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Abstract: This paper proposes a portable hardware token for user’s authentication; it is based on
the use of keystroke dynamics to verify users biometrically. The proposed approach allows for
a multifactor authentication scheme, in which a user cannot be granted access unless they provide a
correct password on a hardware token and their biometric signature. The latter is extracted while
the user is typing their password. This paper explains the design rationale of the proposed system
and provides a comprehensive insight in the development of a hardware prototype of the same.
The paper also presents a feasibility study that included a systematic analysis based on training data
obtained from 32 users. Our results show that dynamic keystroke can be employed to construct
a cost-efficient solution for biometric user authentication with an average error rate of 4.5%.

Keywords: authentication; embedded devices; security

1. Introduction

To use a computer securely, a user must prove their identity to the machine in question.
The vast majority of systems use a password-based (or passcode-based) authentication mechanism.
Such a system, however, has a glaring hole in its security—the computer grants access if the password is
correct, in other words, it only verifies the correctness of the presented password, and, crucially, it does
not check the identity of the intended user. Therefore, if a malicious third-party guesses or somehow
deduces the user’s password, the entire security of the system is compromised. There are numerous
reported attacks that can bypass the conventional password protection mechanisms, such as the
brute-force attack [1].

An alternative method of authentication involves having a physical item that the user must
produce to be given access, for example a key card. A more secure version of this is based on the
use of hardware tokens, to identify the user and allow access. These hardware token require two or
even three factors for authentication: for example, a card reader for online banking may require the
presence of the reader, the presence of the bankcard and the correct pin number to log in. There has
been plenty of previous research into systems involving a hardware token and using one securely as
part of a larger system [2–9]. This increases the strength of the authentication by needing multiple
factors to be passed before access is allowed, however, none of these factors require the intended user
to be the one logging in. In all cases, only the presence of data or hardware is being verified: the
identity of the person providing them is not checked, therefore if the hardware token is lost, stolen or
forged, the computer’s security collapses.

To solve this problem, the computer must check for the user directly. Rather than detecting
the presence of something the user knows, like a passcode, or something the user has, like a key
card, it must check for something that the user is. Authenticating the user biometrically makes for
some of the most secure systems available. Examples include a fingerprint scanner in [10]; such a
system is reported to achieve false rejection rate (FRR) of less than 4.12% when restricting the false
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acceptance rate (FAR) to 0.01%. Another biometric-based identification scheme is the retina scanners
in [11], which achieve a 0% FAR and 1.85% FRR. These systems recognise the user through their body,
removing the risk of stolen data or keys, as well as the risk of a password being guessed. However, these
systems are prohibitively expensive, requiring complex hardware to make the biometric measurement
and carry out the necessary data processing to identify the user. This work proposes an alternative
biometric method for user authentication based on the use of keystroke dynamics. When people type,
on a keyboard or on a number pad, they do so with differing speeds, differing press and release times,
and different pressures. Furthermore, a mixture of various factors affect these differences—hand size,
muscle state, how one was taught to type, and so on—and these factors are characteristic to each
individual. Keystrokes can show much data about the user, with one study even managing to predict
user’s emotional state when typing with around 85% accuracy [12].

The contributions of this work are as follows:

(1) The development of a biometric-based multifactor user authentication scheme, which expolits
keystrock dynamics;

(2) The design and implementation of a hardware prototype of the proposed system;
(3) The evaluation of the usability of the proposed system through a feasbility study, which is based

on training data from 32 users.

Our results show that keystroke dynamics can be used to build a cost-effective, biometric-based
authentication scheme with an average error rate of 4.5%.

The remainder of this paper is organised as follows. Section 2 discusses the related works.
Section 3 explains the principles of the proposed approach. Section 4 discusses, in depth, the design
and implementation of a hardware prototype of the system. Section 5 explains the technique employed
to evaluate the usability of our solution. Finally, conclusions are drawn in Section 6.

2. Related Work

Keystroke dynamics as a field has seen a fair amount of research [13], with various different
algorithms extracting various aspects of typing on various different platforms, including mobile
phones [14]. The methodology behind keystroke dynamics follows much the same principle as the
study of handwriting, but modern technology allows for multiple different methods for uniquely
identifying each user. The hold time (the amount of time each key is pressed), and the space time (the
time period between two key presses) are the most notable. Results using this as a feature vary from
a FAR of 0.5% and an FRR rate of 3.1% when only considering the space time, to equal error rates of
between 4% and 12% depending on the algorithm [15]. When also considering the interval between
the same point on successive keystrokes, a 1.45% FRR and a 1.89% FAR have been obtained [16].

