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Abstract: This paper shows new card-based cryptographic protocols with the minimum number of
rounds, using private operations under the semi-honest model. Physical cards are used in card-based
cryptographic protocols instead of computers to achieve secure multiparty computation. Operations
that a player executes in a place where the other players cannot see are called private operations.
Using three private operations—private random bisection cuts, private reverse cuts, and private
reveals—the calculations of two variable Boolean functions and copy operations were realized with
the minimum number of cards. Though the number of cards has been discussed, the efficiency of
these protocols has not been discussed. This paper defines the number of rounds to evaluate the
efficiency of the protocols, using private operations. Most of the meaningful calculations using
private operations need at least two rounds. This paper presents a new two-round committed-input,
committed-output logical XOR protocol, using four cards. Then, we show new two-round committed-
input, committed-output logical AND and copy protocols, using six cards. Even if private reveal
operations are not used, logical XOR, logical AND, and copy operations can be executed with the
minimum number of rounds. Protocols for general n-variable Boolean functions and protocols that
preserve an input are also shown. Lastly, protocols with asymmetric cards are shown.

Keywords: multiparty secure computation; card-based cryptographic protocols; private operations;
logical computations; copy; round

1. Introduction
1.1. Motivation

Card-based cryptographic protocols [1–3] have been proposed in which physical cards
are used instead of computers to securely calculate values. They can be used when com-
puters cannot be used or when users cannot trust cryptograhic software in the computers.
The protocols can be used to teach the basics of cryptography [4,5]. den Boer [6] first
showed a five-card protocol to securely calculate the logical AND of two inputs. Since
then, many protocols have been proposed to calculate Boolean functions [7–9] and specific
computations, such as the millionaires’ problem [10–12], realizing Turing machines [13,14],
voting [15–18], random permutation [19–22], grouping [23], ranking [24], lottery [25], proof
of knowledge of a puzzle solution [26–34], and so on. This paper considers calculations of
Boolean functions and the copy operation under the semi-honest model.

There are several types of protocols with regard to the inputs and outputs of the
computations. The first type is committed inputs [7], where the inputs are given as
committed values. The players do not know the input values. The other type is non-
committed inputs [35,36], where players give their private inputs to the protocol, using
private input operations. The private input operations were also used in the millionaires’
problem [11]. Protocols with committed inputs are desirable since they can be used for
non-committed inputs: each player can give their private input value as a committed value.

Cryptography 2021, 5, 17. https://doi.org/10.3390/cryptography5030017 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-6312-257X
https://doi.org/10.3390/cryptography5030017
https://doi.org/10.3390/cryptography5030017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5030017
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5030017?type=check_update&version=2


Cryptography 2021, 5, 17 2 of 22

Some protocols output their computation results as committed values [7]. The result
is unknown to the players unless the players open the output cards. The other type of
protocols [6,37] output the result as a non-committed value, that is, the final result is
obtained only by opening cards. Protocols with committed outputs are desirable since
the committed output result can be used as an input to another computation. If further
calculations are unnecessary, the players just open the committed outputs and obtain the
result. Thus, this paper discusses protocols with committed inputs and committed outputs.

An example of a calculation with committed inputs is a matching service between
men and women. The matching service provider does not allow direct communication
between the clients until the matching is over. A client, Anne, receives information about
a candidate, Bruce, from her agent, Alice. Anne sends the reply of acceptance/rejection
to Alice, but Anne does not want the matching service provider agents to know the reply.
Bruce also receives information about Anne from his agent Bob. Bruce sends his reply of
acceptance/rejection to Bob, but Bruce does not want the matching service provider agents
to know the reply. Alice and Bob must calculate whether the matching is successful or not
without knowing the inputs. In this case, a calculation with committed inputs is necessary.
To prevent malicious activities by the players, Anne observes all the actions executed by
Alice. Bruce observes all the actions executed by Bob. If a player executes some action that
is not allowed, the observing person can point out the misbehavior. Thus, Alice and Bob
become semi-honest players. Note that Anne (Bruce) cannot observe Bob’s (Alice’s) actions.
If a person observes both players’ actions, the person can know a secret value.

Operations that a player executes in a place where the other players cannot see are
called private operations. These operations are considered to be executed under the table
or in the back so that the operations cannot be seen by the other players. Private operations
are shown to be the most powerful primitives in card-based cryptographic protocols. They
were first introduced to solve the millionaires’ problem [10]. Using private operations,
committed-input and committed-output logical AND, logical XOR, and copy protocols can
be achieved with the minimum number of cards [9]. Thus, this paper considers protocols
using private operations.

The number of cards is the space complexity of the card-based protocols. Thus, the
time complexity must also be evaluated. Some studies have been done for protocols that do
not use private operations [38]. As for the protocols using private operations, the number
of rounds, defined in Section 2, is the most appropriate criterion to evaluate the time
complexity. Roughly speaking, the number of rounds counts the number of sending cards
between players. Since each private operation is relatively simple, sending cards between
players and setting up so that the cards are not seen by the other players is the dominating
time to execute private operations. Thus, this paper discusses the number of rounds of
card-based protocols, using private operations.

This paper shows logical XOR, logical AND, and copy protocols with the minimum
number of rounds. The summary of results are shown in Tables 1–3. Note that the protocols
in [7] need one shuffle by each player; thus, the actual execution time is larger than that in
this paper, though the number of rounds is the same.

This paper then shows variations of the protocols that do not use private reveals. Since
a private reveal obtains private values, mistakes of private reveals are fatal for security.
Thus, it would be better if every reveal operation is publicly executed and verified by
multiple players. Thus, we consider protocols that do not use private reveal operations.
We show that we can obtain protocols without increasing the number of rounds or cards,
even if we cannot use private reveals.

