
cryptography

Article

ESPADE: An Efficient and Semantically Secure
Shortest Path Discovery for Outsourced
Location-Based Services

Bharath K. Samanthula 1,*, Divya Karthikeyan 1, Boxiang Dong 1 and K. Anitha Kumari 2

1 Department of Computer Science, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA;
karthikeyand1@montclair.edu (D.K.); dongb@montclair.edu (B.D.)

2 Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu 641004, India;
kak.it@psgtech.ac.in

* Correspondence: samanthulab@montclair.edu; Tel.: +1-973-655-5161

Received: 18 July 2020; Accepted: 2 October 2020; Published: 18 October 2020
����������
�������

Abstract: With the rapid growth of smart devices and technological advancements in tracking
geospatial data, the demand for Location-Based Services (LBS) is facing a constant rise in several
domains, including military, healthcare and transportation. It is a natural step to migrate LBS to a cloud
environment to achieve on-demand scalability and increased resiliency. Nonetheless, outsourcing
sensitive location data to a third-party cloud provider raises a host of privacy concerns as the data
owners have reduced visibility and control over the outsourced data. In this paper, we consider
outsourced LBS where users want to retrieve map directions without disclosing their location
information. Specifically, our paper aims to address the following problem: Given a user’s location s,
a target destination t, and a graph G stored in a cloud, can users retrieve the shortest path route
from s to t in a privacy-preserving manner? Although there exist a few solutions to this problem,
they are either inefficient or insecure. For example, existing solutions either leak intermediate
results to untrusted cloud providers or incur significant costs on the end-user. To address this gap,
we propose an efficient and secure solution based on homomorphic encryption properties combined
with a novel data aggregation technique. We formally show that our solution achieves semantic
security guarantees under the semi-honest model. Additionally, we provide complexity analysis and
experimental results to demonstrate that the proposed protocol is significantly more efficient than the
current state-of-the-art techniques.

Keywords: shortest path; location-based service; cloud computing; semantic security; encryption

1. Introduction

Due to the advent of the Internet of Things (IoT), a wide range of smart devices (e.g., tablets and
smartphones) are being used to boost businesses across several industries, including healthcare [1,2],
manufacturing [3], and military [4]. The number of applications that provide services using geo-locations
has also increased in recent years [5]. Specifically, the proliferation of smart devices is the driving force
for the growth of Location-Based Services (LBS). LBS applications and platforms allow users to access
relevant and updated information about their surroundings based on their real-time geo-location
information. For example, navigation, gaming, advertising, and tracking are some domains that
effectively leverage LBS [6].

Although the LBS feature renders dynamic user experience and enhances the way businesses
can operate and interact with their customers, many such applications sacrifice user security for
increased availability and performance [7]. For example, addressing the inherent privacy issues
in LBS remains a critical challenge for many service providers [8,9]. In general, a user should

Cryptography 2020, 4, 29; doi:10.3390/cryptography4040029 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
http://www.mdpi.com/2410-387X/4/4/29?type=check_update&version=1
http://dx.doi.org/10.3390/cryptography4040029
http://www.mdpi.com/journal/cryptography

Cryptography 2020, 4, 29 2 of 21

disclose his/her location data for the LBS provider to make accurate recommendations. This enables
LBS providers to continuously track the user’s personal information, such as their home address,
travel plans, lifestyle, etc. Due to growing privacy concerns, users may not want to disclose their
location information to LBS providers, but they may still want to get benefits from such applications.
Additionally, the evolution of real-time LBS queries emphasizes the need for LBS providers to provide
on-demand services. That is, LBS providers often require huge computational and storage resources
to manage graph data and process location-aware queries. As a result, it is costly and challenging
for LBS providers to manage on-premise infrastructure for delivering services. A natural solution to
this problem is to adopt cloud computing technology [10] for efficient processing of LBS queries with
on-demand scalability and increased resiliency [11]. The LBS provider can delegate their computational
operations in addition to their data to the cloud. Nonetheless, the privacy issues mentioned above
become even more challenging under an outsourced environment as the cloud service providers are
remote and not trusted servers. A common approach to address the confidentiality of the location
data is to encrypt it before being outsourced to a cloud. However, processing over encrypted data
is not straightforward as the cloud cannot see the underlying data, thus affecting the quality of LBS.
Therefore, we emphasize that there is a strong need to develop privacy-preserving technologies
(e.g., [12,13]) that can equilibrate privacy and quality of LBS applications in a cloud environment.

In this paper, we focus on the Single-Source Single-Destination (SSSD) shortest path query,
which is one of the commonly used LBS features, under an outsourced cloud environment. For example,
consider finding the shortest path to the military base in a mission-critical search-and-rescue operation.
To achieve data confidentiality, we assume that the geospatial data are represented as a graph and are
encrypted before being outsourced to a cloud. Specifically, given an encrypted graph G stored in a
cloud, the goal is to find the shortest path from the source to a destination in a privacy-preserving
manner. In the literature, this problem is commonly referred to as Privacy-Preserving Shortest Path
over Encrypted Graph (PSPEG) [14]. We emphasize that any solution to the PSPEG problem needs to
address the following three privacy objectives:

1. Privacy Objective 1 (PO1): User’s input information (i.e., source and destination locations)
should not be revealed to the cloud service providers and any other users.

2. Privacy Objective 2 (PO2): The contents of graph G should never be revealed to the cloud service
providers and unauthorized users.

3. Privacy Objective 3 (PO3): The shortest path information should be revealed only to the query issuer.

Existing PSPEG solutions (e.g., [14–16]) either do not meet all the above privacy objectives or
are not very efficient. Therefore, the primary goal of this paper is to develop a solution that is both
secure and efficient. Specifically, we address two research questions: (i) Investigate ways for the data
owner to securely and efficiently outsource his/her graph data as well as the shortest path query
processing task to a cloud. (ii) Study methods for the query issuer to efficiently retrieve the shortest
path results from the cloud without compromising his/her location privacy. To address the above
two questions, we adopt the Paillier cryptosystem [17] due to its efficiency and inherent additive
homomorphic properties over encrypted data. The cloud server can directly operate on encrypted data
to execute the steps involved in the shortest path-discovery process. Along this direction, we propose
an Efficient and Semantically Secure Shortest Path Discovery over Encrypted Graph Data (ESPADE)
protocol under a cloud environment. The proposed ESPADE protocol meets all of the three privacy
objectives mentioned above and provides semantic security [18] under the semi-honest model of
Secure Multi-party Computation (SMC) [19]. The main idea behind our protocol is to split the graph
data into grids, apply homomorphic encryption operations using a novel data aggregation technique,
and execute the shortest path discovery process in an iterative process. The underlying steps involved
in ESPADE are based on the well-known Dijkstra’s algorithm [20]; thus, ensuring the correctness.
Our performance analysis shows that ESPADE is more secure and efficient compared to the existing
PSPEG protocols. It is worth noting that our solution can be incorporated into critical outsourced

Cryptography 2020, 4, 29 3 of 21

LBS applications (e.g., military rescue operations) where the secure computation of single-source
single-destination shortest path queries is a fundamental task in the graph mining process.

Main Contributions

The existing solutions to the PSPEG problem are either insecure (e.g., leak intermediate results to
the cloud providers) or not very efficient. Our proposed ESPADE protocol is both secure and efficient
over existing solutions. The main contributions of this paper are summarized below:

1. Semantic Security: ESPADE meets all three privacy objectives mentioned earlier. That is, the contents
of the outsourced graph G and the user’s input query are never revealed to the cloud service
providers and any unauthorized users. This is because our solution is designed to achieve
semantic security under the semi-honest model of SMC. We refer the reader to Section 6.1 for
more details.

2. Efficiency: Our protocol is significantly efficient (in terms of both computation and
communication-wise) compared to existing solutions. It is worth noting that the majority of
expensive computations in ESPADE are performed by cloud providers, thus minimizing the costs
on the end-user.

3. Correctness: The steps involved in ESPADE are similar to the ones in the standard Dijkstra’s
algorithm. The only difference is that the underlying operations are performed either over
encrypted or randomized data. For any given G and shortest path query Q, the shortest path
returned by our protocol is the same as the one that would be returned by executing Dijkstra’s
algorithm on {G, Q}.

4. Flexibility: Upon outsourcing the graph data to the cloud, the data owner does not have to
participate in any other operations. Specifically, the end-users can issue SSSD queries directly
to the cloud and the majority of the query processing task is done by the cloud providers,
which suffices in the main purpose of outsourcing in the first place.