Additionally, there are systems that use continuous authentication in keystroke dynamics,
which also rely on measuring the hold and space time metrics defined above; these measurements are
performed continuously to authenticate the user as they type. This approach makes it feasible to detect
a change in user after the log in process by constantly keeping track of the unique signature of the
user’s keystroke dynamics. While continuous authentication is not the focus of this paper, the methods
and algorithms employed are similar to login authentication, for example, Darabseh and Namin found
that hold duration was a more effective identifying characteristic than latency time [17]. They produced
an accuracy of around 80% when using support vector machines and k-nearest neighbour methods,
however, neural nets have produced equal error rates of around 2% [18].

To produce greater accuracy, other characteristics of the keypress can be extracted apart from hold
and space times. When extracting keystroke sounds for continuous authentication, Roth et al. achieved
an equal error rate of around 11% [19]. Another study using the sound of keystrokes over a sentence
reported an FAR of 11% and an FRR of 12% [20]. While these results are interesting, recording the
pressure or displacement of keypresses has achieved better results [13]. As noted in [21], research into
this area is limited by the difficulty of creating a pressure-sensing keyboard. Nevertheless, there have
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been a few studies into this area. One principle drawn from past studies is the idea of extracting
attributes from the keypresses to have qualities to compare. Examples of how characteristics of the
keypress can be used in this way are in [22] (which also measured vibration), and [23], with the best
results of 1.67% FAR at 0% FRR for [23] and a 0.6% error rate for [22], which was an extensive study
using neural methods.

3. Proposed System Architecture

The proposed system is envisioned as a self-contained portable hardware token. It consists of
a number pad connected to an embedded chip. The latter is mainly responsible for capturing the
keystroke profile associated with each user, with this information stored in the memory for a given
password/user. The system allows users to change their password and allows for multiple user entries.

Each time the user logs on, they will simply enter the password onto the device (logging on is
used as an example; any other use of verification would happen the same way, such as confirming
a purchase). The press data from the keys are compared to the profile stored in memory, and if the
data match within a suitable threshold, the user is given access. If an unintended user attempts to log
on, even with the correct password, their data will not match that stored in memory, and they will
not be allowed access. This system already requires multiple factors for authentication (Password,
number pad and matching press data), but could also require another token, such as a card or a key,
for even greater security. The beauty of this method is that it will extract the biometric signatures of
users while they type their password, therefore it does not require the complicated circuitry associated
with retina or fingerprint scanners, nor will it need the additional user input such systems require.
To log onto a system, a user only needs to enter a password into the device, and merely doing so can
be used to authenticate them. The architecture of the proposed system is divided into two main parts,
hardware and software. The hardware part is responsible for capturing the keystroke profile from
the user’s input and translating these analogue measurements into digital information. The software
part has two functionalities: first, it is responsible for extracting user’s signature, which are stored in
on-chip memory, and second, it is responsible for authenticating users at a later stage. A generic system
architecture is shown in Figure 1. The operation principles are as follows. The user input is captured
using motion sensors connected to a keypad or a keyboard (not shown in this figure). Next, the output
of the sensing stage is fed into an ADC, which generates the digital data to be processed at a later stage.
The comparator block provides a digital signal for each button press, with this signal being used to
indicate to the processor that there is data on the bus to be analysed/processed. This removes the need
for the processor to be constantly active, which allows for a more energy-efficient implementation.
The digital signals are also used to make sure the entered password is correct. Finally, the processor
samples the data from the bus and generates a profile for each user’s password, which is subsequently
stored in the memory block.
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Figure 1. A system block diagram. Figure 1. A system block diagram.

The essence of the proposed approach relies on the assumption that it is possible to distinguish
between users based on their typing speed/style. To illustrate the feasibility of this technique, we carried
a simple experiment wherein we measured the length of a keypad button press for ten users while
typing a password. Figure 2 shows how the results. It can clearly be seen that each user’s presses
are grouped around a certain range of lengths, and this differs for each user. Although there are
some similarities, for example, between users 5 and 7, this is just one characteristic for one button in
a passcode. When considering all of the different factors, it should be possible to verify users accurately.
More details on this can be is in Section 5.1
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the same password.

4. Implementation

This section explains the design rationale of a prototype of the proposed system.

