.

In Matsui’s second linear cryptanalysis, the first (or final) round key is determined by encryption
(or decryption) with all possibilities (exhaustive search), choosing the most likely one. One would like
to be able to use the same approach to determine all possible master key bits, instead of only those
in the final round key. Performing an exhaustive search by encrypting multiple rounds is, however,
prohibitively expensive. Using our observation, it is possible to efficiently encrypt the four first rounds
(not only the first round), by focusing on a single bit of state at a time, and performing an exhaustive
search over smaller pieces of the key. To extend Matsui’s second linear cryptanalysis to four rounds
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in this manner, we would need linear cryptanalytic expressions with only a single bit of input state.
The expressions and the encryption are symmetric with respect to the single bit of super round output,
and we are hence able to perform this type of cryptanalysis on every bit of super round output.

An outline of the attack is as follows:

1. For every bit of super round output, we guess all possible combinations of the corresponding
16 key bits for the left half, or 7 for the right half, to obtain the most likely one. We do this for all
32 bits of the block.

2. This gives us 16 keys of size 16 each (left half) and 16 keys of size 7 each (right half),
with considerable overlap among the key bits, as there are only 48 independent master key bits.

3. We obtain 368 related key bits representing 48 independent key bits, which allows for
correcting errors.

The complexity of this attack is (16 × 216 + 16 × 27) × N where N is the number of
plaintext-ciphertext (P/C) pairs used.

4.2. The Super Round

We use the term super round to represent a generalization of the four-round encryption we
described above.

Definition 1 (SUPER ROUNDS AND SUPER KEYS). A super round for a block cipher is a function
representing s-rounds of encryption of the cipher, for some s > 1. It takes as input a full block of plaintext
and the required key bits, and outputs t bits of ciphertext, where t is considerably smaller than the block size.
The required key bits for a super round are referred to as a super key.

Examples: For SIMON 32/64:

• A super round of the first four rounds requires a super key for the left half of length 16 and has as
output a single bit of left-half ciphertext.

• A super-round of the first four rounds requires a super key for the right half of length 7 key bits
and has as output a single bit of right-half ciphertext.

Figure 2 depicts these examples, where FS represents the super round.

Figure 2. The super rounds.

4.3. Linear Cryptanalysis with Super Rounds

In this section we describe the general linear cryptanalytic attack of Matsui’s second algorithm
with super rounds. The linear approximations we will derive in Section 5 are chosen so as to have a
single bit of input—XL4

i or XR4
i —which is approximately related to multiple bits of the ciphertext C

(see Figure 3). The super round itself relates this bit, exactly, (modulo a key bit absorbed into the linear
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approximation) to the plaintext P and the ith super key. Thus we obtain an approximate relationship
between P, C and the super key bits. By performing an exhaustive search over the super key space,
we obtain the super key bits. We repeat this process for all bits of the super round output.

For each of the two super rounds (for left and right hand output halves), for each value of i,
there are corresponding 16-bit and 7-bit super keys. Table 5 lists the components of the super keys.

Table 5. Super Keys.

Super-Key for Fsenc,i, 0 ≤ i ≤ 15 Super-Key for Fsenc,i, 16 ≤ i ≤ 31

Left Half Right Half

k0
i+8 ⊕ k0

i+12 ⊕ k1
i+10 ⊕ k2

i+8 k0
i+3 ⊕ k1

i+1
k0

i+1 ⊕ k0
i+5 ⊕ k1

i+3 ⊕ k2
i+1 k0

i+10 ⊕ k1
i+8

k0
i+12 ⊕ k1

i+10 k0
i+2

k0
i+5 ⊕ k1

i+3 k0
i+3

k0
i+2 ⊕ k1

i k0
i+10

k0
i+11 ⊕ k1

i+9 k0
i+9

k0
i+4 ⊕ k1

i+2 k0
i

k0
i+12

k0
i+5

k0
i+2

k0
i+11

k0
i+4

k0
i+10

k0
i+3

k0
i+8

k0
i+1

We see that each super key for the left half contains nine bits from k0, in the form k0
i+m for

m = 1, 2, 3, 4, 5, 8, 10, 11, 12. Thus a particular bit of k0, say k0
s , appears in the super key of left half bits

s−m, for m = 1, 2, 3, 4, 5, 8, 10, 11, 12. That is, if we determine the super key for each value of i in the
left half of the state, we will obtain nine copies of each bit of k0. Similarly, the super key for the right
half contains five bits of k0. Additionally, there are other bits in the super key as well. Thus, over all
sixteen bits of XL4 and XR4, we obtain:

• 14 copies of k0
s

• 7 copies of k0
s ⊕ k1

s+2
• 2 copies of k0

s ⊕ k0
s+4 ⊕ k1

s+2 ⊕ k2
s

for s = 0, 1, 2, ..., 15.
The redundancy above allows us to better estimate the individual key bits, and we estimate

each of the 48 independent key bits by a majority vote from the corresponding multiple copies.
In any experiment, we get three outcomes: correctly determined bits, incorrectly determined bits and
undetermined bits (when the outcome is a tie).

Finally, we will have 16 bits of k0, 16 bits of k0
s ⊕ k1

s+2, and 16 bits of k0
s ⊕ k0

s+4 ⊕ k1
s+2 ⊕ k2

s , for a
total of 48 independent key bits. We may use estimates of bits of k0 to estimate bits of k1, and then to
estimate bits of k2. We note that the error increases as we go from k0 through k2; not only because the
number of copies of the required bits decreases, but because the error is compounded (the error in
determining k2 is increased due to errors in estimating k0 and k1).
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Figure 3. General form of linear attack with super rounds.

4.4. The Construction of Super Rounds and Derivations of Super Keys

Here, we demonstrate how the super rounds are constructed for SIMON cipher, beginning with
SIMON 32/64 and going on to other variants [21].

Since SIMON is designed based on a Feistel structure with the key-dependent round function, one
round of SIMON can be expressed as:

(XLj+1, XRj+1) = Rkj(XLj, XRj) = (XRj ⊕ F(XLj)⊕ kj, XLj)

which implies that:
XLj+1

i = XRj
i ⊕ Zj

i ⊕ kj
i

= XLj−1
i ⊕ Zj

i ⊕ kj
i

= XLj−3
i ⊕ Zj−2

i ⊕ kj−2
i ⊕ Zj

i ⊕ kj
i

Hence:
XL4

i = XL0
i ⊕ Z1

i ⊕ k1
i ⊕ Z3

i ⊕ k3
i = PLi ⊕ Z1

i ⊕ k1
i ⊕ Z3

i ⊕ k3
i

Similarly,
XRj+1

i = XLj
i

= XLj−2
i ⊕ Zj−1

i ⊕ kj−1
i

= XRj−3
i ⊕ Zj−3

i ⊕ kj−3
i ⊕ Zj−1

i ⊕ kj−1
i

and hence that:
XR4

i = XR0
i ⊕ Z0

i ⊕ k0
i ⊕ Z2

i ⊕ k2
i = PRi ⊕ Z0

i ⊕ k0
i ⊕ Z2

i ⊕ k2
i

Given the round function of SIMON:

F(XLj) = [(XLj ≪ 1)&(XLj ≪ 8)]⊕ XLj ≪ 2)
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which implies that:
Zj

i = (XLj
i+1&XLj

i+8)⊕ XLj
i+2

giving us:

Z0
i = (PLi+1&PLi+8)⊕ PLi+2

Z1
i = [(Z0

i+1 ⊕ k0
i+1 ⊕ PRi+1)&(Z0

i+8 ⊕ k0
i+8 ⊕ PRi+8)]⊕ (Z0

i+2 ⊕ k0
i+2 ⊕ PRi+2)

Z2
i = [(Z1

i+1 ⊕ k1
i+1 ⊕ XR1

i+1)&(Z1
i+8 ⊕ k1

i+8 ⊕ XR1
i+8)]⊕ (Z1

i+2 ⊕ k1
i+2 ⊕ XR1

i+2)

