Previous Issue
Volume 5, March

Cryptography, Volume 5, Issue 2 (June 2021) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
CONFISCA: An SIMD-Based Concurrent FI and SCA Countermeasure with Switchable Performance and Security Modes
Cryptography 2021, 5(2), 13; https://0-doi-org.brum.beds.ac.uk/10.3390/cryptography5020013 - 06 May 2021
Viewed by 141
Abstract
CONFISCA is the first generic SIMD-based software countermeasure that can concurrently resist against Side-Channel Attack (SCA) and Fault Injection (FI). Its promising strength is presented in a PRESENT cipher case study and compared to software-based Dual-rail with Pre-charge Logic concurrent countermeasure. It has [...] Read more.
CONFISCA is the first generic SIMD-based software countermeasure that can concurrently resist against Side-Channel Attack (SCA) and Fault Injection (FI). Its promising strength is presented in a PRESENT cipher case study and compared to software-based Dual-rail with Pre-charge Logic concurrent countermeasure. It has lower overhead, wider usability, and higher protection. Its protection has been compared using Correlation Power Analysis, Welch’s T-Test, Signal-to-Noise Ratio and Normalized Inter-Class Variance testing methods. CONFISCA can on-the-fly switch between its two modes of operation: The High-Performance and High-Security by having only one instance of the cipher. This gives us the flexibility to trade performance/energy with security, based on the actual critical needs. Full article
(This article belongs to the Special Issue Feature Papers in Hardware Security)
Show Figures

Figure 1

Open AccessArticle
Grid Cyber-Security Strategy in an Attacker-Defender Model
Cryptography 2021, 5(2), 12; https://0-doi-org.brum.beds.ac.uk/10.3390/cryptography5020012 - 02 Apr 2021
Viewed by 378
Abstract
The progression of cyber-attacks on the cyber-physical system is analyzed by the Probabilistic, Learning Attacker, and Dynamic Defender (PLADD) model. Although our research does apply to all cyber-physical systems, we focus on power grid infrastructure. The PLADD model evaluates the effectiveness of moving [...] Read more.
The progression of cyber-attacks on the cyber-physical system is analyzed by the Probabilistic, Learning Attacker, and Dynamic Defender (PLADD) model. Although our research does apply to all cyber-physical systems, we focus on power grid infrastructure. The PLADD model evaluates the effectiveness of moving target defense (MTD) techniques. We consider the power grid attack scenarios in the AND configurations and OR configurations. In addition, we consider, for the first time ever, power grid attack scenarios involving both AND configurations and OR configurations simultaneously. Cyber-security managers can use the strategy introduced in this manuscript to optimize their defense strategies. Specifically, our research provides insight into when to reset access controls (such as passwords, internet protocol addresses, and session keys), to minimize the probability of a successful attack. Our mathematical proof for the OR configuration of multiple PLADD games shows that it is best if all access controls are reset simultaneously. For the AND configuration, our mathematical proof shows that it is best (in terms of minimizing the attacker′s average probability of success) that the resets are equally spaced apart. We introduce a novel concept called hierarchical parallel PLADD system to cover additional attack scenarios that require combinations of AND and OR configurations. Full article
(This article belongs to the Special Issue Feature Papers in Hardware Security)
Show Figures

Figure 1

Previous Issue
Back to TopTop