The remainder of this paper is organized as follows: Section 2 discusses our system model.
In Section 3, we touch upon more closely related work to ours. Section 4 presents the background
information. Section 5 discusses the proposed ESPADE protocol in detail along with a running
example. We present the security proofs and the comparative performance analysis of ESPADE with
experimental results in Section 6, and conclude the paper with future work in Section 7.

2. Problem Model

In our problem setting, we consider three types of entities: (i) Alice (ii) Federated Cloud
and (iii) Bob. The proposed system model along with the information flow among different entities is
shown in Figure 1. Next, we discuss the role of each of these entities.

• Alice: We assume that Alice (data owner) holds sensitive geospatial data represented as a
graph G = {V, E, W}, where V = {v1, . . . , vn} denotes the set of vertices, E denotes the edges
connecting those vertices associated with weights W. In our model, we consider that G is an
undirected weighted graph represented as an α × α grid matrix (refer to Section 5 for more
details). For example, consider a graph used by Google Maps where G represents a road network.
Here each vertex in V will correspond to a given point on the road network, and each edge E will
correspond to the road segment that connects any two points on the road network. In this case,
weight can be the distance between junctions or traffic flow.

• Federated Cloud: Without loss of generality, let Alice outsource G (in encrypted format) to
a Federated Cloud (FC) environment consisting of two cloud services providers C1 and C2.
We assume that C1 and C2 are semi-honest and do not collude. This is a realistic model as it is
being used in several existing works (e.g., in [21–24]). This is because most of the cloud service
providers are well-known IT organizations and it is highly unlikely that any two cloud service
providers will collude as it may damage their reputation and can adversely affect their revenues.

Cryptography 2020, 4, 29 4 of 21

• Bob: The end-user Bob issues SSSD shortest path queries to FC. C1 and C2 will collaboratively
compute the shortest path from source s to t, and return the path to Bob.

Under the above problem setting, we formally define the proposed ESPADE protocol as follows:

ESPADE(G, 〈s, t〉)→ SP(s, t) (1)

where G is known only to Alice and is outsourced (after proper randomization) to FC. 〈s, t〉 denote the
source and destination locations, respectively, known only to Bob. At the end of the ESPADE protocol,
the shortest path route, denoted by SP(s, t), should be revealed only to Bob.

Briefly, our model involves the following main steps: (1) C2 initially generates a public-private
key pair (pk, sk) based on the Paillier cryptosystem [17] and distributes the public key pk to Alice,
C1 and Bob, (2) Alice randomly splits her graph data G in a systematic way and outsources them to
C1 and C2, (3) Bob randomly splits his shortest path query information and forwards them to FC,
(4) C1 and C2 involve secure computations to collaboratively extract the shortest path information,
and (5) FC sends the randomized sub-graph data to Bob, who then aggregates and extracts the shortest
path information based on Dijkstra’s algorithm.

Figure 1. The Proposed ESPADE Model.

3. Related Work

In this section, we discuss the existing methods for privacy-preserving shortest path (PPSP)
computation. We also demonstrate the limitations of the existing solutions.

3.1. Privacy-Preserving Shortest Path over Plaintext Data

In this sub-section, we briefly touch upon existing privacy-preserving shortest path solutions in
which the graph data stored on the server-side are in a non-encrypted format.

Cryptography 2020, 4, 29 5 of 21

3.1.1. Obfuscation Methods

In obfuscation methods [25], Bob does not send his query directly to the LBS provider. For example,
in [26], Bob computes a set of dummy locations and obfuscates his source location s with the fake
locations. Similarly, he obfuscates the destination location t with many fake locations. Suppose S
and T denote the obfuscated source and destination locations, respectively. Bob forwards (S, T) to
the LBS provider. Upon receiving, the LBS provider computes the shortest path from every location
in S to every location in T, based on G resulting in |S| ∗ |T| paths which are forwarded to Bob.
Finally, Bob retains the shortest path that corresponds to the original source-destination location
pair. It is worth noting that any PPSP solution based on the obfuscation method is not secure as it
will reveal substantial information about the query to the LBS provider. For example, LBS knows
that the original source (or destination) location is one among the many locations in the set S (or T).
Additionally, obfuscation-based methods assume that outsourced data (i.e., G in our case) are known
to the LBS provider, whereas in our problem setting the contents of G are hidden from both cloud
service providers.

3.1.2. Private Information Retrieval (PIR) Methods

In PIR [27], the server is assumed to hold a database of items and the end-user wants to retrieve
the ith item from the database in an oblivious manner. Computational PIR [28] is one kind of PIR
which can work with a single server and utilizes cryptographic techniques to ensure the privacy of the
query from a computationally bounded server. Existing PIR-based solutions to PPSP assume that the
outsourced graph database is not privacy-sensitive and is known to the LBS provider. For example,
Mouratidis and Yiu [29] proposed a hardware-aided PIR-based solution to PPSP that relies on a
tamper-resistant secure co-processor installed at the server-side. However, such schemes require
decrypting the data in a secure area at the cloud and perform the computation on decrypted data;
thus, they do not protect data access patterns from the server [30].

In this paper, we assume that the graph data are sensitive and thus the above schemes are not
applicable to our problem domain, especially for outsourced environments where the outsourced data
are in an encrypted format and has to be protected even from the cloud service providers.

3.2. PPSP over Encrypted Graph Data

In the past decade, various techniques for location-based query processing over outsourced
encrypted data have been proposed [14–16,31,32]. However, there exist only a few solutions to the
PPSP problem over encrypted graph data. Blanton et al. [15] proposed a data-oblivious algorithm for
the SSSD shortest path problem on protected information. First, their algorithm is well-suited only for
dense graphs. Second, their framework is based on the (k, n) threshold linear secret sharing scheme
that requires at least three parties whereas our framework utilizes a more practical two-cloud model.

Zhang et al. [16] proposed a shortest path computing framework based on homomorphic
encryption and secure multi-party computation. However, their protocols assume that only the
edge-weight information was encrypted; and thus, their solution reveals the vertex information to
the cloud server. Additionally, they utilized 1-out-of-n oblivious transfer cryptographic primitive,
which can be prohibitively expensive and their solution requires the participation of the data owner
during the shortest path computation, whereas in our protocol the data owner does not participate in
any operations after the data outsourcing step.

Samanthula et al. [14] proposed two PPSP solutions over encrypted graph data, referred as
PSPEG1 and PSPEG2, under different cloud settings. First, PSPEG1 utilizes a single cloud service
provider whereas PSPEG2 uses a two-cloud model similar to ours. However, both of these protocols
incur significant computation and communication costs on Alice and Bob. Furthermore, there is no
provable way to quantify the security guarantees of these two protocols as they did not provide any
security proofs. In Section 6, we formally show that our proposed ESPADE protocol is more efficient

Cryptography 2020, 4, 29 6 of 21

and secure compared to both PSPEG1 and PSPEG2. Specifically, the proposed ESPADE protocol
utilizes a data aggregation technique under encryption to boost the performance of each iteration in
the shortest path discovery process whereas PSPEG1 and PSPEG2 incur significant costs (computation,
communication, and round) on the cloud providers and the end-user. We refer the reader to Section 6
for a detailed analysis on the secure guarantees of ESPADE and its comparison with existing work.

4. Preliminaries

In this section, we discuss basic concepts and core algorithms that are utilized in ESPADE
as background knowledge. First, we present the main steps involved in the Dijkstra’s algorithm.
Then, we discuss the importance of homomorphic encryption in outsourced environments along with
the properties of Paillier Cryptosystem, which are crucial to perform certain operations over encrypted
data in our proposed protocol. Finally, we discuss the two-party secure multiplication (SM) protocol
over encrypted data, which is used as a building block in ESPADE. Some common notations utilized
in this paper are shown in Table 1.

Table 1. Common Notations.

Notation Description

SSSD-SP Single-source single-destination shortest path

ESPADE Efficient and semantically secure shortest path discovery over encrypted graph data

FC A federated cloud environment consisting of two cloud service providers C1 and C2

G A weighted graph consisting of V = {v1 . . . , vn} vertices with E edges and W weights

n The total number of grids G is divided into

vi,j jth vertex in grid location i

vk
i,j kth neighbor of vertex vi,j

wk
i,j Weight between the two vertices: vi,j and vk

i,j

(s, t) Source and destination locations

SP(s, t) Shortest path from s to t based on G

(pk, sk) A pair of public-private key pair generated based on Paillier cryptosystem

Epk Paillier’s Encryption function with public key pk

Dsk Paillier’s Decryption function with private key sk

r ∈R ZN A random number chosen uniformly in the group ZN

4.1. The Dijkstra’s Algorithm

There exist several algorithms to find the single-source shortest path for a weighted graph
G = {V, E, W}, such as Dijkstra’s and Bellman–Ford algorithms. In this paper, we focus on Dijkstra’s
algorithm as it is one of the most commonly used algorithms for non-negative weighted graphs.
In general, most of the location-based services, such as map directions, deal with non-negative
weighted graphs. For brevity, in this paper, we restrict our discussion to non-negative weighted
graphs. Given a weighted graph G, Dijkstra’s algorithm can be used to compute the shortest path
from a given source (s) to the destination (t), denoted by SP(s, t). Let us consider a graph G with the
following elements:

◦ Vertices denoted by u or v;
◦ Each edge that connects two vertices (u, v) has weights associated with it, denoted by wu,v.