= [(Z1
i+1 ⊕ k1

i+1 ⊕ PRi+1)&(Z1
i+8 ⊕ k1

i+8 ⊕ PRi+8)]⊕ (Z1
i+2 ⊕ k1

i+2 ⊕ PRi+2)

Z3
i = (v1&v2)⊕ v3

where:

v1 = Z2
i+1 ⊕ k2

i+1 ⊕ XR2
i+1 = Z2

i+1 ⊕ k2
i+1 ⊕ XL1

i+1 = Z2
i+1 ⊕ Z0

i+1 ⊕ k0
i+1 ⊕ PRi+1 ⊕ k2

i+1

v2 = Z2
i+8 ⊕ k2

i+8 ⊕ XR2
i+8 = Z2

i+8 ⊕ k2
i+8 ⊕ XL1

i+8 = Z2
i+8 ⊕ Z0

i+8 ⊕ k0
i+8 ⊕ PRi+8 ⊕ k2

i+8

v3 = Z2
i+2 ⊕ k2

i+2 ⊕ XR2
i+2 = Z2

i+2 ⊕ k2
i+2 ⊕ XL1

i+2 = Z2
i+2 ⊕ Z0

i+2 ⊕ k0
i+2 ⊕ PRi+2 ⊕ k2

i+2

Finally,

XL4
i = Z3

i ⊕ k3
i ⊕ XR3

i = Z3
i ⊕ k3

i ⊕ XL2
i = Z3

i ⊕ k3
i ⊕ Z1

i ⊕ k1
i ⊕ PLi

XR4
i = XL3

i = XL1
i ⊕ Z2

i ⊕ k2
i = PRi ⊕ k0

i ⊕ Z0
i ⊕ Z2

i ⊕ k2
i .

Recall the SIMON family consists of another nine variants of the cipher differing in their block
and key sizes. All SIMON variants share the same round function; hence the observation enabling us
to construct super-rounds in SIMON 32/64 continues to be valid. Even though the larger variants of
SIMON correspond to larger block and key sizes, we have found that the size of the super keys is only
slightly larger than that for SIMON 32/64. After four round of encryption, a single bit of the left-half of
the intermediate state is influenced by only 18 key bits. On the other hand, the size of the super-key of
the right half stays the same, at seven bits.

In SIMON 32/64, we have nine bits of k0
i , for i = 1, 2, 3, 4, 5, 8, 10, 11, 12, as shown in Table 5, where

in SIMON 48 we have 11 bits of k0
i , for i = 0, 1, 3, 4, 5, 8, 10, 11, 12, 17, 18, and in SIMON 64 we have a

similar set of bits, except instead of k0
i , we have k0

i+24. This difference arises from computing v2, where
we have the similar computations for v1, and v3. In larger SIMON, we get:

v2 = Z2
i+8 ⊕ k2

i+8 ⊕ XR2
i+8,

where,

Z2
i+8 = [(Z1

i+9 ⊕ k1
i+9 ⊕ XR1

i+9)&(Z1
(i+16)%n ⊕ k1

(i+16)%n ⊕ XR1
(i+16)%n)]⊕ (Z1

i+10 ⊕ k1
i+10 ⊕ XR1

i+10).

Hence:

Z1
i+9 = [(Z0

i+10 ⊕ k0
i+10 ⊕ PRi+10)&(Z0

(i+17)%n ⊕ k0
(i+17)%n ⊕ PR(i+17)%n)]⊕ (Z0

i+11 ⊕ k0
i+11 ⊕ PRi+11)

Z1
(i+16)%n = [(Z0

i+17 ⊕ k0
i+17 ⊕ PRi+17)&(Z0

(i+24)%n ⊕ k0
(i+24)%n ⊕ PR(i+24)%n)]⊕ (Z0

i+18 ⊕ k0
i+18 ⊕ PRi+18)

Z1
i+10 = [(Z0

i+11 ⊕ k0
i+11 ⊕ PRi+11)&(Z0

(i+18)%n ⊕ k0
(i+18)%n ⊕ PR(i+18)%n)]⊕ (Z0

i+12 ⊕ k0
i+12 ⊕ PRi+12).

It is clear from the equations that in the case of n = 24, we get k0
i+17, k0

i+18 and k0
i from evaluating

Z1
i+9, Z1

i+16 and Z1
i+10. In the case of n = 32, we get k0

i+17, k0
i+18 and k0

i+24.
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The value v2 affects the super key bit k0
i+2 ⊕ k1

i , which becomes in the case of larger SIMON,
k0

i+18 ⊕ k1
i+16. The other components of the super key for the left half, are consistent with the bits

presented in Table 5. See Algorithm 1 for pseudocode for our attack on SIMON 32/64, using the left
half system of approximation.

Algorithm 1 Matsui’s second algorithm using multiple linear approximations.

Let T be the number of plaintexts such that the linear approximation is True.
for i = 0, ..., 2n do . evaluate the linear approximation for the left word

for j = 0, ..., 216 do . try all 16-bit keys
Initialize T with zero
for all N plaintext–ciphertext pairs do

calculate XL4
i using super round

if linear approximation is True then
increment T

end if
end for
Calculate biasj = | (T − (N ÷ 2))÷ N |

end for
output the candidate key j with the highest bias

end for

5. Linear Approximations for SIMON 32/64

In this section we derive linear approximations for 8, 10 and 12-round attacks on SIMON 32/64.
In Section 6 we describe experimental results for the proposed attacks.

We use a natural linear expression of the SIMON round function, obtained by replacing the &
function by 0, with a bias of 1

4 [19]. The left half is approximated as:

Approximation 1 : Pr[F(XLj+1
i ) = XLj

i+2] =
3
4

.

Additionally, the following are linear expressions from the literature with a similar absolute
bias of 1

4 :

Approximation 2 : Pr[F(XLj+1
i ) = XLj

i+2 ⊕ XLj
i+1] =

3
4

Approximation 3 : Pr[F(XLj+1
i ) = XLj

i+2 ⊕ XLj
i+8] =

3
4

Approximation 4 : Pr[F(XLj+1
i ) = XLj

i+2 ⊕ XLj
i+1 ⊕ XLj

i+8] =
1
4

.

We use this approximation repeatedly for multiple-round attacks that relate a single bit of input
to multiple output bits. The experimentally-verified success probabilities of the attacks on 8, 10 and 12
rounds are listed in Table 9.

5.1. 8-Round Attack

We find two four-round linear approximations, relating a single bit of the left and right half inputs
respectively to a few bits of output after four rounds. We can use a super round to obtain exactly the
single bit of input from the plaintext and the super key and then concatenate it with the approximation,
thus relating the plaintext, super key and ciphertext bits of eight rounds encryption (see Figure 4).
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Figure 4. The 8-round linear attack.

Beginning with a single bit of the left half plaintext, PL = XL0, we approximate a linear
relationship with bits from the output:

PLi = XL0
i = XR1

i

= F(XR2)i ⊕ XL2
i ⊕ k1

i

≈ XR2
i+2 ⊕ XL2

i ⊕ k1
i

= F(XR3)i+2 ⊕ XL3
i+2 ⊕ k2

i+2 ⊕ XL2
i ⊕ k1

i

= F(XR3)i+2 ⊕ XL3
i+2 ⊕ k2

i+2 ⊕ XR3
i ⊕ k1

i

≈ XR3
i+4 ⊕ XR3

i ⊕ XL3
i+2 ⊕ k2

i+2 ⊕ k1
i

= XR3
i,i+4 ⊕ XL3

i+2 ⊕ k2
i+2 ⊕ k1

i

= F(XR4)i,i+4 ⊕ XL4
i,i+4 ⊕ k3

i,i+4 ⊕ XL3
i+2 ⊕ k2

i+2 ⊕ k1
i

= F(XR4)i,i+4 ⊕ XL4
i,i+4 ⊕ k3

i,i+4 ⊕ XR4
i+2 ⊕ k2

i+2 ⊕ k1
i

= F(XR4)i,i+4 ⊕ XL4
i,i+4 ⊕ XR4

i+2 ⊕ k3
i,i+4 ⊕ k2

i+2 ⊕ k1
i

≈ XR4
i+2,i+6 ⊕ XL4

i,i+4 ⊕ XR4
i+2 ⊕ k3

i,i+4 ⊕ k2
i+2 ⊕ k1

i

= XR4
i+6 ⊕ XL4

i,i+4 ⊕ k3
i,i+4 ⊕ k2

i+2 ⊕ k1
i

(3)