Next, we show protocols that preserve an input. In usual logical AND protocols, the
input bits are lost. If one of the inputs is not lost, the input bit can be used for further
computations [39]. This paper shows the number of rounds of protocols that preserve an
input. Lastly, this paper shows that the protocols can be executed using asymmetric cards.
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Table 1. Comparison of XOR protocols, using private operations.

Article # of Rounds # of Cards Preserving an Input Private Reveal

[9] 3 4 No Use

[9] 3 4 Yes Use

[7] 2 4 No Does not use

Protocol 2 2 4 No Use

Protocol 6 2 4 No Does not use

Protocol 12 3 4 Yes Use

Protocol 13 3 4 Yes Does not use

Table 2. Comparison of AND protocols, using private operations.

Article # of Rounds # of Cards Preserving an Input Private Reveal

[9] 3 4 No Use

[9] 3 6 Yes Use

[9] 5 4 Yes Use

[7] 2 6 No Does not use

[39] 3 6 Yes Does not use

Protocol 3 2 6 No Use

Protocol 7 3 4 No Does not use

Protocol 8 2 6 No Does not use

Protocol 14 3 6 Yes Use

Protocol 15 3 6 Yes Does not use

Protocol 16 5 4 Yes Does not use

Table 3. Comparison of copy protocols (m = 2), using private operations.

Article # of Rounds # of Cards Private Reveal

[9] 3 4 Use

[7] 2 6 Does not use

Protocol 4 2 6 Use

Protocol 9 3 4 Does not use

Protocol 10 2 6 Does not use

In Section 2, basic notations, the private operations introduced in [9], and the definition
of the rounds are shown. Section 3 shows two-round XOR, AND, and copy protocols.
Section 4 shows the protocols that do not use private reveals. Section 5 shows protocols
that preserve an input. Section 6 shows parallel execution of the protocols. Section 7 shows
protocols with asymmetric cards. Section 8 concludes the paper.

1.2. Related Works

Many studies have been done for calculating Boolean functions without private
operations; den Boer [6] first showed a five-card protocol to securely calculate logical AND
of two inputs. Since then, several protocols to calculate logical AND of two committed
inputs have been shown [40–42], but they use more than six cards. Mizuki et al. [7] showed
a logical AND protocol that uses six cards. It was proved that it is impossible to calculate
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logical AND with less than six cards when we use closed and uniform shuffles [43]. When
it is allowed to use a special kind of shuffle that is not closed or uniform, the minimum
number of cards of logical AND protocols is decreased to five [8,44,45]. In addition, when
Las Vegas protocols are allowed, logical AND protocols with five or four cards were
shown [2,37,46].

For making copies of an input bit, Mizuki et al. showed a protocol with six cards [7].
A five-card protocol was shown that uses non-uniform shuffles [47].

Mizuki et al. [7] showed a logical XOR protocol that uses four cards, which is the
minimum. An XOR protocol that uses random cuts was shown [48].

Several other protocols, such as computations of many inputs [49–53], computing any
Boolean functions [13,14,39,54], and two-bit output functions [55], were shown. Protocols
using other types of cards were also shown [56–63].

2. Preliminaries
2.1. Basic Notations

This section gives the notations and basic definitions of card-based protocols. Most of
this paper is based on a standard two-color card model.

In the two-color card model, there are two kinds of marks: and . Cards of the

same marks cannot be distinguished. In addition, the back of both types of cards is . It is

impossible to determine the mark in the back of a given card of .

One bit data are represented by two cards as follows: = 0 and = 1.
One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is called

a commitment of x, and denoted as commit(x). It is written as follows: ︸ ︷︷ ︸
x

. Note that

when these two cards are swapped, commit(x̄) can be obtained. Thus, logical negation can
be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of cards S
whose length is n is denoted as S = s1, s2, . . . , sn, where si is the i-th card of the sequence.

S = ︸︷︷︸
s1

︸︷︷︸
s2

︸︷︷︸
s3

. . . , ︸︷︷︸
sn

. A sequence whose length is even is called an even sequence.

S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by multiple players. Throughout this paper, all players

are semi-honest, that is, they obey the rule of the protocols but try to obtain information
x of commit(x). There is no collusion among players executing one protocol together.
No player wants any other player to obtain information on committed values. Since the
private operations are executed in a place where the other players cannot see, malicious
actions might be easily executed, hence the semi-honest model might not be inappropriate
in some cases. To consider malicious actions, two techniques are considered. The first
technique executes more than two players [9]. For example, three players—Alice, Bob,
and Carol—execute one protocol together. Alice watches Bob’s private operations, Bob
watches Carol’s private operations, and Carol watches Alice’s private operations. If a
player executes a malicious action, it is detected by the corresponding watching player.
The method can be easily introduced to the protocols shown in this paper.

The second technique uses envelopes as an additional tool [64]. The technique is used
when the number of players is two. The cards are put into envelopes and sealed in a public
place. When the seals are illegally opened during a private operation, they can be detected
by the other player. Using the envelopes, all malicious private actions during AND, XOR,
and copy protocols are detected or automatically corrected [64]. The technique can also be
applied to this paper’s protocols. Thus, this paper assumes the semi-honest model to show
the fundamental protocols.

In Section 7, protocols with asymmetric cards are written. When we use cards whose

face is not symmetric, such as and , but the back is symmetric, one-bit data can be
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represented by one card as = 0 and = 1. Protocols with this type of card are first
considered in [56] and then several protocols are shown in [9,36,60]. This paper shows
minimum round protocols using private operations.

2.2. Private Operations

We show three private operations introduced in [9] for the two-color model: private
random bisection cuts, private reverse cuts, and private reveals.

Primitive 1. (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence S0 = s1, s2, . . . , s2m.

A player selects a random bit b ∈ {0, 1} and outputs the following:

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see. The player
must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 = commit(x),

given S0 = ︸ ︷︷ ︸
x

, the player’s output S1 = ︸ ︷︷ ︸
x⊕b

, which is ︸ ︷︷ ︸
x

or ︸ ︷︷ ︸
x̄

.