For a given (s, t) pair, the algorithm will traverse neighboring vertices in G, finding the shortest
path by adding edge weights and replacing the current shortest path if a lower total distance is found.
The main steps involved in Dijkstra’s algorithm are discussed below.

Cryptography 2020, 4, 29 7 of 21

A. Initialization

◦ The current vertex cv is marked as source s;
◦ Each vertex in G is initially marked as unvisited;
◦ All vertices are assigned with ∞ as the distance from s, while for s itself the distance is assigned

as 0. That is, dist(v) = ∞, ∀ v ∈ V ∧ v 6= s;
◦ SP(s, t) = {}.

B. Iterative Process

◦ Step 1: For the current vertex cv, consider all unvisited vertices that are directly connected to cv.
Let us denote this set by L.

◦ Step 2: For each vertex u ∈ L, calculate its new distance from the source as dist′(u) = dist(cv) +
wu,cv. If dist′(u) ≤ dist(u), then update vertex u′s distance as dist′(u). Otherwise, it is unchanged.

◦ Step 3: Mark cv as visited and update SP(s, t) as SP(s, t)‖cv. If cv = t, then terminate and return
SP(s, t) as the output. Otherwise, select the vertex m ∈ L, which has the smallest distance, set cv
to m, and proceed to Step 1.

4.2. Homomorphic Encryption and Paillier Cryptosystem

Homomorphic Encryption (HE) provides a way to process the information in an encrypted
format and produce the same results as if the operations were performed over plaintext data [33].
In outsourced environments, HE enables untrusted servers to directly perform operations over
encrypted data while maintaining the confidentiality of the data. Existing HE schemes are broadly
categorized into Fully Homomorphic Encryption (FHE) and Partially Homomorphic Encryption (PHE)
schemes. On one hand, FHE supports multiple types of operations (i.e., addition and multiplication)
over encrypted data, but the existing FHE schemes are very expensive and not practical. On the
other hand, PHE schemes support only one type of operation, either addition or multiplication,
over encrypted data.

The Paillier cryptosystem [17] is an asymmetric PHE scheme that can support an arbitrary number
of addition operations over encrypted data and whose security relies on the hardness of integer
factorization. Let Epk denote the Paillier’s encryption function, where the public key pk consists of
(N, g). Here N denotes the RSA modulurats and g denotes the geneor from group Z∗N . The encryption
of a message m under Paillier’s scheme is given by, Epk(m) = (gm ∗ rN) mod N2, where r ∈R ZN .
For any two given messages, m1, m2 ∈ ZN , the following properties of Paillier’s encryption function
always hold:

◦ Additive Homomorphism: The output of multiplying the ciphertexts of m1 and m2 is equivalent
to the encryption of m1 + m2 mod N. That is,

Epk(m1) ∗ Epk(m2) = Epk(m1 + m2 mod N)

.◦ Partial Multiplication: Given a constant b ∈ ZN , rising the ciphertext of m1 to the power of b is
equivalent to the encryption of b ∗m1. That is,

Epk(m1)
b = Epk(b ∗m1)

.◦ Semantic Security: Paillier’s encryption function is a probabilistic scheme meaning that
encryptions of the same message will result in different ciphertexts. Therefore, given a set
of ciphertexts, an adversary cannot deduce any information about the underlying plaintexts.
That is, ciphertexts are indistinguishable from one another; thus, the scheme exhibits the semantic
security property [18].

In this paper, we adopt Paillier’s scheme as the underlying encryption scheme due to its security
guarantees, homomorphic properties, and possible optimizations (refer to Section 6.2.2 for more details).

Cryptography 2020, 4, 29 8 of 21

4.3. Secure Multiplication (SM)

As mentioned above, Paillier’s encryption scheme allows parties to locally perform addition
operations over encrypted data. However, multiplication over encrypted data cannot be done locally
and it requires the help of the party holding the corresponding private-key. Without loss of generality,
suppose C1 holds private data 〈Epk(a), Epk(b)〉 and C2 holds the corresponding Paillier’s private-key
sk. We assume that a and b are not known to C1 and C2. Under this setting, the goal of Secure
Multiplication (SM) [34] is to enable C1 and C2 to jointly compute Epk(a ∗ b). The output of the SM
protocol—i.e., Epk(a ∗ b), should be known only to C1. During the execution of SM, the contents of a, b,
and (a ∗ b) should not be revealed to C1 and C2.

The main steps involved in the SM protocol [34] are highlighted in Algorithm 1. Initially, C1 generates
two random numbers ra, rb ∈R ZN , and uses them to randomize the encrypted inputs. That is,
C1 computes A = Epk(a + ra) and B = Epk(b + rb) using the additive homomorphic properties of
Paillier’s scheme and forwards these values to C2. Upon receiving, C2 decrypts (A, B) to get (a′, b′),
respectively. Then, it multiplies a′ and b′ whose equation can be expanded as follows:

a′ ∗ b′ = (a + ra) ∗ (b + rb) = a ∗ b + a ∗ rb + b ∗ ra + ra ∗ rb

At this point, C2 knows that p = a′ ∗ b′, which it encrypts under pk and sends the resulting encrypted
value P to C1. Finally, C1 performs homomorphic operations on P locally and removes the randomized
factors (i.e., a ∗ rb, b ∗ ra and ra ∗ rb) under encryption to get Epk(a ∗ b) as the final output.

Algorithm 1 SM(Epk(a), Epk(b))→ Epk(a ∗ b)

Require: C1 holds 〈Epk(a), Epk(b)〉 and C2 holds sk. a and b are not known to C1 and C2
1: C1:

(a). Pick two random numbers ra, rb ∈ ZN
(b). A← Epk(a) ∗ Epk(ra)
(c). B← Epk(b) ∗ Epk(rb)
(d). Send A, B to C2

2: C2:

(a). Receive A and B from C1
(b). a′ ← Dsk(A); b′ ← Dsk(B)
(c). p← a′ ∗ b′ mod N
(d). P← Epk(p)
(e). Send P to C1

3: C1:

(a). Receive P from C2
(b). y← P ∗ Epk(a)N−rb

(c). y′ ← y ∗ Epk(b)N−ra

(d). Epk(a ∗ b)← y′ ∗ Epk(ra ∗ rb)
N−1

Example 1. Suppose a = 59 and b = 58. For simplicity, let ra = 1 and rb = 3. Assume that C1 holds
〈Epk(59), Epk(58)〉. Various intermediate results computed during the execution of SM protocol are as follows.
Initially, C1 computes A = Epk(a) ∗ Epk(ra) = Epk(60), B = Epk(b) ∗ Epk(rb) = Epk(61) and sends
them to C2. Then, C2 decrypts and multiplies them to get p = 3660. After this, C2 encrypts p to get
P = Epk(3660) and sends it to C1. Upon receiving P, C1 computes y = Epk(3660− a ∗ rb) = Epk(3483),
and y′ = y ∗ Epk(−b ∗ ra) = Epk(3425). Finally, P1 computes Epk(a ∗ b) = y′ ∗ Epk(−ra ∗ rb) = Epk(3422).

Cryptography 2020, 4, 29 9 of 21

5. The Proposed ESPADE Protocol

In this section, we present our ESPADE protocol in detail. As mentioned in Section 2, our proposed
protocol consists of three parties: Alice, Federated Cloud, and Bob. ESPADE is constructed based on
the Paillier cryptosystem and by utilizing the SM primitive as a building block. For the rest of this
paper, we explicitly make the following assumptions:

1. Alice’s geospatial data are represented as a weighted graph G with V vertices and W weights.
The contents of G are sensitive and thus need to be kept confidential from cloud service providers
and unauthorized parties. We assume that each vertex in G is associated with a unique identification
number—for example, denoting the combination of latitude and longitude information.

2. C2 generates the public-private key pair (pk, sk) based on the Paillier’s scheme and securely
distributes pk to Alice, C1, and Bob. We assume that there exist secure communication channels
(e.g., SSL) between each pair of parties participating in our protocol.