4.1. Key Pad

In this case study, we choose to implement a keypad that has ten buttons. This seems a reasonable
trade-off between the usability of the system and its size. In principle, the more buttons there are,
the longer and more secure the passwords, the larger the number of possible passwords and the larger
the size of the hardware token.
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The buttons on the pad should also have reasonable stiffness and travel, so that the range of travel
is roughly equal to the range of a normal button press. In addition, the keys should return as fast as
possible after the press, ideally moving up with the finger that pressed the key, so the data recorded
on the upstroke show how the button was released, rather than how the button is returned to the
resting position. The number pad should also contains analogue-sensing elements; previous studies
have used piezoelectric sensors [24], or force-sensitive resistors [22,25] to measure the pressure of
a button press. In this case study, we chose linear motion potentiometers mostly chosen for the ease of
creating buttons.

To allow for easy mounting of the analogue components, the case for the number pad was
3D-printed. Linear motion potentiometers act in the same way as normal potentiometers (the resistance
between a ‘wiper’ contact and two end contacts varies with position); the only difference being that
the position here is the linear position of a shaft, rather than radial position. The design of the case
had slots that the potentiometers fit into, with the wires accessible from the bottom and the shafts
being free to move. The key caps were also 3D-printed, so the diameter of the screw thread on the
potentiometer shafts could be matched. Before each key cap was screwed onto each shaft, a spring
was placed around each shaft. When a key is pressed, the spring compresses, returning the key to the
resting position as the user pulls back their finger, as shown in Figure 3.
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as the small light blue squares with the shafts protruding up from them. The shafts each have a spring
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potentiometers lead out through the holes, and the feet.

4.2. The Analogue to Digital Converter

This block needs to continuously sample the analogue signal generated by the potentiometer over
the course of a button press, at a sample rate sufficiently large to collect a reasonable amount of data.
A normal typing speed is 33 words per minute [19], and assuming an average of 4.5 characters in a
word, and buttons being pressed at around a quarter the time, this gives a button press time of 100
ms, with a minimum time of half that. However, because of the size and travel of the buttons used, a
button press on the number pad is around five times longer. To record enough data, a minimum of a
hundred data values should be gathered on an average button press. Another important consideration
is the resolution of the samples. If the resolution is too small or the sample rate too low, differences in
button presses will not show up in the data.

The ADCs chosen for this task were the MCP3008 and the MCP3002, being ten bit eight- and
two-input analogue to digital converters respectively. Ten bits gives a resolution of just over a thousand
values for the full travel of the potentiometers, which is sufficient for the task. The chips are rated for
up to 200 k samples per second at a 5 V supply. These ADCs are controlled via an serial peripheral
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interface (SPI) bus. A custom protocol was written for this connection because, commonly, SPI busses
deal with 8-bit payloads, not 10-bit.

4.3. The Comparator Block

This block constantly compares the potentiometer output voltages to a reference voltage, producing
a digital signal for each button pressed. The reference voltage is chosen to be sufficiently low to pick up
every button press with minimal impact on the resolution (the lowest 10-bit value measured becomes
10 rather than 0 when the digital signal is on, a drop in >1% of the resolution), but also high enough to
only activate when the button is pressed. A simple potential divider produced a non-zero reference
voltage of around (~0.03 V). These signals from the comparator are also fed into the system bus.

4.4. The Software Part

This part of the design is responsible for user data classification and for user
authentication. An off-the shelf-raspberry PI was chosen to implement bot functionalities.

Various algorithms can be used to build a distinctive profile that captures the keystroke
characteristics of each user. Possibly, the most effective algorithms involve machine learning,
which, although harder to implement than statistical methods, can provide better results [13,22].
Such methods may require a great deal of processing power, possibly too much to be included.
Therefore, in this case study we explored two statistics-based approach for data analysis. The first is
based on the computation of simple averages and the second is based on a probability estimation, with
both techniques relying on the characteristics extracted from each button press.

With (S) corresponding to the displacement value, and (T) to the sample number (due to the
constant sample rate this is a measure of time), the following characteristics have been extracted:

(1) The maximum displacement value (Smax);
(2) The length of button press (Tmax);
(3) The plateau length (PL).
This is the amount of time for which the displacement is at the maximum value. T[Smax0] is the

sample number where the displacement hits the maximum value and T[Smax1] is when the displacement
is no longer maximum. From the results, this tended to be a significant portion of the button press,
normally around 50–300 samples. This is calculated based on the three highest resolution levels,
to avoid fluctuations in the reading changing the result. When these fluctuations were noticed during
testing, they only ever varied between adjacent levels, so having three levels should be enough to
remove this risk. This is calculated as follows

PL T[Smax1] − T[Smax0] (1)

(4) The attack value (AV)
This was calculated as the gradient of the press up until the start of the maximum level, so the

maximum displacement value divided by the number of samples until the maximum displacement
value (within three values, as before) was first reached. This is calculated as follows

AV = Smax0/T[Smax0] (2)

(5) The decay value (DE)
This was calculated the same way as the attack value but using the number of samples between

when the press dropped below the maximum value and the end of the press.