To produce a four-round linear approximation for the right half, we will start with a single bit of
right half PR = XR0:

PRi = XR0
i = F(XR1)i ⊕ XL1

i ⊕ k0
i

≈ XR1
i+2 ⊕ XL1

i ⊕ k0
i

= F(XR2)i+2 ⊕ XL2
i+2 ⊕ k1

i+2 ⊕ XR2
i ⊕ k0

i

≈ XR2
i+4 ⊕ XL2

i+2 ⊕ XR2
i ⊕ k1

i+2 ⊕ k0
i

= XR2
i,i+4 ⊕ XL2

i+2 ⊕ k1
i+2 ⊕ k0

i

= F(XR3)i,i+4)⊕ XL3
i,i+4 ⊕ k2

i,i+4 ⊕ XR3
i+2 ⊕ k1

i+2 ⊕ k0
i

(4)
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≈ XR3
i+2,i+6 ⊕ XL3

i,i+4 ⊕ XR3
i+2 ⊕ k2

i,i+4 ⊕ k1
i+2 ⊕ k0

i

= XR3
i+6 ⊕ XL3

i,i+4 ⊕ k2
i,i+4 ⊕ k1

i+2 ⊕ k0
i

= F(XR4)i+6 ⊕ XL4
i+6 ⊕ k3

i+6 ⊕ XR4
i,i+4 ⊕ k2

i,i+4 ⊕ k1
i+2 ⊕ k0

i

≈ XR4
i,i+4,i+8 ⊕ XL4

i+6 ⊕ k3
i+6 ⊕ k2

i,i+4 ⊕ k1
i+2 ⊕ k0

i .

Hence, appending the four rounds of encryption to Equations (3) and (4), we get the following
expressions with biases 2−5 and 2−6 respectively:

XL4
i ⊕ XR8

i+6 ⊕ XL8
i,i+4 = k0

i+6 ⊕ k1
i,i+4 ⊕ k2

i+2 ⊕ k3
i ⊕ k5

i ⊕ k6
i+2 ⊕ k7

i,i+4 (5)

XR4
i ⊕ XR8

i,i+4,i+8 ⊕ XL8
i+6 = k0

i,i+4 ⊕ k1
i+2 ⊕ k2

i ⊕ k4
i ⊕ k5

i+2 ⊕ k6
i,i+4 ⊕ k7

i+6. (6)

5.2. 10-Round Attack

We extend the 8-round attack by adding two more rounds of decryption at the end so we have a
10-round attack. The two rounds are added by decrypting the ciphertext bits; this comes at the cost of
exhaustive search over a few more key bits. See Figure 5.

Figure 5. The 10-round linear attack.

Recall single-round decryption:

XLj = XRj+1

XRj = F(XLj)⊕ XLj+1 ⊕ kj = F(XRj+1)⊕ XLj+1 ⊕ kj,

and hence two rounds decryption is:

XLj = F(XRj+2)⊕ XLj+2 ⊕ kj+1

XRj = F(F(XRj+2)⊕ XLj+2 ⊕ kj+1)⊕ XRj+2 ⊕ kj,
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which gives us:

XL8 = XL10 ⊕ F(XR10)⊕ k9

XR8 = XR10 ⊕ F(XL10 ⊕ F(XR10)⊕ k9)⊕ k8.
(7)

Recall the four-round linear approximation for the single bit in the left half:

XL4
i ⊕ XR8

i+6 ⊕ XL8
i,i+4 = k5

i ⊕ k6
i+2 ⊕ k7

i,i+4.

Substituting for X8, we get:

XL4
i ⊕ XR10

i+6 ⊕ F(XL10 ⊕ F(XR10)⊕ k9)i+6 ⊕ k8
i+6 ⊕ XL10

i,i+4

⊕ F(XR10)i,i+4 ⊕ k9
i,i+4 = k5

i ⊕ k6
i+2 ⊕ k7

i,i+4,

or:

XL4
i ⊕ XR10

i+6 ⊕ [(XL10
i+7 ⊕ F(XR10)i+7 ⊕ k9

i+7)&(XL10
i+14

⊕ F(XR10)i+14 ⊕ k9
i+14)]⊕ k8

i+6 ⊕ XL10
i+8 ⊕ F(XR10)i+8⊕

k9
i+8 ⊕ XL10

i,i+4 ⊕ [XR10
i+1&XR10

i+8]⊕ XR10
i+2 ⊕ [XR10

i+5

&XR10
i+12]⊕ XR10

i+6 ⊕ k9
i,i+4 = k5

i ⊕ k6
i+2 ⊕ k7

i,i+4.

or:

XL4
i ⊕ XR10

i+6 ⊕ [(XL10
i+7 ⊕ F(XR10)i+7 ⊕ k9

i+7)&(XL10
i+14

⊕ F(XR10)i+14 ⊕ k9
i+14)]⊕ k8

i+6 ⊕ XL10
i+8 ⊕ (XR10

i+9&XR10
i )

⊕ XR10
i+10 ⊕ k9

i+8 ⊕ XL10
i,i+4 ⊕ [XR10

i+1&XR10
i+8]⊕ XR10

i+2

⊕ [XR10
i+5&XR10

i+12]⊕ XR10
i+6 ⊕ k9

i,i+4 = k5
i ⊕ k6

i+2 ⊕ k7
i,i+4

and finally,

XL4
i ⊕ XR10

i+2,i+10 ⊕ XL10
i,i+4,i+8

⊕ [(XL10
i+7 ⊕ F(XR10)i+7 ⊕ k9

i+7)&(XL10
i+14 ⊕ F(XR10)i+14

⊕ k9
i+14)]⊕ (XR10

i+9&XR10
i )⊕ [XR10

i+1&XR10
i+8]⊕

[XR10
i+5&XR10

i+12] = k5
i ⊕ k6

i+2 ⊕ k7
i,i+4 ⊕ k8

i+6 ⊕ k9
i,i+4,i+8.

Hence, two new key bits k9
i+7 and k9

i+14 (in addition to the 16 bits to compute XL4
i ) required

guessing to add the two rounds decryption.
Now recall the linear approximation for the single bit on the right side:

XR4
i ⊕ XR8

i,i+4,i+8 ⊕ XL8
i+6 = k4

i ⊕ k5
i+2 ⊕ k6

i,i+4 ⊕ k7
i+6.

Again, substituting the expressions for X8 in terms of X10 we get:

XR4
i ⊕ XR10

i ⊕ F(XL10 ⊕ F(XR10)⊕ k9)i ⊕ k8
i ⊕ XR10

i+4⊕
F(XL10 ⊕ F(XR10)⊕ k9)i+4 ⊕ k8

i+4 ⊕ XR10
i+8 ⊕ F(XL10 ⊕ F(XR10)

⊕ k9)i+8 ⊕ k8
i+8 ⊕ XL10

i+6 ⊕ F(XR10)i+6 ⊕ k9
i+6

= k4
i ⊕ k5

i+2 ⊕ k6
i,i+4 ⊕ k7

i+6
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XR4
i ⊕ XR10

i,i+4,i+8 ⊕ XL10
i+6 ⊕ [(XL10

i+1 ⊕ F(XR10)i+1

⊕ k9
i+1)&(XL10

i+8 ⊕ F(XR10)i+8 ⊕ k9
i+8)]⊕ XL10

i+2 ⊕ F(XR10)i+2

⊕ k9
i+2 ⊕ [(XL10

i+5 ⊕ F(XR10)i+5 ⊕ k9
i+5)&(XL10

i+12 ⊕ F(XR10)i+12

⊕ k9
i+12)]⊕ XL10

i+6 ⊕ F(XR10)i+6 ⊕ k9
i+6 ⊕ [(XL10

i+9 ⊕ F(XR10)i+9

⊕ k9
i+9)&(XL10

i ⊕ F(XR10)i ⊕ k9
i )]⊕ XL10

i+10 ⊕ F(XR10)i+10

⊕ k9
i+10 ⊕ F(XR10)i+6 = k4

i ⊕ k5
i+2 ⊕ k6

i,i+4 ⊕ k7
i+6 ⊕ k8

i,i+4,i+8 ⊕ k9
i+6.