3. Similar to existing work [14–16], we assume that all the participating parties in our protocol are
semi-honest [19]. The semi-honest model is a practical security model, due to the following
reasons. First, building protocols under the semi-honest model is an important first step
for constructing protocols under stronger security models (e.g., against covert and malicious
adversaries). Second, protocols under the semi-honest model are typically considered to be quite
efficient, which may not be the case for other adversarial models. Third, protocols that are proven
to be secure under the semi-honest model can prevent inadvertent leakage of information among
participating parties. Finally, it is highly unlikely that the well-established cloud service providers
(e.g., Amazon and Microsoft) would deviate from the prescribed protocol and collude, as this
would damage their reputation and consumer trust. Therefore, we believe that the semi-honest
model is a practical security model for our problem domain.

The goal of ESPADE is to securely outsource G to FC and execute Bob’s shortest path query (s, t) in a
privacy-preserving manner. The proposed ESPADE protocol consists of the following two stages:

◦ Stage 1—Secure Outsourcing of Graph G (SOG): In this stage, Alice transforms her graph data
G into a proper α × α grid matrix. During this process, Alice relies on our data aggregation
technique to intelligently capture the information in each grid. After this transformation,
Alice outsources the aggregated graph information to the federated cloud environment using the
randomization approach. At the end of this stage, only C1 knows the encrypted graph data.

◦ Stage 2—Secure Retrieval of Shortest Path (SRSP): In this stage, Bob securely sends his shortest
path query Q = 〈s, t〉 to FC. Then, C1 and C2 jointly involve secure computations to retrieve
the shortest path in an iterative process, based on Dijkstra’s algorithm. At the end of this stage,
only Bob knows the shortest path from s to t.

The main steps involved in the proposed ESPADE protocol are given in Algorithm 2. Next, we explain
each of the two stages of ESPADE in detail.

Cryptography 2020, 4, 29 10 of 21

Algorithm 2 ESPADE(G, 〈s, t〉)→ SP(s, t)

Require: Alice holds private graph G; C2 holds private key sk; Bob holds the shortest path query 〈s, t〉
(Note: parameters pk, `, m, and n are public)

{Stage1—Secure Outsourcing of Graph}
1: Alice:

(a). for 1 ≤ i ≤ n do:

◦ Compute Mi from G, m, and `
◦ Compute aggregated grid information Ti from Mi
◦ Split Ti,j: T1

i,j = Ti,j + ri,j mod N and T2
i,j = N − ri,j, for 1 ≤ j ≤ 3m + 1

(b). Send T1 to C1 and T2 to C2

2: C2:

(a). Receive T2 from Alice
(b). Fi,j ← Epk(T2

i,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ 3m + 1
(c). Send F to C1

3: C1:

(a). Receive T1 from Alice and F from C2
(b). G′i,j ← Epk(T1

i,j) ∗ Fi,j mod N2, 1 ≤ i ≤ n and 1 ≤ j ≤ 3m + 1

{Stage2—Secure Retrieval of Shortest Path}
4: SRSP(G′, 〈s, t〉)

5.1. Secure Outsourcing of Graph G (SOG)

During Stage 1, Alice first divides her graph G into α× α square grids (for example, 1 mile by
1 mile). Let n denote the total number of grids in G and gv denote the grid ID in which a vertex v
resides. Each grid is represented by the set of vertices that reside inside the grid, their neighbors,
and the associated weights. Alice represents each piece of grid information as a matrix where each row
corresponds to a vertex in that grid. Suppose ` denotes the maximum number of unique vertices in
each grid and m denotes the maximum of 1-hop neighbors, a vertex in G can have. Upon dividing
the graph G into n grids, Alice constructs the matrix Mi for each grid, for 1 ≤ i ≤ n. Each row in
Mi corresponds to a particular vertex in grid i and its m neighboring vertex information. Specifically,
for grid i, the number of unique vertices are denoted by vi,1, . . . , vi,`. For each vertex vi,j in grid i,
Alice stores 3m entries, such that each entry consists of the neighboring vertex, its associated edge
weight, and the grid ID of the neighboring vertex, where 1 ≤ j ≤ m. As an example, for vertex
vi,j, Alice stores 〈v1

i,j, w1
i,j, gv1

i,j
〉, . . . , 〈vm

i,j, wm
i,j, gvm

i,j
〉. In this case, v1

i,j, . . . , vm
i,j and w1

i,j, . . . , wm
i,j denote

the neighboring vertices of vi,j and the corresponding edge weights, respectively, for 1 ≤ j ≤ m.
Additionally, gv1

i,j
denotes the Grid ID of vertex v1

i,j. A sample snapshot of the grid information

captured in Mi is shown below.

Mi =

vi,1 〈v1

i,1, w1
i,1, gv1

i,1
〉 . . . 〈vm

i,1, wm
i,1, gvm

i,1
〉

vi,2 〈v1
i,2, w1

i,2, gv1
i,2
〉 . . . 〈vm

i,2, wm
i,2, gvm

i,2
〉

...
...

...
...

vi,` 〈v1
i,`, w1

i,`, gv1
i,`
〉 . . . 〈vm

i,`, wm
i,`, gvm

i,`
〉

For security reasons, we assume that all the matrices constructed from G are of the same size; that is,
`×m. However, if a grid has less than ` vertices, Alice can add dummy entries. Similarly, if a vertex
has less than m neighbors, she can insert dummy values.

Cryptography 2020, 4, 29 11 of 21

Upon creating all the matrices, we propose that Alice adopts the following data aggregation
technique to reduce its outsourcing costs, as well as later query processing costs for the end-users.
Alice transforms matrix Hi into a vector Ti of size 3m + 1 by concatenating the column-wise
entries in Mi. That is, the first entry of Ti is computed as 〈vi,1‖vi,2, . . . , ‖vi,`〉, the second entry as
〈v1

i,1‖v1
i,2, . . . , ‖v1

i,`〉, and so on. After transforming all the matrices into vectors, Alice needs to outsource
Ti’s to FC in an encrypted format. However, for large values of n, m and `, it would be expensive for
Alice to encrypt Ti, for 1 ≤ i ≤ n. Therefore, we propose the following approach for Alice to outsource
Ti,j. Alice selects a random number ri,j and splits Ti,j into two random shares: T1

i,j = Ti,j + ri,j mod N
and T2

i,j = N − ri,j. It is worth noting that Ti,j = T1
i,j + T2

i,j mod N always holds, for 1 ≤ i ≤ n and

1 ≤ j ≤ 3m + 1. Then, Alice outsources T1
i,j and T2

i,j to C1 and C2, respectively. Upon receiving T2
i,j, C2

computes Epk(T2
i,j) and forwards it to C1. Finally, C1 computes Epk(T1

i,j) ∗ Epk(T2
i,j) mod N2 which is

equivalent to Epk(T1
i,j + T2

i,j) = Epk(Ti,j). We denote the final encrypted dataset by G′, which is known
only to C1.

5.2. Secure Retrieval of Shortest Path (SRSP)

Following from Stage 1, C1 has encrypted graph dataset G′. During Stage 2, Bob with private
input 〈s, t〉, C1 with private input G′ and C2 with private key sk wants to jointly find the shortest path
from s to t in a privacy-preserving manner. At the end of Stage 2, SP(s, t) should be known only to Bob.

The main steps involved in Stage 2 of ESPADE are shown in Algorithm 3. Next, we discuss the
steps of Stage 2 in detail below:

• To start with, Bob creates a graph Gs that initially contains no values except his starting point s.
The goal of Bob is to expand Gs by retrieving graph data from FC in an iterative manner until he
has sufficient graph data to construct SP(s, t). First, he computes the grid location (e.g., using his
GPS) in which his source location s resides, denoted by cg. He also sets the current vertex cv to s.
Now, Bob wants to request cg’s grid data from FC so that he can expand Gs without revealing any
information about cg to C1 and C2. A trivial approach here is for Bob to encrypt cg and forward
it to C1, but this would require exponentiation module N2 operations, which are expensive.
To avoid this, Bob splits cg into two random shares cg1 and cg2, such that cg1 = cg + r mod N
and cg2 = N − r, where r ∈R ZN . Bob sends cg1 and cg2 to C1 and C2, respectively.

• Upon receiving cg2, C2 encrypts it under pk and forwards Epk(cg2) to C1.
• After receiving cg1 from Alice and Epk(cg2) from C2, C1 computes Epk(cg) by performing

homomorphic operations, as Epk(cg1) ∗ Epk(cg2) mod N2. Then, it obliviously checks which grid’s
information Bob is requesting. To achieve this, C1 computes ∆i = Epk(cg) ∗ Epk(i)N−1 mod N2.
The idea behind this operation is to subtract Bob’s requesting grid ID cg from all grid IDs under
encryption. The observation here is that exactly one of the values of ∆ is an encryption of 0.
C1 randomizes ∆ by computing Xi = ∆ri

i mod N2, where ri ∈R ZN . Then, C1 randomly permutes
Y ← π(X) and sends Y to C2. Here π is a random permutation function known only to C1.