Primitive 2. (Private reverse cut, private reverse selection)
A private reverse cut is the following operation on an even sequence S2 = s1, s2, . . . , s2m and

a bit b ∈ {0, 1}. A player outputs the following:

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see. The player
must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference between
the primitive in Definition 1, where a random bit must be newly selected by the player.

Note that in many protocols below, selecting left m cards is executed after a private
reverse cut. The sequence of these two operations is called a private reverse selection. A
private reverse selection is the following procedure on an even sequence S2 = s1, s2, . . . , s2m
and a bit b ∈ {0, 1}. A player outputs the following:

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3. (Private reveal) A player privately opens a given committed bit. The player must not
disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on commit(x)

and Bob executes a private reveal on the bit. Since the committed bit is randomized by the
bit b selected by Alice, the revealed bit is x⊕ b. Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained value.
If Bob discloses the obtained value to Alice, Alice knows the value of the committed bit.

2.3. Definition of Round

The space complexity of card-based protocols is evaluated by the number of cards. We
define the number of rounds as a criterion to evaluate the time complexity of card-based
protocols, using private operations. The first round begins from the initial state. The first
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round is (possibly parallel) local executions by each player, using the cards initially given
to each player. It ends at the instant when no further local execution is possible without
receiving cards from another player. The local executions in each round include sending
cards to some other players but do not include receiving cards. The result of every private
execution is known to the player. For example, shuffling for which the result is unknown to
the player themselves is not executed. Since the private operations are executed in a place
where the other players cannot see, it is hard to force the player to execute such operations
whose result is unknown to the player. The i(>1)-th round begins with receiving all the
cards sent during the (i− 1)-th round. Each player executes local executions using the
received cards and the cards left to the player at the end of the (i− 1)-th round. Each player
executes local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum number of
rounds necessary to output the result among all possible inputs and random values.

Let us show an example of a protocol execution and the number of rounds.

Protocol 1. (AND protocol in [9])
Input: commit(x) and commit(y)
Output: commit(x ∧ y)

1. Alice executes a private random bisection cut on commit(x). Let the output be commit(x′).
Alice sends commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob privately sets the following:

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the private random

bisection cut. Let the obtained sequence be S3. Alice outputs S3.

The first round ends at the instant when Alice sends commit(x′) and commit(y) to
Bob. The second round begins at receiving the cards by Bob. The second round ends at the
instant when Bob sends S2 to Alice. The third round begins upon receiving the cards by
Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute protocols
with private operations is the time to send cards between players and set up so that the
cards are not seen by the other players. Thus, the number of rounds is the criterion to
evaluate the time complexity of card-based protocols with private operations.

The minimum number of rounds of most protocols is two. Suppose that the number
of rounds is one. Suppose that a player, for example, Alice, has some (or all) of the final
outputs of the protocol. Since the number of rounds is one, sending cards between players
is not executed. Thus, all the operations to obtain Alice’s outputs are executed by Alice.
Thus, Alice knows the relation between the committed inputs and Alice’s outputs. If
the output cards are faced up to know the results, Alice knows the private input values.
Therefore, most protocols need at least two rounds for the privacy of the committed inputs.

2.4. Our Results

The protocols in [9] are three rounds and use four cards. We show a two-round
logical XOR protocol, using four cards. Then, we show two-round logical AND and copy
protocols, using six cards. Though the number of cards is increased, the number of rounds
is minimal. Another advantage of these two-round protocols is that each player does not
need to remember the random bit. In the protocols in [9], a player needs to remember the
random bit until the player receives the cards again to execute a private reverse cut. If a
player replies late, the other player must remember the random bit for a very long time.
If a player executes many instances of the protocols with many players in parallel, it is hard
for the player to remember so many random values. In the two-round protocols, the first
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player can exit from the protocol after she sends the cards to the other player. Note that
Alice obtains the final result by the three-round protocols in [9] but Bob obtains the final
result by the two-round protocols in this paper. These protocols can be used only if this
change is acceptable by both players. Note that the two-round protocols with the four card
logical XOR, six card logical AND, and copy with private operations are implicitly shown
by [7] since one public shuffle used in the paper can be realized by two private shuffles by
the two players. This paper shows another type of protocol with fewer shuffles.

The above two-round protocols do not use private reverse cuts, using a remembered
bit. Thus, there is a question of whether we can obtain protocols without another type of
private operation. This paper also answers this question. We show protocols that do not
use private reveals. There is a concern in using this primitive: a player might make the
mistake of opening cards that are not allowed and obtaining private values. Since no other
player sees the operation, it is hard to detect or prevent such a mistake. If private reveals
are not executed at all, protections, such as putting each card in an envelope, can be put in
place to prove that incorrectly opening cards is not executed during the private operations.
Thus, it would be better if all reveals are publicly executed. Even if we do not use private
reveals, the number of rounds is unchanged for logical XOR and copy protocols. For AND
and copy, both the (1) two-round and six card protocol and (2) three-round and four card
protocol can be obtained, even without private reveals.

Next, we show protocols that preserve an input. In most protocols, input values are
lost at the end of the protocol. If an input is not lost, the input can be used for further
computations, using the same input value. Thus, protocols that preserve an input are
considered [39]. Protocols that preserve an input are shown.

Last, we show protocols with asymmetric cards. By using asymmetric cards, the
numbers of cards are halved for all protocols.

3. XOR, AND, and Copy with the Minimum Number of Rounds

This section shows our new two-round protocols for XOR, AND, and copy.
These protocols do not use private reverse cuts, using the remembered random bit.

Thus, the first player, Alice, does not need to remember the random bit b after she sends
the cards to the other player.

3.1. XOR Protocol

Protocol 2. (XOR protocol with the minimum number of rounds)
Input: commit(x) and commit(y).
Output: commit(x⊕ y).