DE = Smax1/(Tmax − T[Smax1]) (3)
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(6) The mean average sample (AV) is the sum of all displacements, given as follows

AV ΣS/Tmax (4)

The above characteristics can be used to identify/verify the users. The first stage is the enrolment
state, wherein training data are collected from each user for a given password, which had to be at
least 10 digits. Each user had to enter their password ten times. This number of repetitions was
found experimentally in this study. It is worth noting that more repetitions at the enrolment stage
and a longer password can reduce false admission rate, however, this may reduce the usability of
the scheme.

The second stage is the verification phase, during which a user types their password and
an algorithm compares the keystroke profile captured by the hardware part with that associated with
the user and stored in the system memory. Such comparisons require the use of a metric. In this
case study, we consider two metrics, one based on simple average and one on probability estimation.
These two approaches are explained in detail below.

(a) User Verification using Simple Averages
In this case, for each of the characteristics outlined above, and for each digit in the password,

the mean value is extracted from the training data (ten repetitions of the password), during the
enrolment stage. At the following verification phase, when a password is taken for authentication,
the differences between the values for the new password and the average values are calculated. This
produces a percentage discrepancy for each factor. Logically speaking, if the password was from the
same user as the training data, it would be similar to the training data, and so this discrepancy would
be low, but if it were another person, the difference would be high. The percentages are then summed
to produce a number that is lower if the user is correct, and higher if they are wrong. A threshold can
then be set that allows the majority of correct presses through, while rejecting the majority of incorrect
ones. This method however does have some flaws, predominantly that there is no prevention against
anomalies changing the results. If there is an anomaly in the training data, it will shift the average, and
there is the potential for large anomalies with the number pad. If, say, normally the user presses the
button about halfway, but once in the training data they press it down fully, this will shift the average
by 5% for that key. The reverse can also be a problem, in that defining features about the wave are
averaged out and do not show up in the final number, for example if the user always presses to a
maximum value of 400 or 600 but not 500, this would be lost and averaged out to 500. However, for a
quick comparison between the training data and test data, the averaging method can easily produce a
reasonable result, and so is used as the first method of comparison. The pseudocode for this method is
shown in Figure 4.
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(b) User Verification using Probability Estimation
To overcome the disadvantages of the simple average approach, probability was considered

as a second method. It is possible to calculate the probability that a certain value on one of the
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characteristics was reached by comparing the amount of background data and training data for that
value. Background data are data showing how other users press the button, while the training data
show how the correct user presses the button. Each characteristic was then divided into sections that
encompassed a range of values. For example, the max level was divided into under 100; 100–199
and so on, until over 900 was set as the tenth category. For each button in the password, and for
each characteristic, these categories were then populated with the background data and the training
data. The result was two effective bell-curves, one for the background data and one for the user’s
data. Figure 5 shows two characteristics and the relevant instances for background and training data.
Logically the user’s data should vary less, assuming the user enters the password in a similar way
each time, compared to a background made up of many different people with many different ways of
entering the password. This produces a sharper peak in the training data than on the background data.Cryptography 2020, 5, x FOR PEER REVIEW 8 of 14 
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To calculate the probability that a characteristic of a press belongs to the user, the background
and training data are compared at the value from the press data. First, if there are fewer datasets
for the training data than there are for the background, the data must be normalised. In this case,
100 datapoints were used for background data, but only 10 for training data. To weight each instance
equally, each instance of the training data is multiplied by the fraction that they differ from the
background data by (in this case 10), resulting in the same number of instances for the two types of data.
Next, the number of those instances that belong to the user divides the total number of instances in the
section that the press data falls into (both user data and background data). This provides a number
between zero and one, correlating to the probability of the press belonging to the user rather than to
someone else, where zero means that there are no user instances in that section and one means there
are no background instances in that section, only user instances. A value of 0.5 means the data is as
likely to belong to the user as it is to belong to someone else. A value above 0.5 suggests that the data
belongs to the user, while a value below this suggests that the data does not. The relevant pseudocode
is shown in Figure 6.
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5. Evaluation

5.1. Survey

To collect data to train and test the proposed mechanism, a survey was conducted where people
were asked to enter a password onto the number pad. The password was 6193225307 (chosen using
https://www.random.org/) and each participant was asked to enter the password onto the number pad
in whatever way they wanted. Fourteen people gave eleven repetitions of the password to provide
background and testing data, another ten people provided training data and subsequent correct testing
data, and eight other people gave data to use as incorrect users. Thirty-two people were involved in
the survey, with over 500 repetitions of the password used.