In this case, six new key bits (in addition to the seven required to obtain XR4
i from the plaintext),

k9
i , k9

i+1, k9
i+5, k9

i+8, k9
i+9, k9

i+12, are required for the decryption of the last two rounds.
Thus, the number of key bits affecting the approximation for the left side is 18, and that for the

right side is 13.

5.3. 12-Round Attack

To extend the linear attack of SIMON 32/64 to 12 rounds, we need to extract r-round linear
approximations for r > 4. Therefore, we derive two seven-round linear approximations for the left
half and the right half, with biases 2−11 and 2−14 respectively (see Tables 10 and 11 for details):

XL4
i ⊕ XL11

i+2,i+10 ⊕ XR11
i,i+8,i+12 =

{
k5

i ⊕ k6
i+2 ⊕ k7

i,i+4

⊕k8
i+6 ⊕ k9

i,i+4,i+8 ⊕ k10
i+2,i+10

(8)

XR4
i ⊕ XL11

i,i+8,i+12 ⊕ XR11
i+14 =

{
k4

i ⊕ k5
i+2 ⊕ k6

i,i+4 ⊕ k7
i+6

⊕k8
i,i+4,i+8 ⊕ k9

i+2,i+10 ⊕ k10
i,i+8,i+12

. (9)

We can extend the attack by one decryption round free of any approximations, which enables us
to attack 12 rounds. See Figure 6.

Figure 6. The 12-round linear attack.
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6. Experimental Verification

To validate our proposed linear cryptanalysis of SIMON 32/64, we conducted a number of
experiments for the 8-round, 10-round, and 12-round linear attacks, which we summarize in
this section.

We will need some additional notation. As mentioned before, the super key of the left-half is of
size 16 bits, each bit being in one of three forms (recall Table 5): k0

i , k0
i+2 ⊕ k1

i , or k0
i ⊕ k0

i+4 ⊕ k1
i+2 ⊕ k2

i .
We denote the 16-bit strings of bits of this form (for i = 0, 1, 2, ..., 15) as Bit1, Bit2, and Bit3 respectively.

We determine Bit1, Bit2 and Bit3 from the super key estimates using a majority vote for error
correction. We then compute the 48 master key bits (k0, k1, and k2) using Equation (10).

k0
i = Bit1i

k1
i = Bit2i ⊕ Bit1i+2

k2
i = Bit1i ⊕ Bit2i+2 ⊕ Bit3i.

(10)

In all cases—8, 10 and 12 round attacks—Bit1 is determined with the greatest accuracy, then
Bit2, and, last, Bit3. This is to be expected because there are more copies of Bit1 (nine) than Bit2
(five), and Bit3 has the fewest copies (two). In all cases, k0 is computed more accurately than k1,
which is more accurately computed than k2. This is because k0, k1 and k2 are computed from one,
two and three values of the estimated values of super key bits. Additionally, k0 is computed from
the most accurately estimated super key bits, Bit1; k1 from Bit1 and Bit2; k2 from Bit1, Bit2 and Bit3.
Tables 6–8 compare between the number of super key bits guessed correctly in the 8-round, 10-round
and 12-round attacks respectively.

Table 6. Comparison of 8-round attack results using the left half only and using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 14)

8-round (left half)

Bit1 16 14

Bit2 16 11

average no. bits guessed correctly = 15.7 15 2
14 1

Bit3

16 1

average no. bits guessed correctly = 13.4

15 6
14 2
12 1
11 3
9 1

8-round (left and right halves)

Bit1 16 14

Bit2 16 11
average no. bits guessed correctly = 15.8 15 3

Bit3

16 1

average no. bits guessed correctly = 13.4

15 6
14 2
12 1
11 3
9 1
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Table 7. Comparison of 10-round attack results using the left half only and using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 14)

10-round (left half)

Bit1 16 14

Bit2 16 13
average no. bits guessed correctly = 15.8 14 1

Bit3

15 4

average no. bits guessed correctly = 13.2

14 3
13 3
12 2
11 1
9 1

Bit4

16 2

average no. bits guessed correctly = 13.8

15 2
14 5
13 2
12 2
11 1

10-round (left and right halves)

Bit1 16 14

Bit2 16 12

average no. bits guessed correctly = 15.8 15 1
14 1

Bit3

16 1

average no. bits guessed correctly = 13.4

15 4
14 3
13 2
12 2
11 1
9 1

Bit4 16 11

average no. bits guessed correctly = 15.6 15 2
13 1

Table 8. Comparison of 12-round attack results using the left half only and using both halves.

Bits Correctly No. of
Number of Rounds Super Key Bits Estimated Guessed Experiments

(out of 16 Bits) (out of 3)

12-round (left half)

Bit1 16 3

Bit2 16 3

Bit3 15 1

average no. bits guessed correctly = 13 13 1
11 1

12-round (left and right halves)

Bit1 16 3

Bit2 16 3

Bit3 15 1

average no. bits guessed correctly = 13 13 1
11 1
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6.1. Experimental Results

6.1.1. 8-Round Attack

We carried out 14 instances of the 8-round attack, with 214 P/C pairs and keys chosen at random.
We observed that obtaining estimates of the super key bits corresponding to the right half of the state
does not improve the estimate over using only those obtained from the left half state.

This is likely because the bias for the right half is half that of the left half, and hence the right half
data is noisier and not particularly useful. Figure 7 shows the results achieved using super rounds
corresponding to the left half and to the left and right halves.

Figure 7. Number of bits guessed correctly using the left half only and using both halves in the
8-round attack.

6.1.2. 10-Round Attack

We carried out 14 instances of the 10-round attack, each with a key chosen at random and 214

plaintext/ciphertext pairs. In addition to the super keys (48 bits), we recover the last round key k9

(16-bits), which is denoted as Bit4, hence we retrieve a total of 64 key bits. We find that the last round
key bits are not independent, so we do not obtain 64 independent bits.

In contrast to the 8-round attack, we obtain better overall results by using super rounds
corresponding to both right and left halves, as compared to using only the left half. The improvement
is especially noticeable in the estimate of k9. The reason is that we receive 96 bits (16× 6) of k9 from the
right half and only 32 bits (16× 2) from the left-half. Thus, even though the right-half attacks have a
lower bias, having a larger number of copies of k9 bits results in better estimation. Figure 8 shows the
improvements of the results obtained using super rounds corresponding to both right and left halves
over using the left half only.

Figure 8. Number of bits guessed correctly using the left half only and using both halves in the
10-round attack.

6.1.3. 12-Round Attack

We performed three instances of the 12-round attack using 225 plaintext and ciphertext pairs.
We got similar results in the case we use the estimates of the super key bits corresponding to only the
left half and in the case, we combine the estimates corresponding to both halves. As in the 8-round
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attack, the right half of the state doesn’t improve the overall results, hence we obtain the same results
using the left half and the two halves. In the three experiments, we can determine correctly 48, 47 and
45 key bits.