1. Alice executes a private random bisection cut on input S0 = commit(x) and S′0 = commit(y),
using the same random bit b. Let the output be S1 = commit(x′) and S′1 = commit(y′),
respectively. Note that x′ = x⊕ b and y′ = y⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private reveal on S1 = commit(x′). Bob executes a private reverse cut on S′1
using x′. Let the result be S2. Bob outputs S2.

The protocol is two rounds.

Theorem 1. The XOR protocol is correct and secure. It uses the minimum number of cards.

Proof. Correctness: Alice sends commit(x ⊕ b) and commit(y ⊕ b) to Bob. Bob swaps
the pair of commit(y⊕ b) if x ⊕ b = 1. Thus, the output S2 is (y⊕ b)⊕ (x ⊕ b) = x ⊕ y.
Therefore, the output is correct.

Alice and Bob’s security: Alice sees no open cards. Thus, Alice obtains no informa-
tion. Bob sees x⊕ b. Since b is a random value that Bob does not know, Bob obtains no
information about x.

The number of cards: At least four cards are necessary for any protocol to input
x and y. This protocol uses no additional cards other than the input cards.
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Note that though the same bit b is used to randomize x and y, it is not a security
problem because y⊕ b is not opened.

The number of rounds is the minimum. Mizuki et al. showed a four-card protocol with one
public shuffle [7]. Since one public shuffle can be changed to two private shuffles by each player,
the minimum number of rounds is also achieved by their protocol. However, the protocol
needs two shuffles; thus, our new protocol is more simple. A comparison of committed-input,
committed-output XOR protocols using private operations is shown in Table 1.

3.2. AND Protocol

Protocol 3. (AND protocol with the minimum number of rounds)
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on S0 = commit(x) and S′0 = commit(0)||
commit(y) using the same random bit b. Two new cards are used to set commit(0). Let the
output be S1 = commit(x′) and S′1, respectively. Note the following:

S′1 =

{
commit(y)||commit(0) if b = 1
commit(0)||commit(y) if b = 0

Alice sends S1 and S′1 to Bob.
2. Bob executes a private reveal on S1. Bob executes a private reverse selection on S′1 using x′.

Let the selected cards be S2. Bob outputs S2 as the result.

The protocol is two rounds. The protocol uses six cards since two new cards are used
to set commit(0).

Theorem 2. The AND protocol is correct and secure.

Proof. Correctness: The desired output can be represented as follows.

x ∧ y =

{
y if x = 1
0 if x = 0

(1)

Bob outputs commit(y) as S2 when (x′, b) = (0, 1) or (1, 0). Since x′ = x ⊕ b, these
cases equal to x = 1. Bob outputs commit(0) as S2 when (x′, b) = (0, 0) or (1, 1). Since
x′ = x⊕ b, these cases equal to x = 0. Thus, the output is correct.

Alice and Bob’s security is the same as in the XOR protocol.

The number of rounds is the minimum. Mizuki et al. showed a six-card protocol with
one public shuffle [7]. Since one public shuffle can be changed to two private shuffles by
each player, the minimum number of rounds is also achieved by their protocol. However, the
protocol needs two shuffles, thus our new protocol is simple. Comparison of committed-input,
committed-output logical AND protocols using private operations are shown in Table 2.

3.3. Copy Protocol

Next, we show a new copy protocol with the minimum number of rounds.

Protocol 4. (Copy protocol with the minimum number of rounds)
Input: commit(x).
Output: m copies of commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the output be
S1 = commit(x′). Alice sets S′1 as m copies of commit(b), where b is the bit selected in the
random bisection cut. Note that x′ = x⊕ b. Alice sends S1 and S′1 to Bob.



Cryptography 2021, 5, 17 9 of 22

2. Bob executes a private reveal on S1 and obtains x′. Bob executes a private reverse cut on each
pair of S′1 using x′. Let the result be S2. Bob outputs S2.

The protocol is two rounds. The protocol uses 2m + 2 cards.

Theorem 3. The copy protocol is correct and secure.

Proof. Correctness: Since Bob obtains x′ = x⊕ b, the output is b⊕ (x⊕ b) = x.
Alice and Bob’s security is the same as in the XOR protocol.

Though the number of cards is increased, the number of rounds is the minimum.
A comparison of the copy protocols (when m = 2) is shown in Table 3. Mizuki et al.
showed a six-card protocol with one public shuffle [7]. Since one public shuffle can be
changed to two private shuffles by each player, the minimum number of rounds is also
achieved by their protocol. However, the protocol needs two shuffles; thus, our new
protocol is more simple.

3.4. Any Two-Variable Boolean Functions

Though this paper shows logical AND and logical XOR, any two-variable Boolean
functions can also be calculated by a similar protocol. Though the protocol differs, the idea
of the construction is similar to the one for the three-round protocol in [9].

Theorem 4. Any two-variable Boolean function can be securely calculated in two rounds and at
most six cards.

Proof. Any two-variable Boolean function f (x, y) can be written as follows:

f (x, y) =
{

f (1, y) if x = 1
f (0, y) if x = 0

where f (1, y) and f (0, y) are y, ȳ, 0, or 1. However, we need to consider the case when
one of f (1, y) and f (0, y) is y or ȳ and the other is 0, or 1. The reason, written in [9] is
as follows. First, consider the case when both of f (1, y) and f (0, y) are 0 or 1. ( f (1, y),
f (0, y)) = (0, 0) (or (1, 1)) means that f (x, y) = 0 (or f (x, y) = 1), thus we do not need to
calculate f . ( f (1, y), f (0, y)) = (1, 0) (or (0, 1)) means the f (x, y) = x (or f (x, y) = x̄); thus,
we do not need to calculate f by a two player protocol.

Next, consider the case when both of ( f (1, y), f (0, y)) are y (or ȳ). This case is when
f (x, y) = y (or f (x, y) = ȳ); thus, we do not need to calculate f by a two-player protocol.