• Upon receiving Y, C2 decrypts it component-wise using the private key sk resulting in a new
vector Z. It is worth noting that only one of the entries in Z is 0. Now, C2 generates a new
encrypted vector P based on whether the value of Zi is 0 or not. Specifically, it generates P as
follows and sends it to C1:

Pi =

{
Epk(1) if Zi = 0
Epk(0) otherwise

Cryptography 2020, 4, 29 12 of 21

Algorithm 3 SRSP(G′, 〈s, t〉)
Require: Bob holds SSSD query 〈s, t〉; C1 holds G′ and C2 holds the private key sk

1: Bob:
(a). Gs ← 〈s〉 and cv← s
(b). Compute the current grid ID cg of cv
(c). Compute two random shares of cg as cg1 ← cg+ r mod N and cg2 ← N− r, where r ∈R ZN
(d). Send cg1 to C1 and cg2 to C2

2: C2:

(a). Receive cg2 from Bob
(b). Compute and send Epk(cg2) to C1

3: C1:

(a). Receive cg1 from Bob and Epk(cg2) from C2
(b). Epk(cg)← Epk(cg1) ∗ Epk(cg2) mod N2

(c). for 1 ≤ i ≤ n do:

◦ ∆i ← Epk(cg) ∗ Epk(i)N−1 mod N2

◦ Xi= ∆ri
i mod N2,where ri ∈R ZN

(d). Y ← π(X); Send Y to C2

4: C2:

(a). Receive Y from C1
(b). for 1 ≤ i ≤ n do:

◦ Zi = Dsk(Y)
◦ if Zi = 0 then

Pi=Epk(1)
else

Pi=Epk(0)

(c). Send P to C1

5: C1 :

(a). Q← π−1(P)
(b). for 1 ≤ i ≤ n do:

◦ Φi,j ← SM(Qi, G′i,j), for 1 ≤ j ≤ 3m + 1 {SM requires participation of both C1 and C2}

(c). for 1 ≤ j ≤ 3m + 1 do

◦ Λj ← ∏n
i=1 Φi,j mod N2

◦ Compute Λ′j ← Λj ∗ Epk(rj) mod N2, where r ∈R ZN .
◦ λ1,j ← N − rj

(d). Send λ1 to Bob and Λ′ to C2

6: C2:

(a). λ2,j ← Dsk(Λ′j) for 1 ≤ j ≤ 3m + 1
(b). Send λ2 to Bob

7: Bob:

(a). Receive λ1 from C1 and λ2 from C2
(b). λj ← λ1,j + λ2,j mod N, for 1 ≤ j ≤ 3m + 1
(c). Update Gs based on λj and execute Dijkstra’s algorithm
(d). if t is marked as visited then

return SP(s, t)
else

Identify the new neighboring vertex cv and proceed to step 1(b)

Cryptography 2020, 4, 29 13 of 21

• C1 performs inverse permutation on P to get Q = π−1(P). It is worth noting that Qi equals
Epk(1) if i = cg, and Qi = Epk(0) otherwise. After this, C1 with private input 〈Q, G′〉 and
C2 with private key sk are involved in a set of secure multiplication operations. Specifically,
C1 with input 〈Qi, G′i,j〉 and C2 jointly execute SM(Qi, G′i,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ 3m + 1.
Suppose Φ denotes the output of SM. Since Q consists of Epk(1) only for Bob’s current grid cg,
secure multiplication will result in Φ to store the aggregated grid information of cg. For i 6= cg,
every other entry in G′i is multiplied by Epk(0); thus, the result will be encryptions of 0’s for all
other grids. Note that the output of SM—that is Φi,j—is known only to C1, for 1 ≤ i ≤ n and
1 ≤ j ≤ 3m + 1. Next, C1 aggregates all the SM results column-wise locally. That is, C1 computes
Λj ← ∏n

i=1 Φi,j mod N2. The important observation here is that Λ contains the entire grid data in
which cg resides. At this point, C1 needs to somehow send the current grid data to Bob. In order to
alleviate the overload on Bob, C1 utilizes the randomization approach. That is, C1 selects random
numbers rj ∈R ZN and adds it to Λ using additive homomorphic properties by computing
Λ′j ← Λj ∗ Epk(rj) mod N2. Additionally, C1 computes λ1,j = N − rj. Now, C1 sends λ1,j to Bob
and Λ′j to C2, for 1 ≤ j ≤ 3m + 1.

• After receiving the encrypted randomized vector Λ′, C2 decrypts it component-wise using sk to
get λ2,j, for 1 ≤ j ≤ 3m + 1. Then, C2 sends λ2 to Bob. Due to the randomization by C1, it is worth
noting that the decrypted values in this step do not reveal any information to C2.

• Finally, upon receiving λ1 and λ2 from C1 and C2, Bob adds them component-wise to get λj ←
λ1,j + λ2,j mod N, for 1 ≤ j ≤ 3m + 1 which consists of cg’s grid data. Bob will then update
Gs based on this new grid information and executes the Dijkstra’s algorithm to determine the
shortest path marking each vertex with minimum distance as visited. If Bob’s destination t
is in this subgraph and marked as visited, Bob can calculate the shortest distance from s to t
locally, and thus terminates the protocol by returning SP(s, t). Otherwise, Bob identifies the
new vertex nv for which the grid information is missing and sets it as the new current vertex cv.
Then, the algorithm is repeated (i.e., go to step 1(b) of Algorithm 3) with an updated cv as input
to the next iteration.

Example 2. In this example, we consider a sample weighted graph G (refer to Figure 2) and illustrate various
intermediate steps during the execution of ESPADE. Here G consists of 16 vertices, denoted from A to P, and it
is split into four evenly distributed square grids. The four grid cells are denoted by M1, . . . , M4. Without the loss
of generality, suppose Bob wants to retrieve the shortest path from A to P using ESPADE. Various intermediate
results along with the shortest path discovery process in each iteration are shown in Figure 3. For brevity,
we only show the steps involved during Stage 2 of ESPADE.

• Iteration 1: Initially, Bob sets his current vertex cv to A. In this case, the current grid ID of cv is 1 since
cv resides in M1. That is, Bob sets cg = 1. Bob randomly splits his cg information and sends them to C1

and C2, separately. At the end of the first iteration, Bob receives all the vertex and associated edge weight
information of M1. He updates his sub-graph Gs (refer to Figure 3a) and executes Dijkstra’s algorithm.
After marking C as visited, Bob makes I the current vertex.

• Iteration 2: Bob updates the current grid ID cg value to 3, as vertex I resides in M3. cg is passed as input
to the second iteration. At the end of the second iteration, Bob expands Gs as shown in Figure 3b.

◦ Similarly, Bob retrieves M2 and M4 information in iterations 3 and 4, respectively. Refer to Figure 3c,d.
At the end, Bob finds out that SP(A, P) = {A, C, D, G, M, P}.

Cryptography 2020, 4, 29 14 of 21

Figure 2. A snapshot of geospatial network G with 16 vertices which are divided into four square grids.

(a) Iteration 1 with cv = A and cg = 1 (b) Iteration 2 with cv = I and cg = 3

(c) Iteration 3 with cv = G and cg = 2 (d) Iteration 4 with cv = M and cg = 4

Figure 3. Shortest path exploration and intermediate results during the execution of proposed
ESPADE protocol.

Cryptography 2020, 4, 29 15 of 21

6. Performance Analysis of ESPADE

In this section, we present the security and performance analysis of the ESPADE protocol.
First, we formally show that ESPADE is secure under the semi-honest model of SMC. Then, we discuss
the complexity costs of our protocol and provide a comparative analysis with two existing solutions
including experimental results.

6.1. Security Analysis under the Semi-Honest Model

As mentioned earlier, we assume that all the parties participating in our protocol are semi-honest
as it is the commonly used adversarial model. Under the semi-honest model, parties follow the
prescribed steps of the protocol, but they are free to deduce any meaningful information about the
inputs based on the messages they see during the execution of the protocol. In this paper, we adopt
the following security definition that is commonly used for the semi-honest model [19,35]:

Definition 1. Suppose P be a party participating in a protocol π with input a and output b. Assume that
ΠP,real(π) denotes the P’s execution image of π. In general, an execution image of P consists of all the inputs,
outputs, and the intermediate messages it sees during the execution of the protocol. Let ΠP,sim(π) denote the P’s
simulated image based on π and 〈a, b〉. Then, π is secure if the (real) execution image of P is computationally
indistinguishable from its simulated image.