6.2. The Deduction of k3 from k9

The 64-bit master key is used directly for the first four rounds; thereafter, the SIMON key schedule
generates all other round keys from the 64-bit master key. We are able to express k3 in terms of k0, k1,
k2, and k9 as follows:

k3 ⊕ (k3 ≫ 4) = k0 ⊕ (k0 ≫ 3)⊕ (k0 ≫ 4)⊕ (k0 ≫ 6)⊕ (k0 ≫ 7)⊕ (k0 ≫ 8)

⊕ (k0 ≫ 9)⊕ (k0 ≫ 15)⊕ (k1 ≫ 1)⊕ (k1 ≫ 3)⊕ (k1 ≫ 5)⊕ (k1 ≫ 6)

⊕ (k1 ≫ 10)⊕ (k1 ≫ 12)⊕ (k1 ≫ 15)⊕ k2 ⊕ (k2 ≫ 1)⊕ (k2 ≫ 9)

⊕ (k2 ≫ 10)⊕ (k2 ≫ 11)⊕ (k2 ≫ 13)⊕ k9 ⊕ constant

(11)

Thus, on determining k0, k1, k2 and k9, we obtain the 16 bit string k3⊕ (k3 ≫ 4), which we denote
Bit4. Note that the bits of Bit4 are not independent, because

Bit4i ⊕ Bit4i+4 ⊕ Bit4i+8 ⊕ Bit4i+12 = 0 i = 0, 1, 2, 3

Thus only 12 bits of Bit4 are independent, enabling us to determine up to 12 bits of k3. For fixed
values of k0, k1 and k2, there is a one-to-one correspondence between Bit4i and k9

i . Thus, only 12
bits of k9 are independent, and all possible values of k9 will not be generated by the key schedule.
Because of this, in addition to the 48 master key bits computed from the super key, we are able to
deduce up to 12 bits of k3 for a total of up to 60 master key bits.

6.3. 8-Round Attack without Approximations

Based on the Feistel symmetry of SIMON, we are able to establish a four-round decryption
super round in addition to the encryption super round we describe above. This allows us to launch
a meet-in-the-middle attack on 8-round SIMON 32/64 without any approximations. Instead of
performing an exhaustive search over a large number of master key bits, we can focus on a single bit
and perform an exhaustive search over fewer key bits at a time.

The encryption super round Fsenc,i takes the plaintext and 16 key bits of super key Kenc,i to
produce a single bit of four-round encryption XL4

i (modulo a single key bit). The decryption super
round Fsdec,i takes the ciphertext and 8 key bits of super key Kdec,i to generate a single bit of four-round
decryption, see Figure 9. For every bit of intermediate state i, the adversary computes Fsenc,i and
Fsdec,i for all possible values of encryption super key Kenc,i and decryption super key Kdec,i respectively.
If there isn’t a match between the two operations, the pair (Kenc,i, Kdec,i) is discarded as a possible
candidate for the correct key. As all expressions are exact, there is no need to keep a count of how
many times there was a match; a single mismatch disqualifies the key pair.

In this meet-in-the-middle attack on 8-round SIMON, we attempt to recover 112 key bits, consisting
of 64 bits of one super key and 48 more bits of the second super key. We are able to determine all 64
master key bits using only 48 plaintext and ciphertext pairs. We carried out two instances of this attack.
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Figure 9. 8-round attack without approximations.

6.4. Summary of Experimental Results

Here we provide a summary of our experimental results (see Table 9).

Table 9. Summary of the Experimental Results.

Experimental Super Key Bits Master Key Bits Data Time Success
Results Recovered Recovered Complexity Complexity Probability

8-round 41–48 bits 43–48 bits 214 234.00281 94%
10-round 55–64 bits 56–64 bits 214 236.044 95%
12-round 45–48 bits 45–48 bits 225 245.0028 94%

8-round without 112 bits 64 bits 25.58 234.58 100%
approximations

7. Projected Results Using Multiple Linear Cryptanalysis

In this section we present projected results for the 20-round linear attack. Similar results for
SIMON 48 and SIMON 64 ,SIMON 96 and SIMON 128 are presented in the Appendices C–F, respectively.
Note that by “projected” results we mean results that have not been verified experimentally but are
derived analytically.

7.1. 20-Round Linear Attack

In this section, we describe how to recover the entire master key in a 20-round attack. First, we
extend the seven-linear approximations (Equations (8) and (9)) into 12-round linear trails, with bias
2−19 for the left-half and the right-half (see Figure 10):
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PLi ⊕ CLi+8 =


k1

i ⊕ k2
i+2 ⊕ k3

i,i+4 ⊕ k4
i+6

⊕k5
i,i+4,i+8 ⊕ k6

i+2,i+10 ⊕ k7
i,i+8,i+12

⊕k8
i+14 ⊕ k9

i+8,i+12 ⊕ k10
i+10 ⊕ k11

i+8

(12)

PRi ⊕ CRi+8 =


k0

i ⊕ k1
i+2 ⊕ k2

i,i+4 ⊕ k3
i+6 ⊕ k4

i,i+4,i+8

⊕k5
i+2,i+10 ⊕ k6

i,i+8,i+12 ⊕ k7
i+14

⊕k8
i+8,i+12 ⊕ k9

i+10 ⊕ k10
i+8

(13)

Because the derived 12-round linear approximation for the left-half has one active input bit
and one active output, we are able to append the super round of the four-round encryption at the
beginning and the super round of the four-round decryption at the end, giving us a 20-round linear
attack. The same is true for the right-half approximation. Tables 10 and 11 list the sequence of
approximations used to produce the 12-round linear approximation.

The extended linear approximations are:

XL4
i ⊕ XL17

i+8 =


k5

i ⊕ k6
i+2 ⊕ k7

i,i+4 ⊕ k8
i+6

⊕k9
i,i+4,i+8 ⊕ k10i+2,i+10 ⊕ k11i,i+8,i+12

⊕k12
i+14 ⊕ k13

i+8,i+12 ⊕ k14
i+10 ⊕ k15

i+8

(14)

and

XR4
i ⊕ XR17

i+8 =


k4

i ⊕ k5
i+2 ⊕ k6

i,i+4 ⊕ k7
i+6 ⊕ k8

i,i+4,i+8

⊕k9
i+2,i+10 ⊕ k10

i,i+8,i+12 ⊕ k11
i+14

⊕k12
i+8,i+12 ⊕ k13

i+10 ⊕ k14
i+8

(15)

To determine the computational complexity of the 20-round attack, first, we need to determine
the required number of plaintext and ciphertext pairs. To do so, we will use the fact that in our
proposed linear attack, we need to evaluate 16 linear approximations for the left-half, and 16 linear
approximations for the right-half, hence we have a system of multiple approximations which enables
us to apply multiple linear cryptanalysis.

Multiple linear cryptanalysis was first proposed in [22], by Kaliski and Robshaw, where they
show how to exploit multiple linear expressions, all including the same key bits, to reduce the required
number of plaintext and ciphertext pairs. Then Biryukov et al. [2], propose a more flexible framework
for using multiple linear approximations, also defining the capacity of a system of m-approximations
to be:

c2 = 4×
m

∑
i=1

c2
i = 4×

m

∑
i=1

ε2
i . (16)

A key recovery attack with a capacity of c2 will require O( 1
c2 ) plaintext and ciphertext pairs.

The system of the left-half approximations has a capacity of:

c2 = 4× 16× 2−19×2 = 26 × (2−19)2 = 2−32. (17)
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Figure 10. The 20-round linear attack.

Table 10. The sequence of approximations used to derive 12-rounds and 13-rounds linear trails for the
left-half of SIMON 32.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

0 -

0 1 1

0 2 1 1

2 0,4 1;1 2

0,4 6 1 1

6 0,4,8 1;1;1 3

0,4,8 2,10 1;1 2

2,10 0,8,12 1;1;1 3

0,8,12 14 1 1

14 8,12 1;1 2

8,12 10 1 1

10 8 1 1

8 -

- 8
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Table 11. The sequence of approximations used to derive and 13-rounds linear trails for the right-half
of SIMON 32.