Ten sets of ten passwords were used as the background data for the second algorithm, thus giving
100 instances of each digit in the password against which the probability algorithm could compare.
Ten separate users gave training data, and each of them tested the trained algorithms by entering the
password another ten times and recording the results. The trained algorithms were then tested by
using ten passwords from multiple incorrect users (users whose data were used to test the algorithms
were not the same users whose data was used for the background data, and all testing data were
unique). In summary, for each user tested, ten passwords trained the algorithm, while a further twenty
(ten false and ten correct) tested it.

https://www.random.org/
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5.2. Results

As expected, the results from the same user were similar to each other (shown in Figure 2).
Two other factors show in the results, firstly that users who pressed the buttons in a specific way
(always pressing the button to the maximum, or pressing the buttons quickly, for example) were less
distinct from other users doing the same thing compared to others who did not. This is a relatively
predictable result, as it shows that the algorithms are identifying the characteristics of the presses. The
second factor is that the values for correct data varied per user, without necessarily effecting how well
that user was recognised. For example, with one user the probability value for correct presses never
fell below 0.65, with incorrect presses just above 0.6, whereas with another user correct values fell
below 0.45, but incorrect values only reached 0.41. For both of these users, the algorithm completely
distinguished the correct and incorrect passwords, but at different parts of the scale.

This shows that no fixed threshold should be used for verification with these algorithms.
Therefore, thresholds were chosen for each user by selecting a threshold value such that probabilities
greater than the threshold or percentage differences less than the threshold are accepted. The best
possible threshold values were chosen, such that the maximum number of correct results was accepted
while accepting the minimum number of incorrect results. Error rates for these thresholds could then
be calculated by considering the number of falsely accepted or rejected passwords. Table 1 shows these
error rates.

Table 1. Error Rates.

User No.
Probability Percentage Difference

FAR FRR FAR FRR

1 0.00% 0.00% 0.00% 0.00%
2 10.00% 10.00% 10.00% 40.00%
3 0.00% 0.00% 0.00% 0.00%
4 10.00% 10.00% 10.00% 20.00%
5 10.00% 10.00% 30.00% 0.00%
6 0.00% 0.00% 0.00% 0.00%
7 30.00% 0.00% 10.00% 0.00%
8 0.00% 0.00% 30.00% 0.00%
9 0.00% 0.00% 10.00% 10.00%
10 0.00% 0.00% 0.00% 0.00%

Average 6.00% 3.00% 10.00% 7.00%

Many of the users managed to produce perfect results (four of the ten users for percentage difference,
and six of the ten users for probability), whereas some users, for example, user 2, produced relatively
high error rates. The primary factor for accurate verification was the congruence of button presses.
Users who could enter their password the same way every time, both in training and testing, produced
lower error rates than those whose passwords varied more. This was more of a factor than any
particular method of pressing—both users who pressed buttons faster and those who pressed slower
were among the results with zero error rates. In addition, worthy of note is that the more complex
probability algorithm was more successful than the percentage difference algorithm.

An example of the results taken is shown in Figure 7. The graph shows the clustering of
correct data from user 9 in the upper right. The incorrect data also cluster into four different groups,
each one corresponding to the four different participants who provided incorrect data against which
to test. Three of the groups are clearly distinct from the correct data, while the fourth is distinct
only in probability. This is likely because user 9 and that incorrect user share a similar method of
typing, in terms of speed and pressure. The probability algorithm is still able to separate the two,
however, whereas the percentage algorithm has some overlap. To calculate errors, ideal thresholds are
applied. For probability, this can be >0.65, giving zero errors. For percentage, the best threshold is <58,
giving one falsely accepted datapoint and one falsely rejected datapoint, so FAR = FRR = 10%.
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The average error rates are 4.50% for the probability algorithm and 8.50% for the percentage
difference algorithm. By keeping presses consistent, one might expect better results, but it must be
mentioned that the thresholds chosen are ideal for the data and therefore may, in practice, give worse
results. However, if this system was to be adopted, then it is expected that a better algorithm could
be developed and drastically lower the error rate. For a prototype, these results do suggest that very
low error rates are possible in practice. Achieving such results with relatively basic algorithms and
hardware suggests that a complete system should be successful.