6.1.1. Proof of Security for Stage 1

During Stage 1, the execution image of C2 is given by ΠC2,real(ESPADE) = {〈T2
i,j, Fi,j〉, for 1 ≤ i ≤

n ∧ 1 ≤ j ≤ 3m + 1}. Here T2
i,j is the encrypted value received from Alice at step 2(a) of Algorithm 2.

Additionally, Fi,j is a random number derived upon decrypting T2
i,j. Without loss of generality, let the

simulated image of C2 be given as ΠC2,sim(ESPADE) = {〈ai,j, a′i,j〉, for 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3m + 1},
where ai,j and a′i,j are randomly chosen from ZN2 and ZN , respectively. Since the encryption function
of Paillier’s scheme is semantically secure, it is guaranteed that T2

i,j will be a random number in

ZN2 . Thus, T2
i,j is indistinguishable from ai,j. Similarly, Fi,j is distinguishable from a′i,j. As a result,

ΠC2,sim(ESPADE) is computationally indistinguishable from ΠC2,real(ESPADE), which implies that C2

does not learn anything during the execution of Stage 1.
On the other hand, the execution image of C1 in Stage 1 is given by ΠC1,real(ESPADE) = {T2},

where T2 is an encrypted matrix sent by C2 (at step 2(c) of Algorithm 2). Let the simulated image of C1

be ΠC1,sim(ESPADE) = {B}, where the values of Bi,j are randomly selected from ZN2 . Since Epk is a
semantically secure encryption function, it guarantees that ciphertexts T2

i,j are randomly distributed in
ZN2 . This shows that Ti,j is computationally indistinguishable from Bi,j; thus, ΠC1,sim(ESPADE)
is computationally indistinguishable from ΠC1,real(ESPADE). Therefore, C1 cannot deduce any
information about G in Stage 1.

6.1.2. Proof of Security for Stage 2

In this sub-section, we formally prove that Stage 2 of ESPADE is secure as per Definition 1.
Without the loss of generality, we consider the messages exchanged between C1 and C2 in a single
iteration. We emphasize that similar analyses can be carried out for other iterations.

During Stage 2, the execution image of C2 is given by,

ΠC2,real(ESPADE) = {cg2, 〈Y, Z〉, 〈Λ′, γ2〉}

where cg2 is a randomized value sent by Bob (at step 1(d) of Algorithm 3). Additionally, Y is an
encrypted vector sent by C1 at step 3(d) and Z is the resulting decrypted vector, such that exactly one
of the entries is 0 and all others values are random numbers in ZN . Similarly, Λ′ is the encrypted
randomized vector sent by C1 at step 5(d) and γ2 is the resulting decrypted vector. Without loss of
generality, let the simulated image of C2 be given by,

Cryptography 2020, 4, 29 16 of 21

ΠC2,sim(ESPADE) = {h, 〈I, J〉, 〈K, L〉}

Here h denotes a random number generated from ZN . I denotes a vector of size 3m+ 1 whose elements
are randomly selected from ZN2 whereas vector J is randomly generated such that only one of the
entries is 0 and the remaining entries are random numbers in ZN . Similarly, K and L denote vectors of
size 3m + 1 whose elements are randomly selected from ZN2 and ZN , respectively. Since cg2 and h are
both random numbers from ZN2 , it is evident that they are computationally indistinguishable. Since Epk
generates ciphertexts that are uniformly random in ZN2 , we conclude that I and K are computationally
indistinguishable from Y and Λ′, respectively. Plus, J is computationally indistinguishable from Z as
they both have exactly one of the entries as 0 and remain as random numbers in ZN . Furthermore,
L and γ2 are vectors consisting of random numbers chosen from ZN ; thus, they are computationally
indistinguishable. Based on the above results, it is implied that C2 cannot deduce any information
about G and Bob’s query during Stage 2.

Similarly, according to Algorithm 3, we can show that C1’s execution image can be simulated from
random numbers. The important observation here is that all the messages received by C1 (from Bob
and C2) are either in an encrypted format or are randomized numbers distributed in ZN . Therefore,
no information is revealed to C1.

Following from Algorithm 2, we emphasize that ESPADE is constructed by sequentially combining
the two stages. As shown above, Stages 1 and 2 are secure under the semi-honest model. Additionally,
it is worth noting that the output of Stage 1 (which is in encrypted format) is passed as an input to
Stage 2. Therefore, by Composition Theorem [35], we can conclude that ESPADE is secure under the
semi-honest adversary model. That is, ESPADE ensures that neither the contents of G nor the shortest
path query is revealed to C1 and C2. Therefore, our proposed protocol meets all the three privacy
objectives (i.e., PO1, PO2, and PO3), described in Section 1.

6.2. Complexity Analysis

In this sub-section, we analyze the computation, communication and round complexities of the
proposed ESPADE protocol. Table 2 shows the complexity costs incurred for various participating
parties during the execution of our protocol.

6.2.1. Computation Costs

In our problem setting, we explicitly assume that the value of generator g is set to N + 1 which
helps us to optimize the Paillier encryption function without affecting the underlying security
guarantees. Specifically, when g = N + 1, Paillier’s encryption function can be reduced to
Epk(m) = (1 + m ∗ N) ∗ rN mod N2, for any message m ∈ ZN . Additionally, it is worth noting that the
computation of rN mod N2 can be done offline, since it is independent of the message to be encrypted.
As a result, the actual online computation cost of Paillier encryption is two multiplications (under
modulo N2). We refer the reader to [36] for detailed security analysis on this setting. Following from the
above optimizations, we only consider the online computation costs during our complexity analyses
of ESPADE.

Table 2. Complexity Results: Computation, Communication and Round Costs for different parties
in ESPADE.

Online Computation Communication (in bits) Round

Alice (one-time) (6m + 2) ∗ n additions 2n ∗ (3m + 1) ∗ log N -

Bob O(mn) additions O(n log N) O(n)

Federated Cloud O(mn2 log N) multiplications O(mn2 log N) O(n)

First, during step1(a) of Stage 1, the computation cost of Alice is bounded by (6m + 2) ∗ n addition
operations. Note that Alice does not participate in any other operations after outsourcing the data

Cryptography 2020, 4, 29 17 of 21

to FC. It is evident that Alice’s computation costs are negligible as it is a one-time cost. Similarly,
the computation cost of Bob mainly depends on steps 1 and 7 in Algorithm 3. In each iteration,
Bob needs to perform O(m) additions. Since the number of iterations is bounded by O(n), the total
computation cost of Bob in ESPADE is bounded by O(nm) additions (which is low compared to the
overall computation cost of the protocol as shown below).

Next, we discuss the computation costs incurred on the federated cloud. During Stage 1,
at step 2(b) of Algorithm 2, C2 is involved in n ∗ (3m + 1) encryption operations, which is equivalent
to 2n ∗ (3m + 1) multiplication operations. Here n denotes the total number grids and m denotes the
maximum number of 1-hop neighbors, a vertex can have in G. Additionally, at step 3(b), C1 performs
n ∗ (3m + 1) multiplications. Combining these results, the total computation cost of FC in Stage 1 is
bounded by O(mn2) multiplications.

During Stage 2, the computation cost of FC mainly depends on steps 3, 4, and 5 of Algorithm 3.
For steps 3 and 5, C1 needs to perform (n log N) and (mn log N) multiplications, respectively.
For step 4, C2 is involved in log N multiplications. Therefore, the total computation cost of FC
in stage 2 is bounded by O(mn log N) multiplications. Putting everything together, the total
computation cost of FC (i.e., the combined computation costs of C1 and C2) in ESPADE is bounded by
O(mn2 log N) multiplications.

6.2.2. Communication and Round Complexity

One the one hand, for Alice, the communication cost depends on step 1(c) of Algorithm 2, where it
sends out two matrices T1 and T2 to FC. The size of these matrices is n× (3m + 1). Since each entry in
these matrices is a random number chosen from ZN , the total size of each matrix is n ∗ (3m + 1) ∗ log N
bits. Therefore, the total communication cost of Alice is (2n ∗ (3m + 1) ∗ log N) bits. On the other
hand, in each iteration of Stage 2, Bob splits the cg value into two random shares and forwards them
to FC. This results in 2 log N bits of communication. Since the number of total iterations is bounded by
O(n), the total communication cost of Bob is bounded by O(n log N) bits. On the other hand, the total
communication cost of FC is bounded by O(mn2 log N) bits.

The number of communication rounds between Bob and FC is bounded by O(n). Furthermore,
the number of communication rounds between C1 and C2 is bounded by O(n). Therefore, the round
complexity of ESPADE is bounded by O(n).