Active bits in the Left Side Active bits in the Right Side Used Approximation Number of Approximations

- 0 1 1

0 2 1;1 2

2 0,4 1 1

0,4 6 1;1;1 3

6 0,4,8 1;1 2

0,4,8 2,10 1;1;1 3

2,10 0,8,12 1 1

0,8,12 14 1;1 2

14 8,12 1 1

8,12 10 1 1

10 8 1 1

8 - 1;1 2

- 8

8 0,10

Consequently, the data complexity of the 20-round linear attack may be approximated as 232.
The success probability, computed using the approach of [23], and with a four-bit advantage, is
about 6%. To increase the success probability, we would need to use a multiple of N = 1

c2 P/C pairs,
which is not feasible in this case. If we use 231 P/C pairs, the success probability drops to 4% with a
four-bit advantage. In the literature, key recovery attacks generally have a larger probability of success,
but those attacks recover fewer bits of the key, while we have demonstrated recovery of the entire
master key. We have a range of success probabilities, for example: 84% for the 20-round attack of
SIMON 48/96 and 78% for the 24-round attack of SIMON 64/128.

In addition to the data complexity, we need to add the cost of guessing the key bits of the extended
rounds to connect the plaintext and ciphertext with the left-half and the right-half approximations.
Evaluating the left half approximations requires guessing 16 key bits for the super round of four-round
encryption and another seven key bits for the super round of the four-round decryption, which results
in a total time complexity of 16× 232 × 216 × 27 = 259. In the case of the right-half approximations,
we need to brute force seven key bits to append the super round of fur-round encryption, and 16
key bits for the super round of four-round decryption which results also in 259, hence the overall
computational complexity to evaluate the two halves is 260. In addition to the first three round keys
(k0, k1, k2), we recover the last three round keys (k17, k18, k19)from which we can deduce k3 as described
in the next section. This results in the recovery of the entire master key.

7.2. The k3 Deduction from k19

According to the key schedule algorithm used in SIMON, k19 is:

k19 = k15 ⊕ k16 ⊕ (k18 ≫ 3)⊕ (k16 ≫ 1⊕ (k18 ≫ 4))⊕ c⊕ (z0)15. (18)
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It can be rewritten in terms of the master key bits as follows:

k19 = k0 ⊕ (k0 ≫ 2)⊕ (k0 ≫ 7)⊕ (k0 ≫ 9)⊕ (k0 ≫ 11)⊕ (k0 ≫ 12)

⊕ (k0 ≫ 13)⊕ (k0 ≫ 14)⊕ k1 ⊕ (k1 ≫ 1)⊕ (k1 ≫ 3)⊕ (k1 ≫ 4)

⊕ (k1 ≫ 6)⊕ (k1 ≫ 7)⊕ (k1 ≫ 8)⊕ (k1 ≫ 9)⊕ (k1 ≫ 11)⊕ (k1 ≫ 12)

⊕ (k1 ≫ 14)⊕ (k1 ≫ 15)⊕ (k2 ≫ 3)⊕ (k2 ≫ 5)⊕ (k2 ≫ 8)⊕ (k2 ≫ 9)

⊕ (k2 ≫ 10)⊕ (k2 ≫ 12)⊕ (k2 ≫ 14)⊕ (k2 ≫ 15)

⊕ k3 ⊕ constant

(19)

It is clear from Equation (19), that we are able to compute k3, given the first three round keys
(k0, k1, k2), and the last round key k19.

7.3. Summary of Projected Results

In Section 6, we presented the results from the experimental verification of our approach on
small numbers of rounds. Table 12 summarizes our results for larger numbers of rounds (that cannot,
obviously, be experimentally verified) on SIMON32/64:

Table 12. Summary of the Projected Results.

Projected Key Bits Recovered Master Data Time
Results Key Bits Complexity Complexity

20-round 64 independent key bits 64 master key bits 232 260

32 dependent key bits

8. The Effect of Super Rounds on Larger Variants of SIMON

Although the larger variants of SIMON correspond to larger block and key sizes, we have found
that the size of the super-keys is only slightly larger than that for SIMON 32/64. After four-round
encryption, a single bit of the left-half of the intermediate state is influenced by only 18 key bits. On the
other hand, the size of the super-key of the right half stays the same, at seven bits.

We found that, for larger variants of SIMON, the bias of linear approximations with only a single
active bit in the input mask is very low. We looked for approximations with a higher bias that uses a
very small number of active bits in the input mask. Thus, we may not be using the linear trails with the
highest bias, but we need to realize an acceptable trade-off between the bias and the number of active
bits of especially the left half, because appending the super round, in this case, is more expensive.

For SIMON 48, we derived linear approximations with high bias that have three active bits in the
input mask, one bit for the left half and two bits of the right half. Appending three super rounds to
these approximations requires the guessing of 24 key bits, the size of one round key.

For SIMON 64, we derived a linear trail with four active bits of input, one of the left half and three
bits of the right half, requiring the guessing of 31 key bits with appended super rounds. This is smaller
than a single round key. In SIMON 96, and SIMON 128, we obtain linear approximations that need the
guessing of 41 and 53 key bits respectively, which, in both cases, are smaller than a single round key in
these variants.

9. Conclusions

This paper describes the novel notions of super rounds and super keys and demonstrates their
efficacy through both experimental and projected theoretical linear cryptanalysis of SIMON 32/64.
The feature of our attack is that we are able to apply Matsui’s second algorithm in an efficient manner,
especially in the forward direction, to recover the entire master key or three-fourths of it.
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We were able to recover three-fourths of the master key in the 8-round and 12-round linear attacks
of SIMON 32/64 with high accuracy, and we approximately recover more than 80 percent of the master
key in the 10-round key recovery attack. The attack may be extended to 20 and 21-rounds revealing
the full master key of size 64 bits. Similar results have been achieved and presented in the appendices
for SIMON 48, SIMON 64, SIMON 96, and SIMON 128. We propose to apply our linear attack with
super-rounds to other block ciphers with a design similar to SIMON.
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version of the manuscript.
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Appendix A. The Deduction of k3 from k9

Recall k9 is generated as follows:

k9 = k5 ⊕ k6 ⊕ (k8 ≫ 3)⊕ (k6 ≫ 1⊕ (k8 ≫ 4))⊕ c⊕ (z0)5 (A1)

k9 = k0 ⊕ (k0 ≫ 3)⊕ (k0 ≫ 4)⊕ (k0 ≫ 6)⊕ (k0 ≫ 7)⊕ (k0 ≫ 8)

⊕ (k0 ≫ 9)⊕ (k0 ≫ 15)⊕ (k1 ≫ 1)⊕ (k1 ≫ 3)⊕ (k1 ≫ 5)⊕ (k1 ≫ 6)

⊕ (k1 ≫ 10)⊕ (k1 ≫ 12)⊕ (k1 ≫ 15)⊕ k2 ⊕ (k2 ≫ 1)⊕ (k2 ≫ 9)

⊕ (k2 ≫ 10)⊕ (k2 ≫ 11)⊕ (k2 ≫ 13)⊕ k3 ⊕ (k3 ≫ 4)⊕ constant

(A2)

Constant =



(c⊕ (z0)0)⊕ ((c⊕ (z0)0) ≫ 3)⊕ ((c⊕ (z0)0) ≫ 4)⊕ ((c⊕ (z0)0) ≫ 6)

⊕((c⊕ (z0)0) ≫ 7)⊕ ((c⊕ (z0)0) ≫ 8)⊕ ((c⊕ (z0)0) ≫ 9)⊕ ((c⊕ (z0)0) ≫ 15)⊕
((c⊕ (z0)1) ≫ 12)⊕ (c⊕ (z0)2)⊕ ((c⊕ (z0)2) ≫ 1)⊕ ((c⊕ (z0)2) ≫ 9)⊕
((c⊕ (z0)2) ≫ 10)⊕ ((c⊕ (z0)2) ≫ 11)⊕ ((c⊕ (z0)2) ≫ 12)⊕ ((c⊕ (z0)3) ≫ 6)

⊕((c⊕ (z0)3) ≫ 8)⊕ ((c⊕ (z0)4) ≫ 3)⊕ ((c⊕ (z0)4) ≫ 4)⊕ (c⊕ (z0)5).