The next case is when ( f (1, y), f (0, y)) is (y, ȳ) or (ȳ, y). ( f (1, y), f (0, y)) = (ȳ, y) is
x ⊕ y (XOR). ( f (1, y), f (0, y)) = (y, ȳ) is x⊕ y; thus, this function can be calculated as
follows: execute the XOR protocol and NOT is taken to the output. Thus, this function can
also be calculated.

The remaining case is when one of ( f (1, y), f (0, y)) is y or ȳ and the other is 0 or 1.
We can modify the first step of the AND protocol and Alice sets as follows:

S′1 =

{
commit( f (1, y))||commit( f (0, y)) if b = 1
commit( f (0, y))||commit( f (1, y)) if b = 0

using one commit(y) and two new cards, since one of ( f (1, y), f (0, y)) is y or ȳ and the other
is 0 or 1. Bob executes a private reveal on S1 = commit(x′) and selects the left(right) pair if
x′ = 0 (x′ = 1). Thus, Bob selects commit( f (1, y)) if x = 1. Bob selects commit( f (0, y)) if
x = 0.

Thus, any two-variable Boolean function can be calculated with, at most, six cards
and in two rounds.
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3.5. n-Variable Boolean Functions

Since two-variable Boolean functions, logical negation, and a copy can be executed, any
n-variable Boolean function can be calculated by the combination of the above protocols.

As another implementation with more cards, we show that any n-variable Boolean
function can be calculated by the following protocol in two rounds, whose technique is
similar to the one in [35]. Let f be any n-variable logical function.

Protocol 5. (Protocol for any Boolean function with two rounds)
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit( f (x1, x2, . . . , xn)).

1. Alice executes a private random bisection cut on commit(xi) (i = 1, 2, . . . , n). Let the
results be commit(x′i)(i = 1, 2, . . . , n). x′i = xi ⊕ bi(i = 1, 2, . . . , n). Note that one random
bit bi is selected for each xi(i = 1, 2, . . . , n). Alice generates 2n commitment Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit( f (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)).
Alice sends commit(x′i)(i = 1, 2, . . . , n) and Sa1,a2,...,an (ai ∈ {0, 1}, i = 1, 2, . . . , n) to Bob.

2. Bob executes a private reveal on commit(x′i) (i = 1, 2, . . . , n). Bob outputs Sx′1,x′2,...,x′n .

The protocol is two-round. The number of cards is 2n+1 + 2n.

Theorem 5. Protocol 5 is correct and secure.

Proof. Correctness: Since Sx′1,x′2,...,x′n = commit( f (b1 ⊕ x′1, b2 ⊕ x′2, . . . , bn ⊕ x′n)) =
commit( f (x1, x2, . . . , xn)), the output is correct.

Alice and Bob’s security is the same as in the XOR protocol.

4. Protocols without Private Reveals

This section shows that the above protocols can be executed without the private reveal
operations. Since it is hard to prevent mistakes of privately revealing cards that are not
allowed, it would be better for all reveal operations to be publicly executed. The general
conversion rule is as follows: When Bob executes a private reveal and set a sequence S in
the original protocol, Bob executes a private random bisection cut to commit(x⊕ b) instead.
Let b′ be the random bit selected by Bob. Then, Bob publicly opens the committed bit
and publicly sets a sequence S by the original rule. Bob (and Alice) then executes private
reverse cuts to undo the randomization by b and b′.

4.1. XOR Protocol without Private Reveals

Protocol 6. (XOR protocol without private reveals)
Input: commit(x) and commit(y).
Output: commit(x⊕ y).

1. Alice executes a private random bisection cut on S0 = commit(x) and S′0 = commit(y)
using the same random bit b. Let the output be S1 = commit(x′) and S′1 = commit(y′),
respectively. Note that x′ = x⊕ b and y′ = y⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private random bisection cut on S1 and S′1 using a private bit b′. Let the
output be S2 = commit(x′′) and S′2 = commit(y′′), respectively. x′′ = x ⊕ b ⊕ b′ and
y′′ = y ⊕ b ⊕ b′ hold. Bob publicly opens S2 and obtains x′′. Alice can see x′′. Bob
publicly sets the following:

S3 =

{
commit(ȳ′′) if x′′ = 1
commit(y′′) if x′′ = 0

S3 is the final result.

The protocol is two rounds.
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Theorem 6. The XOR protocol is correct and secure. It uses the minimum number of cards.

Proof. Correctness: Bob obtains commit(x⊕ b⊕ b′) and commit(y⊕ b⊕ b′). Bob sets S3 as
y′′ ⊕ x′′ = y⊕ b⊕ b′ ⊕ x⊕ b⊕ b′ = x⊕ y. Thus, the result is correct.

Alice and Bob’s security: After Bob executes a private random bisection cut on S1,
the obtained value commit(x′′) = commit(x ⊕ b ⊕ b′). Even if this value is opened, no
player can obtain the value of x since Alice knows b and x⊕ b⊕ b′ and Bob knows b′ and
x⊕ b⊕ b′.

At least four cards are necessary for any protocol to input x and y. This protocol uses
no additional cards other than the input cards.

4.2. AND Protocol without Private Reveals

We can consider two kinds of protocols: (1) three rounds and four cards (the minimum
number of cards); and (2) two rounds (the minimum number of rounds) and six cards.

Protocol 7. (AND protocol without private reveals (1))
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the result be
S1 = commit(x′). Alice sends S1 and S′0 = commit(y) to Bob.

2. Bob executes a private random bisection cut on S1, using a private bit b′. Let the result be
S′1 = commit(x′′). x′′ = x ⊕ b⊕ b′ holds. Bob publicly opens S′1 and obtains value x′′.
Alice can see x′′. Bob publicly sets the following:

S2 =

{
commit(y)||commit(0) if x′′ = 1
commit(0)||commit(y) if x′′ = 0

Bob then executes a private reverse cut on S2 using the bit b′ generated in the private random
bisection cut. Let the result be S3. Bob sends S3 to Alice.