6.3. Performance Comparison with Existing Work

In this sub-section, we compare the performance of ESPADE with two closely related works,
namely PSPEG1 and PSPEG2 [14]. The performance comparison results are shown in Table 3.

Table 3. Performance comparison of ESPADE with PSPEG1 and PSPEG2.

Features PSPEG1 PSPEG2 ESPADE

Cloud Model Single-Cloud Two-Cloud Two-Cloud

Shortest-Path Accuracy 3 3 3

Proof of Security 7 7 3

Data Outsourcing Cost O(`mn log N) mul. O(m|V| log N) mul. O(mn) add.

Bob’s Computation Cost O(n2 log N′) mul. O(|V| log |V|) add. O(mn) add.

Total Computation Cost O(mn2 log N′) mul. O(m|V|2 log N) mul. O(mn2 log N) mul.

Total Communication Cost O(mn2 log N′) bits O(m|V|2 log N) bits O(mn2 log N) bits

Total Round Complexity O(n) O(|V|) O(n)

On the one hand, PSPEG1 is based on a single-cloud architecture whereas PSPEG2 and ESPADE
adopt a two-cloud federated model. Additionally, we observe that PSPEG1, PSPEG2 and ESPADE

Cryptography 2020, 4, 29 18 of 21

always produce correct results as the underlying operations in all the three protocols are constructed
based on Dijkstra’s algorithm. On the other hand, the security guarantees of PSPEG1 and PSPEG2

are unclear as no formal proofs were provided to demonstrate the confidentiality of the outsourced
data, privacy of the user’s shortest path query and the protection of access patterns. In our case,
as we formally showed in Section 6.1, ESPADE is semantically secure under the semi-honest model;
thus, it meets all the three privacy criteria. Additionally, it is worth noting that ESPADE hides data
access patterns due to the underlying random permutation operations.

We observe that PSPEG1 is very inefficient in terms of computation and communication
complexities. Specifically, since PSEPG1 utilizes a single-cloud model, it incurs significant costs
on the data owner Alice and the end-user Bob. For the data outsourcing step, the computation costs
of Alice in PSPEG1 and PSPEG2 are bounded by O(`mn log N) and O(m|V| log N) multiplications,
respectively, where n denotes the number of grids and |V| denotes the number of vertices in G.
Unlike PSEPG1 and PSEPG2, our proposed ESPADE protocol utilizes a random splitting approach
during the data outsourcing step, which incurs low costs on Alice. In particular, the computation cost
of Alice is bounded by O(mn) additions. It is clear that the computation cost of Alice is significantly
less in ESPADE in comparison with PSEPG1 and PSEPG2.

For PSEPG1, the computation cost of Bob is bounded by O(n2 log N′) multiplications, where N′

denotes the RSA moduli, such that N2 < N′. In PSPEG2, this computation burden is alleviated
to a certain extent by pushing some expensive computations from Bob’s side to the second cloud.
Nonetheless, the computation cost incurred on bob is bounded by O(|V| log |V|) which is still high
even for moderate-sized graphs (|V| ≈ 10, 000). In ESPADE, the computation cost of Bob is bounded by
O(mn) additions. It is worth noting that, with the effective combination of homomorphic encryption
properties and our secure data aggregation technique, ESPADE significantly improves the computation
cost of Bob. As shown in Table 3, ESPADE incurs overall less computation and communication costs
compared to PSEPG1 and PSEPG2, especially for n < |V|. Furthermore, the round complexities of
PSEPG1 and ESPADE are bounded by O(n), whereas for PSEPG2 it is bounded by O(|V|).

6.4. Experimental Results

In this sub-section, we demonstrate the superiority of ESPADE over PSPEG1 and PSPEG2

through empirical analysis. All three protocols were implemented in Java using the BigInteger
Class to handle arbitrary-precision arithmetic operations, and experiments were conducted on a
Intel R© CoreTM i7 3.1 GHz PC running macOS 10.13.6 High Sierra with 16GB memory. The Paillier
encryption key size is set to 1024 bits (i.e., the size of N in bits is 1024) and all the results presented are
average values over five executions.

In our experiments, randomly generated datasets were used. For ` = 20, m = 20, n = 100, |V| = 5000,
the running time for Alice in PSPEG1 and PSPEG2 are 4.11 and 6.81 min, respectively, whereas the
running time for Alice in ESPADE is 21 milliseconds. Note that Alice needs to perform expensive
exponentiation operations to encrypt the matrix data in PSPEG1 and PSPEG2, whereas in ESPADE
Alice simply involves in modulo addition operations. Additionally, the running time for Bob in PSPEG1

and PSPEG2 are 1.02 min and 121 milliseconds, respectively. The running time for Bob in ESPADE is
7 milliseconds. The above results clearly justify our performance analysis in Section 6.3 and show that
ESPADE is significantly more efficient, by several orders of magnitude, than PSPEG1 and PSPEG2.

In summary, by using the proposed data aggregation approach in ESPADE, Alice can securely
outsource her graph data and effectively delegate the shortest path query processing task to Federated
Cloud (FC). Furthermore, the costs incurred on Bob during Stage 2 of ESPADE are minimal. Based on
the above discussions, we conclude that ESPADE significantly offers improved performance in
computation and communication load over PSPEG1 and PSPEG2, and at the same time, offering a
higher level of security protection.

Cryptography 2020, 4, 29 19 of 21

7. Conclusions

Existing research shows that location-based services violate user’s privacy and the issue becomes
even more challenging when such applications are pushed to remote and non-trusted cloud servers.
In this paper, we addressed the single-source single-destination shortest path query processing
problem in outsourced LBS. Specifically, we proposed an efficient and semantically secure shortest
path discovery protocol for encrypted graph data outsourced to a federated cloud environment. At the
core of our proposed ESPADE protocol, we utilized homomorphic encryption combined with a novel
data aggregation technique to enable the cloud service providers to operate over encrypted aggregated
data in a privacy-preserving manner. We formally showed that our protocol is secure under the
semi-honest model and also hides access patterns. Additionally, we discussed the complexity analysis
of ESPADE and demonstrated that it is more efficient and secure compared to PSPEG1 and PSPEG2.
Our experimental results show that ESPADE is significantly faster than the existing solutions.

Improving the performance of ESPADE further largely depends on minimizing the amount
of data sent from the federated cloud to Bob. Additionally, improving the performance of the
secure multiplication protocol is another important step to improve the overall efficiency of ESPADE.
For future work, we will investigate better data aggregation and pruning techniques to enhance the
secure retrieval of the shortest path (Stage 2) process in ESPADE. We will also extend our research to
other graph mining tasks, such as minimum spanning tree and breadth-first search, over encrypted
graph data. Another direction for future work is to extend the ESPADE protocol into a secure protocol
under other adversarial models (e.g., covert and malicious models).

Author Contributions: Conceptualization, B.K.S. and D.K.; methodology, B.K.S. and D.K.; software, D.K.
and B.K.S.; validation, B.K.S., D.K., B.D. and A.K.K.; formal analysis, B.K.S.; investigation, B.K.S. and D.K.;
resources, B.K.S. and D.K.; data curation, B.K.S., and D.K.; writing—original draft preparation, B.K.S. and D.K.;
writing—review and editing, B.K.S., D.K., B.D. and A.K.K.; visualization, B.K.S. and D.K.; supervision, B.K.S.;
project administration, B.K.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bennett, J.; Rokas, O.; Chen, L. Healthcare in the Smart Home: A Study of Past, Present and Future.
Sustainability 2017, 9, 840. [CrossRef]

2. Islam, S.M.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K. The Internet of Things for Health Care:
A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [CrossRef]

3. Jeong, S.; Kim, W.J.; Cho, S. Internet of Things for Smart Manufacturing System: Trust Issues in Resource
Allocation. IEEE Internet Things J. 2018, 5, 4418–4427. [CrossRef]

4. Fraga-Lamas, P.; Fernández-Caramés, T.M.; Suárez-Albela, M.; Castedo, L.; González-López, M. A Review
on Internet of Things for Defense and Public Safety. Sensors 2016, 16, 1644. [CrossRef] [PubMed]

5. Huang, H.; Gartner, G.; Krisp, J.M.; Raubal, M.; Weghe, N.V. Location based services: Ongoing evolution
and research agenda. J. Locat. Based Serv. 2018, 12, 63–93.

6. Junglas, I.A.; Watson, R.T. Location-based services. Commun. ACM 2008, 51, 65–69. [CrossRef]
7. Perusco, L.; Michael, K. Control, trust, privacy, and security: Evaluating location-based services. IEEE Technol.