(A3)

Appendix B. 21-Rounds Linear Attack on SIMON 32/64

Using the 13-rounds linear approximation with bias = 2−19, we can append a super round before
and after which results in a 21-rounds linear attack. The capacity of this system is 4× 16× 2−192

= 2−32.
Hence, the data complexity is 232. The cost of appending the super rounds in average is 223, as a
result the time complexity to evaluate the left half approximations is 24 × 232 × 223 = 259, additionally
evaluate the right half system costs 256.5. The total time complexity 259 + 256.5 = 259.23.

Appendix C. Linear Attacks on SIMON 48

In this section, we present the two projected linear attacks of 18-rounds and 20-rounds on SIMON48.
In addition to the 20-rounds and 21-rounds linear attacks in the average case.

Appendix C.1. 18-Rounds and 20-Rounds Linear Attacks on SIMON 48/72

Here, we append the super rounds of four-rounds encryption to the 12-rounds linear
approximation (see Table A1) and add two rounds decryption at the end to get 18-rounds linear attack.
To compute the data complexity, first we need to compute the capacity of the multiple approximations.

c2 = 4× 24× 2−19×2 = 26.58 × (2−19)2 = 2−31.42.
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Appending four-rounds encryption comes at the cost of guessing 23 bits of subkeys, in addition
to guessing 8 key bits of k17, to do two rounds decryption, in addition to guessing 8 key bits of k17,
to do two rounds decryption, k17

i for i = 1, 8, 13, 20, 9, 16, 17, 0.
Thus, the data complexity is 16× (1/231.42) = 235.42, and the total time complexity of this attack

is 24.58 × 235.42 × 231 = 271, with full recovery of the 72 master key bits, and with a success probability
of 42% with an 8-bit advantage. If we use only 8× (1/231.42) = 234.42, the success probability drops to
15%.

In the case, we count the key bits we need to guess on average (key bits that are involved in
and operation cost guessing a half-bit), then we can go further and present a 20-rounds linear attack.
First, we extend the 12-rounds linear approximation by two more rounds and get a 14-rounds linear
expression with bias = 2−26 (see Table A1). Here, we append four-rounds encryption to a 14-rounds
linear approximation, then add two rounds decryption at the end which results in a 20-rounds linear
attack. This costs guessing 21.5 bits (16.5 bits for the encryption and 5 bits for the decryption), and data
complexity = 245.42. The time complexity, in this case, is 271.5,with a 8% success probability.

There are 10 bits of k19
i , need guessing for i = 1, 8, 5, 12, 9, 16, 17, 0, 21, 4. However, counting these

as a half bit results in guessing 5 bits in average.

Appendix C.2. 20-Rounds and 21-Rounds Linear Attacks on SIMON 48/96

By extending the 12-rounds linear approximation by one more round we get a 13-round linear
trail with capacity:

c2 = 4× 24× 2−232
= 26.58 × 2−232

= 2−39.42.

Appending four rounds encryption and three rounds decryption to the 13-round linear relation
results in a 20-round linear attack. There are 23 key bits required guessing to add three rounds
decryption: 17 bits of k19

i for i = 1, 8, 9, 16, 17, 0, 12, 19, 2, 4, 11, 18, 5, 20, 3, 10, 21, and 6 bits of the sum
k19

i+2 ⊕ k18
i for i = 11, 18, 3, 10, 19, 2.

The data complexity is 16 × 1/239.42 = 243.42, and the time complexity in this case
is 24.58 × 243.42 × 246 = 294, with a success probability of about 21% with an 8-bit advantage.
We can increase this probability by increasing the number of plaintext and ciphertext pairs:
32× 1/239.42 = 244.42, which increases the success probability to 84%; the computational complexity
rises to 296. Table A1 lists the sequence of approximations used generate the 12-round, 13-round and
14-round linear approximations.
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Table A1. The sequence of approximations used to derive 12, 13-rounds and 14-rounds linear trails for
SIMON 48.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

6 0,4

0,4 2 1;1 2

2 0 1 1

0 - 1 1

0 0

0 2 1 1

2 0,4 1 1

0,4 6 1;1 2

6 0,4,8 1 1

0,4,8 2,10 1;1;1 3

2,10 0,8,12 1;1 2

0,8,12 14 1;1;1 3

14 0,8,12,16 1 1

0,8,12,16 2,10,18 1;1;1;1 4

2,10,18 0,4,8,16,20 1;1;1 3

In the average case computations, we can use the 14-round linear expression and append four
rounds encryption and three rounds decryption to get a 21-rounds linear attack. There are 29 key bits
reacquired guessing for adding three rounds decryption, but on average it costs 19.5 bits:

• 19 bits of k20
i for i = 2, 9, 16, 10, 17, 0, 18, 1, 8, 6, 13, 20, 7, 14, 22, 5, 12, 23, counted as a half bit

• 10 bits of the sum k20
i+2 ⊕ k19

i for i = 1, 8, 9, 16, 17, 5, 0, 12, 21, 4

The time complexity of the attack is 24.58 × 245.42 × 216.5 × 219.5 = 286. The success probability
with an 8-bit advantage is 8%.

Appendix D. Linear Attacks on SIMON 64

Here, we describe the two linear attacks: 22-rounds and 24-rounds linear attacks on SIMON 64/96
and SIMON 64/128.

Appendix D.1. 22-Rounds and 23-Rounds Linear Attacks on SIMON 64/96

We used the 16-rounds linear characteristic presented in Table A2, and append four-rounds
encryption and two rounds decryption. The capacity of the system of 16-rounds linear trail:

c2 = 4× 32× 2−282
= 27 × 2−622

= 2−49.

The four-round encryption costs guessing 31 key bits and 8 more bits of k21
i for i =

1, 8, 9, 16, 13, 20, 17, 24, to do two rounds decryption.
The data complexity is 4× 1/2−49 = 251, hence the time complexity is 25× 251× 239 = 295, with a

success probability of about 5% with an 8-bit advantage and full recovery of the master key. We can
increase the probability to 10% by using 8× 1/2−49 = 252 plaintext and ciphertext pairs, but the time
complexity increase to 296.

In the average case complexity, we got a 23-round linear attack, which results from appending
seven rounds (four rounds encryption and three rounds decryption) to the 16-round linear
trail. The four rounds encryption costs guessing 21.5 key bits on average, and the three
rounds decryption requires guessing 16.5 key bits on average: There are 17 bits of k22

i for i =
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2, 9, 16, 10, 17, 24, 14, 21, 28, 18, 25, 31, 3, 11, 18, 19, 26, these bits are counted as a half bit. Additionally,
there are 8 bits of the sum k22

i+2 ⊕ k21
i for i = 1, 8, 9, 16, 13, 20, 17, 24.

Thus, the time complexity of 23-round linear attacks is 25 × 251 × 221.5 × 216.5 = 294.

Appendix D.2. 24-Rounds and 25-Rounds Linear Attacks on SIMON 64/128

We derive a 17-rounds linear trail as presented in Table A2, and add four
rounds before and three rounds after the linear characteristic to get a 24-rounds
linear attack. The capacity of this new approximation is c2 = 4× 32× 2−322

= 2−57.
Moreover, appending the extra rounds costs guessing 56 key bits, which consists of 31 for
the four-rounds encryption and 24 bits for the decryption. There are 18 bits of k23

i for
i = 4, 11, 18, 12, 19, 26, 20, 27, 2, 1, 8, 5, 9, 16, 17, 24, 21, 28. Also, there are 6 bits of the sum k23

i+2 ⊕ k22
i for

i = 11, 18, 3, 10, 17, 24.
The data complexity is 32× 1/257 = 262. The time complexity is 25 × 262 × 255 = 2122, with a

success probability of about 78% with an 8-bit advantage.
In the case of counting the key bits on average, we can go deeper by using 18-rounds linear

approximation and appending four rounds before and three rounds after, which results in a 25-rounds
linear attack. The capacity of this system is c2 = 4 × 32 × 2−352

= 2−63, which makes the data
complexity is 263.