3. Alice executes a private reverse selection on S3 using the bit b generated in the private random
bisection cut. Let the result be S4. Alice outputs S4.

The number of rounds is three.

Theorem 7. Protocol 7 is correct, secure, and uses the minimum number of cards.

Proof. Correctness: The desired output can be represented by Equation (1). When Bob
obtains x′′ = 1, commit(y)||commit(0) is set as S2. When Bob obtains x′′ = 0, commit(0)||
commit(y) is set as S2. Since Bob executes a private reverse cut on S2, commit(y)||commit(0)
is given to Alice when (x′′, b′) = (1, 0) or (0, 1). Since x′′ = x⊕ b⊕ b′, these cases equal
to x⊕ b = 1. commit(0)||commit(y) is given to Alice when (x′′, b′) = (1, 1) or (0, 0). These
cases equal to x⊕ b = 0.

Thus Alice’s output is commit(y) if (x⊕ b, b) = (1, 0) or (0, 1). These cases equal to
x = 1. Alice’s output is commit(0) if (x⊕ b, b) = (1, 1) or (0, 0). These cases equal to x = 0.
Therefore, the output is correct.

Alice and Bob’s security is the same as the XOR protocol without private reveals.
The number of cards: Any committed input protocol needs at least four cards to input.

When Bob sets S2, the cards used for commit(x′′) can be re-used to set commit(0). Thus,
the total number of cards is four and the minimum.

Protocol 8. (AND protocol without private reveals (2))
Input: commit(x) and commit(y).
Output: commit(x ∧ y).
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1. Alice executes a private random bisection cut on S0 = commit(x) and S′0 = commit(0)||
commit(y) using the same random bit b. Two new cards are used to set commit(0). Let the
output be S1 = commit(x′) and S′1, respectively. Note the following:

S′1 =

{
commit(y)||commit(0) if b = 1
commit(0)||commit(y) if b = 0

Alice sends S1 and S′1 to Bob.
2. Bob executes a private random bisection cut on S1 and S′1 using the same random bit b′. Let

the result be S2 and S′2, respectively. Note that S2 = commit(x⊕ b⊕ b′). Bob publicly opens
cards of S2 and obtains x′′ = x⊕ b⊕ b′. Alice can see x′′. Bob publicly selects the left pair of
S′2 if x′′ = 0, otherwise selects the right pair of S′2. Bob outputs the pair as the result.

The protocol is two rounds. The protocol uses six cards since two new cards are used
to set commit(0).

Theorem 8. Protocol 8 is correct and secure.

Proof.

S′2 =

{
commit(y)||commit(0) if b⊕ b′ = 1
commit(0)||commit(y) if b⊕ b′ = 0

Thus Bob outputs commit(y) if (b⊕ b′, x⊕ b⊕ b′) = (1, 0) or (0, 1). These cases equal
to x = 1. Bob outputs commit(0) if (b⊕ b′, x⊕ b⊕ b′) = (1, 1) or (0, 0). These cases equal
to x = 0. Therefore, the output is correct.

Alice and Bob’s security is the same as the XOR protocol without private reveals.

Using the argument in Section 3.4, any two-variable Boolean function can also be
calculated without private reveals by (1) three rounds and four cards, and (2) two rounds
and six cards.

4.3. Copy Protocol without Private Reveals

Similar to the AND protocol, we can consider two kinds of copy protocols: (1) three
rounds and 2m cards (the minimum number of cards); and (2) two rounds (the minimum
number of rounds) and 2m + 2 cards.

Protocol 9. (Copy protocol without private reveals (1))
Input: commit(x).
Output: m copies of commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the result be
S1 = commit(x′). Note that x′ = x⊕ b. Alice sends S1 to Bob.

2. Bob executes a private random bisection cut on S1 using a private random bit b′. Let the result
be S2 = commit(x′′). Note that x′′ = x⊕ b⊕ b′.
Bob publicly opens S2 and obtains x′′. Alice can see x′′. Bob publicly sets m pairs of cards of
x′′. Bob faces down the cards. Let the cards be S3. Bob executes a private reverse cut on each
pair of S3 using b′. Let the result be S′3. Bob sends S′3 to Alice.

3. Alice executes a private reverse cut on each pair of S′3 using b. Alice outputs the pairs.

The protocol is three rounds. The protocol uses 2m cards since the cards of S2 are
reused to set S3.

Theorem 9. Protocol 9 is correct and secure.

Proof. Correctness: Bob makes copies of commit(x′′). Since x′′ = x ⊕ b ⊕ b′, after the
private reverse cuts by Bob and Alice, the cards are commit(x′′ ⊕ b′ ⊕ b) = commit(x⊕ b⊕
b′ ⊕ b′ ⊕ b) = commit(x). Thus, the result is correct.



Cryptography 2021, 5, 17 13 of 22

Alice and Bob’s security is the same as the XOR protocol without private reveals.

Protocol 10. (COPY protocol without private reveals (2))
Input: commit(x).
Output: m copies of commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the result be
S1 = commit(x′). Note that x′ = x⊕ b. Alice privately sets S′1 as m copies of commit(b).
Alice sends S1 and S′1 to Bob.

2. Bob executes a private random bisection cut on S1 and each pair of S′1 using a private random
bit b′. Let the output be S2 = commit(x′′) and S′2, respectively.
Bob publicly opens S2 and obtains x′′. Alice can see x′′. Bob publicly swaps each pair of S′2 if
x′′ = 1. Otherwise, Bob does nothing. Let the result be S3. Bob outputs S3.

The protocol is two rounds. The protocol uses 2m + 2 cards.

Theorem 10. Protocol 10 is correct and secure.

Proof. Correctness: Bob obtains commit(x′′) and commit(b⊕ b′), where x′′ = x⊕ b⊕ b′.
Bob sets S3 as commit(b⊕ b′ ⊕ x′′) = commit(b⊕ b′ ⊕ x⊕ b⊕ b′) = commit(x). Thus, the
result is correct.