Soc. Mag. 2007, 26, 4–16. [CrossRef]
8. Asuquo, P.; Cruickshank, H.; Morley, J.; Ogah, C.; Lei, A.; Hathal, W.; Bao, S.; Sun, Z. Security and

Privacy in Location-Based Services for Vehicular and Mobile Communications: An Overview, Challenges,
and Countermeasures. IEEE Internet Things J. 2018, 5, 4778–4802. [CrossRef]

9. Rathod A.; Jariwala, V. Investigation of Privacy Issues in Location-Based Services. In Recent Findings in
Intelligent Computing Techniques; Sa, P., Bakshi, S., Hatzilygeroudis, I., Sahoo, M., Eds.; Springer: Singapore,
2019; Volume 707, pp. 55–65.

10. Bokhari, M.U.; Makki, Q.; Tamandani, Y.K. A Survey on Cloud Computing. In Big Data Analytics;
Aggarwal, V., Bhatnagar, V., Mishra, D., Eds.; Springer: Singapore, 2018; Volume 654, pp. 149–164.

http://dx.doi.org/10.3390/su9050840
http://dx.doi.org/10.1109/ACCESS.2015.2437951
http://dx.doi.org/10.1109/JIOT.2018.2814063
http://dx.doi.org/10.3390/s16101644
http://www.ncbi.nlm.nih.gov/pubmed/27782052
http://dx.doi.org/10.1145/1325555.1325568
http://dx.doi.org/10.1109/MTAS.2007.335564
http://dx.doi.org/10.1109/JIOT.2018.2820039

Cryptography 2020, 4, 29 20 of 21

11. Stuedi, P.; Mohomed, I.; Terry, D. WhereStore: Location-based data storage for mobile devices interacting
with the cloud. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, San Francisco, CA, USA, 15–18 June 2010; ACM: New York, NY, USA, 2010; pp. 1–8.

12. Ghinita, G.; Kalnis, P.; Khoshgozaran, A.; Shahabi, C.; Tan, K.-L. Private queries in location based services:
Anonymizers are not necessary. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, Vancouver, BC, Canada, 10–12 June 2008; Association for Computing Machinery:
New York, NY, USA, 2008; pp. 121–132.

13. Yi, X.; Paulet, R.; Bertino, E.; Varadharajan, V. Practical k nearest neighbor queries with location privacy.
In Proceedings of the IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–
4 April 2014; pp. 640–651.

14. Samanthula, B.K.; Rao, F.; Bertino, E.; Yi, X. Privacy-Preserving Protocols for Shortest Path Discovery over
Outsourced Encrypted Graph Data. In Proceedings of the IEEE International Conference on Information
Reuse and Integration, San Francisco, CA, USA, 13–15 August 2015; pp. 427–434.

15. Blanton, M.; Steele, A.; Alisagari, M. Data-oblivious graph algorithms for secure computation and
outsourcing. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, Hangzhou, China, 7–10 May 2013; Association for Computing Machinery:
New York, NY, USA, 2013; pp. 207–218.

16. Zhang, L.; Li, J.; Yang, S.; Wang, B. Privacy Preserving in Cloud Environment for Obstructed Shortest Path
Query. Wirel. Pers. Commun. 2020, 96, 2305–2322. [CrossRef]

17. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Advances in
Cryptology—EUROCRYPT; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999;
Volume 1592, pp. 223–238.

18. Goldwasser, S.; Micali, S.; Rackoff, C. The knowledge complexity of interactive proof-systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, Providence, RI, USA, 6–8 May 1985;
Association for Computing Machinery: New York, NY, USA, 1985; pp. 291–304.

19. Goldreich, O. General Cryptographic Protocols. In Foundations of Cryptography; Cambridge University Press:
Cambridge, UK, 2004; Volume 2, pp. 599–746.

20. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA,
USA. 2009; pp. 658–663.

21. Bugiel, S.; Nürnberger, S.; Sadeghi, A.R.; Schneider, T. Twin Clouds: Secure Cloud Computing with
Low Latency. In Communications and Multimedia Security; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 7025, pp. 32–44.

22. Wang, B.; Li, M.; Chow, S.M.; Li, H. Computing encrypted cloud data efficiently under multiple keys.
In Proceedings of the 2013 IEEE Conference on Communications and Network Security, National Harbor,
MD, USA, 21–23 October 2013; pp. 504–513.

23. Samanthula, B.K.; Elmehdwi, Y.; Jiang, W. k-Nearest Neighbor Classification over Semantically Secure
Encrypted Relational Data. IEEE Trans. Knowl. Data Eng. 2015, 27, 1261–1273. [CrossRef]

24. Samanthula, B.K.; Albehairi, S.; Dong, B. A Privacy-Preserving Framework for Collaborative Association
Rule Mining in Cloud. In Proceedings of the IEEE Cloud Summit, Washington, DC, USA, 8–10 August 2019;
pp. 116–121.

25. Barak, B.; Goldreich, O.; Impagliazzo, R.; Rudich, S.; Sahai, A.; Vadhan, S.P.; Yang, K. On the (im)possibility
of obfuscating programs. J. ACM 2012, 59, 6. [CrossRef]

26. Lee, K.C.K.; Lee, W.-C.; Leong, H.; Zheng, B. Navigational path privacy protection: Navigational path privacy
protection. In Proceedings of the 18th ACM Conference on Information and Knowledge Management,
Hong Kong, China, 2–6 November 2009; Association for Computing Machinery: New York, NY, USA, 2009;
pp. 691–700.

27. Ostrovsky, R.; Skeith, W.E. A Survey of Single-Database Private Information Retrieval: Techniques and
Applications. In Public Key Cryptography; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 4450, pp. 393–411.

28. Kushilevitz, E.; Ostrovsky, R. Replication is not needed: Single database, computationally-private
information retrieval. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
Miami Beach, FL, USA, 19–22 October 1997; pp. 364–373.

http://dx.doi.org/10.1007/s11277-017-4299-8
http://dx.doi.org/10.1109/TKDE.2014.2364027
http://dx.doi.org/10.1145/2160158.2160159

Cryptography 2020, 4, 29 21 of 21

29. Mouratidis, K.; Yiu, M.L. Shortest path computation with no information leakage. Proc. VLDB Endow. 2012,
5, 692–703. [CrossRef]

30. Mehrotra, S.; Sharma, S.; Ullman, J.D.; Ghosh, D.; Gupta, P.; Mishra, A. Panda: Partitioned Data Security on
Outsourced Sensitive and Non-sensitive Data. arXiv 2020, arXiv:2005.06154.

31. Li, L.; Lu, R.; Huang, C. EPLQ: Efficient Privacy-Preserving Location-Based Query over Outsourced
Encrypted Data. IEEE Internet Things J. 2015, 3, 206–218. [CrossRef]

32. Zhu, X.; Ayday, E.; Vitenberg, R. A privacy-preserving framework for outsourcing location-based services to
the cloud. IEEE Trans. Dependable Secur. Comput. 2019. [CrossRef]

33. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A Survey on Homomorphic Encryption Schemes: Theory and
Implementation. ACM Comput. Surv. 2018, 51, 35p. [CrossRef]

34. Elmehdwi, Y.; Samanthula B.K.; Jiang, W. Secure k-nearest neighbor query over encrypted data in outsourced
environments. In Proceedings of the IEEE 30th International Conference on Data Engineering, Chicago, IL,
USA, 31 March–4 April 2014; pp. 664–675.

35. Goldreich, O. Encryption Schemes. In Foundations of Cryptography; Cambridge University Press: Cambridge,
UK, 2004; Volume 2, pp. 373–470.

36. Damgård, I.; Jurik, M. A Generalisation, a Simpli.cation and Some Applications of Paillier’s Probabilistic
Public-Key System. In Public Key Cryptography Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 1992, pp. 119–136.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2212351.2212352
http://dx.doi.org/10.1109/JIOT.2015.2469605
http://dx.doi.org/10.1109/TDSC.2019.2892150
http://dx.doi.org/10.1145/3214303
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Model
	Related Work
	Privacy-Preserving Shortest Path over Plaintext Data
	Obfuscation Methods
	Private Information Retrieval (PIR) Methods

	PPSP over Encrypted Graph Data

	Preliminaries
	The Dijkstra's Algorithm
	Homomorphic Encryption and Paillier Cryptosystem
	Secure Multiplication (SM)

	The Proposed ESPADE Protocol
	Secure Outsourcing of Graph G (SOG)
	Secure Retrieval of Shortest Path (SRSP)

	Performance Analysis of ESPADE
	Security Analysis under the Semi-Honest Model
	Proof of Security for Stage 1
	Proof of Security for Stage 2

	Complexity Analysis
	Computation Costs
	Communication and Round Complexity

	Performance Comparison with Existing Work
	Experimental Results

	Conclusions
	References