5.3. Comparison with Existing Techniques

This paper differs from most papers using analogue keystroke dynamics because the system is on
a keypad, not a full keyboard as shown in details in Table 2. Logically speaking, authenticating on
a keypad would be harder, because there are fewer unique keys to compare against, and generally
fewer fingers are used when keying in passcodes. Although possible implementations have been
suggested [24], the terror rates for previous systems have been relatively high. For example, the accuracy
is only 40% in [25], and the equal error rate (EER) (i.e., the maximum of (FAR, FRR)) is 10% in [26].

The majority of most previous studies into keystroke dynamics only use digital timing data.
While this means that conventional keyboards or number pads can be used, taking additional data
allows for more complex and accurate authentication algorithms, reducing error rates. Studies using
static statistical analysis (in the way that this study does) on a keyboard have given error rates from
0.25% to 6% FAR and 1.45% to 12% FRR [13]. Araujo et al. and Bleha et al. give examples of such
results [16,27]. These studies used whole keyboards rather than the ten buttons of a number pad, and
may have had more complex algorithms for authentication, so the 4.5% average error rate for the
probability-based algorithm in this study suggests that the analogue measurements are effective, and a
good choice for the limited space available on a hardware token. They are also more effective than the
purely maximum-pressure-based systems, which only reported a 40% average accuracy [25]. Similar
previous studies that used neural methods instead of statistical ones showed a notable improvement in
the error rates, with a study giving an average error rate of 1% in [28]. This suggests that the proposed
system with analogue measurements may be able to achieve even better results using neural methods.
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Table 2. Comparison with Existing Techniques.

User Authentication Technique Measured Data Error Rates

Bleha et al. [27] Keyboard timing data False Acceptance Rate (FAR) 0.5%,
False Rejection Rate (FRR) 3.1%

Anusas-amornkul and Wangsuk
[15] Keyboard timing data Equal Error Rate (EER) 4–12%

Araujo et al. [16] Keyboard timing data FAR 1.89%, FRR 1.45%

Darabseh and Namin [17] Continuous authentication Around 20% error rate

Ahmed and Traore [18] Continuous authentication Around 2% error rate

Roth et al. [19] Keystroke sounds Around 11% error rate

Zhou et al. [20] Keystroke sounds FAR 11%, FRR 12%

Sulong et al. [23] Keyboard pressure/displacement FAR 1.67%, FRR 0%

Sulavko et al. [22] Keyboard pressure/displacement 0.6% error rate

Loh et al. [25] Number pad
pressure/displacement 60% error rate

Grabham and White [26] Number pad
pressure/displacement EER 10%

This study Number pad
pressure/displacement 4.5% average error rate

The proposed system has a number of advantages over previous studies. The system can be
self-contained—the prototype used a raspberry pi for all computation, and such a processor could
be embedded onto the number pad to make it one unit, no bigger than a normal number pad.
Studies have shown good results for analogue data in the past [22], but these have mostly been situated
on a computer with an attached analogue keyboard, rather than a self-contained unit. A possible issue
with this would be if a large neural net were used for computation, in which case the processing power
of an embedded chip may not be sufficient [13,14]. This could be solved by doing the processing
remotely, on the host machine or a server, or by generating the algorithm remotely and then loading
the completed algorithm onto the keypad. While the prototype used linear motion potentiometers,
a full system could use linear encoders or similar to save on price, and this would be cheaper than the
force-sensitive resistors of past studies [22,25].

6. Conclusions

This paper has proposed a multi-factor authentication scheme to enhance the security of password
perfection schemes, by introducing a biometric element based on keystroke dynamics.

It consists of using portable hardware token for each user’s authentication, which collects the
password and the biometric data. A prototype of the proposed system has been designed and
verified experimentally. The results indicated the feasibility of building dynamic keystroke-based
authentication system that can achieve an average error rate of 4.5%, using minimal computation
resources and without being invasive or time consuming for the user. Future extension of this work
will explore the use of machine learning algorithms to reduce authentication errors. Another future
direction on the design side includes expanding the current implementation to take into consideration
temporally close keystrokes, this effectively means treating the entire password as an n-dimensional
feature vector, which may provide better authentication.
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