Alice and Bob’s security is the same as the XOR protocol without private reveals.

4.4. n-Variable Boolean Functions without Private Reveals

Let f be an n-variable Boolean function.

Protocol 11. (Protocol for n-variable Boolean function without private reveal)
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit( f (x1, x2, . . . , xn)).

1. Alice executes a private random bisection cut on commit(xi) (i = 1, 2, . . . , n). Let the
results be commit(x′i)(i = 1, 2, . . . , n). x′i = xi ⊕ bi(i = 1, 2, . . . , n). Note that one random
bit bi is selected for each xi(i = 1, 2, . . . , n). Alice generates 2n commitment Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit( f (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)).
Alice sends commit(x′i)(i = 1, 2, . . . , n) and Sa1,a2,...,an (ai ∈ {0, 1}, i = 1, 2, . . . , n) to Bob.

2. Bob executes a private random bisection cut on commit(x′i)(i = 1, 2, . . . , n). Note that one
random bit b′i is selected for each x′i(i = 1, 2, . . . , n). Let commit(x′′i ) (i = 1, 2, . . . , n)
be the obtained value. x′′i = xi ⊕ bi ⊕ b′i(i = 1, 2, . . . , n) is satisfied. Bob privately re-
locates Sa1,a2,...,an(ai ∈ {0, 1}, i = 1, 2, . . . , n) so that S′a1,a2,...,an = Sa1⊕b′1,a2⊕b′2,...,an⊕b′n
(ai ∈ {0, 1}, i = 1, 2, . . . , n). The cards satisfy S′a1,a2,...,an = commit( f (a1 ⊕ b1 ⊕ b′1,
a2 ⊕ b2 ⊕ b′2, . . . , an ⊕ bn ⊕ b′n)).
Bob publicly reveals commit(x′′i ) and obtains x′′i (i = 1, 2, . . . , n). Alice can see
x′′i (i = 1, 2, . . . , n). Bob publicly selects S′x′′1 ,x′′2 ,...,x′′n

.

The protocol is two rounds. The number of cards is 2n+1 + 2n.

Theorem 11. Protocol 11 is correct and secure.

Proof. Correctness: Since S′x′′1 ,x′′2 ,...,x′′n
= commit( f (x1 ⊕ b1 ⊕ b′1 ⊕ b1 ⊕ b′1, x2 ⊕ b2 ⊕ b′2 ⊕

b2 ⊕ b′2, . . . , xn ⊕ bn ⊕ b′n ⊕ bn ⊕ b′n)) = commit( f (x1, x2, . . . , xn)), the output is correct.
The security of Alice and Bob is the same as the XOR protocol without private reveals.

5. Protocols that Preserve an Input

In the above protocols to calculate Boolean functions, the input commitment values
are lost. If an input is not lost, the input commitment can be used as an input to another
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calculation. Thus, protocols that preserve an input are discussed [39]. For the three-round
XOR and AND protocols in [9], protocols that preserve an input were shown [9].

First, consider XOR protocols in Sections 3 and 4.

Protocol 12. (XOR protocol that preserves an input)
Input: commit(x) and commit(y).
Output: commit(x⊕ y) and commit(x).

1. Alice executes a private random bisection cut on input S0 = commit(x) and S′0 = commit(y)
using the same random bit b. Let the output be S1 = commit(x′) and S′1 = commit(y′),
respectively. Note that x′ = x⊕ b and y′ = y⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private reveal on S1 = commit(x′). Bob executes a private reverse cut on S′1,
using x′. Let the result be S2. Bob outputs S2. Bob sends back S1 = commit(x′) to Alice.

3. Alice executes a private reverse cut on S1 using b and obtains commit(x).

In Protocol 2, since commit(x′) is unnecessary after Bob’s private reveal, the cards can
be sent back to Alice. Alice can recover commit(x). The number of rounds is increased
to three.

Theorem 12. Protocol 12 is correct and secure.

Proof. Correctness: From the correctness of Protocol 2, commit(x⊕ y) is obtained. commit(x)
can be obtained since x⊕ b⊕ b = x.

The security of Alice and Bob is the same as the XOR protocol without input preserv-
ing.

Protocol 13. (XOR protocol that preserves an input without private reveals)
Input: commit(x) and commit(y).
Output: commit(x⊕ y) and commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x) and S′0 = commit(y)
using the same random bit b. Let the output be S1 = commit(x′) and S′1 = commit(y′),
respectively. Note that x′ = x⊕ b and y′ = y⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private random bisection cut on S1 and S′1 using a private bit b′. Let the
output be S2 = commit(x′′) and S′2 = commit(y′′), respectively. x′′ = x ⊕ b ⊕ b′ and
y′′ = y ⊕ b ⊕ b′ hold. Bob publicly opens S2 and obtains x′′. Alice can see x′′. Bob
publicly sets the following:

S3 =

{
commit(ȳ′′) if x′′ = 1
commit(y′′) if x′′ = 0

S3 is the output. Bob sends back S1 = commit(x′) to Alice.
3. Alice executes a private reverse cut on S1 using b and obtains commit(x).

Theorem 13. Protocol 13 is correct and secure.

Proof. Correctness: From the correctness of Protocol 6, commit(x⊕ y) is obtained. After
Bob publicly reveals S2 and obtains x⊕ b⊕ b′, he can privately recover commit(x′) since he
knows b′. Thus, Bob can send back commit(x′) to Alice. commit(x) can be obtained since
x⊕ b⊕ b = x.

The security of Alice and Bob is the same as the XOR protocol without input preserving.