The four rounds encryption costs guessing 21.5 key bits in average. There are 10 bits of k24
i for

i = i = 2, 9, 16, 6, 13, 20, 10, 17, 24, 18, 25, 0, 22, 29, 7, 14, 23, 30. Additionally, there are 10 bits of the sum
required guessing k24

i+2 ⊕ k23
i for i = 1, 8, 5, 12, 9, 16, 21, 28, 17, 24. In total there are 41.5 key bits required

guessing on average.
The time complexity of this attack is 32× 263 × 241.5 = 2109.5.

Table A2. The sequence of approximations used to derive 16-rounds, 17-rounds and 18-rounds linear
trails for SIMON 64.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

14 0,8,12

0,8,12 2,10 1;1;1 3

2,10 0,4,8 1;1 2

0,4,8 6 1;1;1 3

6 0,4 1 1

0,4 2 1;1 2

2 0 1 1

0 - 1 1

0 0

0 2 1 1

2 0,4 1 1

0,4 6 1;1 2

6 0,4,8 1 1

0,4,8 2,10 1;1;1 3

2,10 0,8,12 1;1 2

0,8,12 14 1;1;1 3

14 0,8,12,16 1 1

0,8,12,16 2,10,18 1;1;1;1 4

2,10,18 0,4,8,16,20 1;1;1 3
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Appendix E. SIMON 96

We derive a 28-rounds linear approximation presented in Table A3, with bias = 2−50. Hence,
we obtain a 34-rounds linear attack by appending four-rounds encryption at the beginning of the
28-rounds linear approximation and two rounds decryption at the end.

The capacity of this system of approximations: 22 × 25.58 × 2−502
= 2−92.42. The four-rounds

encryption cost guessing 31 key bits, where for the two rounds decryption costs guessing six more
key bits for i = k33

i for i=1, 8, 5, 12, 9, 16. Thus, the time complexity is 25.58 × 293.42 × 237 = 2136, with a
success probability of about 5% with an 8-bit advantage.

In the case of average-case complexity, we present a 35-rounds linear attack, which comes from
using a 28-rounds linear approximation and appending four rounds before and three rounds after.
The four-rounds encryption costs guessing 21.5 bits on average. In addition to the costs of adding
three rounds decryption, there are 12 bits of k34

i for i = 2, 9, 16, 6, 13, 20, 10, 17, 24, 3, 11, 18, each counted
as a half bit. Also, there are 6 bits of the sum k34

i+2 ⊕ k33
i for i = 1, 8, 5, 12, 9, 16. The time complexity in

this case is 25.58 × 293.42 × 221.5 × 212 = 2132.5.

Table A3. The sequence of approximations used to derive 28-rounds linear trails for SIMON 96.

Active Bits in the Left Side Active Bits in the Right Side Used Approximation Number of Approximations

14 0,8,12

0,8,12 2,10 1;1;1 3

2,10 0,4,8 1;1 2

0,4,8 6 1;1;1 3

6 0,4 1 1

0,4 2 1;1 2

2 0 1 1

0 - 1 1

0 0

0 2 1 1

2 0,4 1 1

0,4 6 1;1 2

6 0,4,8 1 1

0,4,8 2,9,10 1;1;2 3

2,9,10 0,8,12 1;1;2 3

0,8,12 8,9,14 3;1;1 3

8,9,14 0,8,11,12 3;2;1 3

0,8,11,12 2,10 3;2;1;2 4

2,10 0,4,8 1;2 2

0,4,8 6 1;1;1 3

6 0,4 1 1

0,4 2 1;1 2

2 0 1 1

0 - 0

- 0 1 1

0 2 1 1

2 0,4 1 1

0,4 6 1;1 2

6 0,4,8 1 1
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Appendix F. SIMON 128

We describe three linear attacks on the reduced round SIMON 128 into: 41-rounds, 42-rounds
and 43-rounds.

Appendix F.1. 40-Rounds and 42-Rounds Linear Attacks on SIMON 128/192

We derive a 35-rounds linear approximation with bias = 2−68 and append a four-round
encryption and one round decryption to get a 40-rounds linear attack. The capacity of this system of
approximations 22 × 26 × 2−68 = 2−128. The four rounds encryption costs guessing 53 key bits, where
the one round decryption is free of any extra cost.

The time complexity in this case is 26 × 2128 × 253 = 2187.
In the average case, we present a 42-rounds linear attack, which comes from using

a 35-rounds linear approximation and append four rounds before and three rounds after.
Extending the linear approximations by three rounds decryption involves 18 bits of k41

i for i =

4, 11, 18, 12, 19, 26, 20, 27, 34, 1, 8, 5, 9, 16, 17, 24, 21, 28, which costs guessing 9 bits on average, in addition
to 6 bits of the sum k41

i+2 ⊕ k40
i for i = 11, 18, 5, 10, 19, 26. The four rounds encryption costs guessing

38.5 bits on average.
Counting the key bits on average reduce the cost of four rounds encryption from guessing 55

bits to 40 key bits. Also, the three rounds decryption costs 16 key bits on average, hence the time
complexity 64× 2128 × 240 × 215 = 2189.

Appendix F.2. 43-Rounds Linear Attack on SIMON 128/256

We extend the 42-round linear attack presented in Appendix F.1 by one more round at the end,
this extension comes at the cost of guessing 106 key bits in total, which results in 26× 2106× 2128 = 2240.
Table A4 lists the sequence of approximations used generate the 35-round linear approximation.

In the average case complexity, we have the same 43-rounds linear attack with a lower complexity.
Thus, the four-rounds before and after costs guessing 76 key bits on average. The time complexity is
26 × 276 × 2128 = 2210.

The key bits we need to guess to append four rounds decryption at the end are as follow:

• 30 bits of k34 for i = 5, 12, 19, 6, 13, 26, 20, 27, 14, 21, 34, 28, 29, 22, 35, 42, 36, 2, 9,
16, 10, 17, 24, 18, 25, 32, 36, 7, 23, 30, each counted as a half bit, which results in guessing a total of
15 key bits.

• 17 bits of the sum k34
i+2 ⊕ k33

i : for i = 4, 11, 18, 12, 19, 26, 27, 34, 1, 8, 5, 9, 16, 17, 24, 21, 28.

• 6 bits of the sum k34
i,i+4 ⊕ k33

i+2 ⊕ k32
i for i = 3, 10, 11, 18, 19, 26.
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Table A4. The sequence of approximations used to derive 35-rounds linear trails for SIMON 128.

Active bits in the Left Side Active bits in the Right Side Used Approximation Number of Approximations

2,10,18 0,8,12,16 1;1;1;1 4

0,8,12,16 14 1 1

14 0,8,12 1;1;1 3

0,8,12 2,10 1;1 2

2,10 0,4,8 1;1;1 3

0,4,8 6 1 1

6 0,4 1,1 2

0,4 2 1 1

2 0 1 1

0 - 0 0

0 1 1

0 2 1 1

2 0,4 1;1 2

0,4 6 1 1

6 0,4,8 1;1;2 3

0,4,8 2,9,10 1;1;2 3

2,9,10 0,8,12 3;1;1 3

0.8.12 8,9,14 3;2;1 3

8,9,14 0,8,11,12 3;2;1;2 4

0,8,11,12 2,10 1;2 2

2,10 0,4,8 1;1;1 3

0,4,8 6 1 1

6 0,4 1;1 2

0,4 2 1 1

2 0 1 1

0 - 0 -

0 1 1

0 2 1 1

2 0,4 1;1 2

0,4 6 1 1

6 0,4,8 1;1;1 3

0,4,8 2,10 1;1 2

2,10 0,8,12 1;1;1 3

0,8,12 14 1 1

14 0,8,12,16 1;1;1;1 4

0,8,12,16 2,10,18
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