The protocol is three rounds and uses four cards.
Similarly, the AND protocols in Sections 3 and 4 can be modified to a three-round

protocol to preserve an input.
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Protocol 14. (AND protocol that preserves an input)
Input: commit(x) and commit(y).
Output: commit(x ∧ y) and commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x) and S′0 = commit(0)||
commit(y) using the same random bit b. Two new cards are used to set commit(0). Let the
output be S1 = commit(x′) and S′1, respectively. Note the following:

S′1 =

{
commit(y)||commit(0) if b = 1
commit(0)||commit(y) if b = 0

Alice sends S1 and S′1 to Bob.
2. Bob executes a private reveal on S1. Bob executes a private reverse selection on S′1 using x′.

Let the selected cards be S2. Bob outputs S2 as the result. Bob sends back S1 = commit(x′)
to Alice.

3. Alice executes a private reverse cut on S1 using b and obtains commit(x).

The number of rounds is three and the number of cards is six. Note that though the
characteristics of the Protocol 14 are the same as the protocol in [9], the steps differ: for
example, Alice obtains the output in [9] and Bob obtains the output in Protocol 14.

Theorem 14. Protocol 14 is correct and secure.

Proof. Correctness: From the correctness of Protocol 3, commit(x ∧ y) is obtained. After
Bob privately reveals S1 = commit(x′), he can send back commit(x′) to Alice. commit(x)
can be obtained since x⊕ b⊕ b = x.

The security of Alice and Bob is the same as the AND protocol without input preserving.

Protocol 15. (AND protocol that preserves an input without private reveals)
Input: commit(x) and commit(y).
Output: commit(x ∧ y) and commit(x).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the result be
S1 = commit(x′). Alice sends S1 and S′0 = commit(y) to Bob.

2. Bob executes a private random bisection cut on S1 using a private bit b′. Let the result be
S′1 = commit(x′′). x′′ = x ⊕ b⊕ b′ holds. Bob publicly opens S′1 and obtains value x′′.
Alice can see x′′. Bob publicly sets the following:

S2 =

{
commit(y)||commit(0) if x′′ = 1
commit(0)||commit(y) if x′′ = 0

Bob then executes a private reverse cut on S2 using the bit b′ generated in the private random
bisection cut. Let the result be S3. Bob sends S3 and S1 to Alice.

3. Alice executes a private reverse selection on S3 using the bit b generated in the private random
bisection cut. Let the result be S4. Alice outputs S4. Alice executes a private reverse cut on S1
using b and obtains commit(x).

The number of rounds is three and the number of cards is six.

Theorem 15. Protocol 15 is correct and secure.

Proof. Correctness: From the correctness of Protocol 7, commit(x ∧ y) is obtained. After
Bob publicly reveals S′1 and obtains x⊕ b⊕ b′, he can privately recover commit(x′) since he
knows b′. Thus, Bob can send back commit(x′) to Alice. commit(x) can be obtained since
x⊕ b⊕ b = x.
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The security of Alice and Bob is the same as the AND protocol without input
preserving.

As for the AND type protocol, to calculate f (x, y), another protocol that preserves an
input without additional cards can be obtained, using the technique in [39]. Note that the
function f satisfies that one of ( f (0, y), f (1, y)) is y or ȳ and the other is 0 or 1. Otherwise,
we do not need to calculate f by the AND type two player protocol. When we execute the
four-card AND type protocol without private reveals, two cards are selected by Alice at
the final step. The remaining two cards are not used, but they also output some values.
The unused two cards’ value is the following:{

f (0, y) if x = 1
f (1, y) if x = 0

Thus, the output value is commit(x̄ ∧ f (1, y)⊕ x ∧ f (0, y)). The output f (x, y) can be
written as x ∧ f (1, y)⊕ x̄ ∧ f (0, y). We execute the above XOR protocol that preserves an input
without private reveal for these two output values so that f (x, y) is preserved. The output of
XOR protocol is x̄ ∧ f (1, y)⊕ x ∧ f (0, y)⊕ x ∧ f (1, y)⊕ x̄ ∧ f (0, y) = f (1, y)⊕ f (0, y). Since
one of ( f (0, y), f (1, y)) is y or ȳ and the other is 0 or 1, the output is y or ȳ (depending on f ).
Thus, input y can be recovered without additional cards.

Protocol 16. (AND type protocol that preserves an input without private reveals)
Input: commit(x) and commit(y).
Output: commit( f (x, y)) and commit(y).

1. Alice executes a private random bisection cut on S0 = commit(x). Let the result be
S1 = commit(x′). Alice sends S1 and S′0 = commit(y) to Bob.

2. Bob executes a private random bisection cut on S1, using a private bit b′. Let the result be
S′1 = commit(x′′). x′′ = x ⊕ b⊕ b′ holds. Bob publicly opens S′1 and obtains value x′′.
Alice can see x′′. Bob publicly sets the following:

S2 =

{
commit( f (1, y))||commit( f (0, y)) if x′′ = 1
commit( f (0, y))||commit( f (1, y)) if x′′ = 0

Bob then executes a private reverse cut on S2 using the bit b′ generated in the private random
bisection cut. Let the result be S3. Bob sends S3 to Alice.

3. Alice executes a private reverse selection on S3 using the bit b generated in the private random
bisection cut. Let the result be S4. Alice outputs S4. Let S′4 be the cards that are not selected.

4. Alice and Bob execute the XOR protocol that preserves an input without private reveals
(Protocol 12) for S4 and S′4. Let the preserved input, S4, be the result. We obtain commit(y)
from the XOR result.

Thus, the protocol achieves preserving an input by four cards. The protocol does not
use private reveals. The AND type protocol needs three rounds and the XOR protocol that
preserves an input needs three rounds. The last round of the AND type protocol and the
first round of the XOR protocol are executed by Alice, thus they can be done in one round.
Therefore, the total number of rounds is five.

Theorem 16. Protocol 16 is correct and secure.

Proof. Correctness: From the correctness of Protocol 7, commit( f (x, y)) is obtained as S4.
Since S′4 = commit(x̄ ∧ f (1, y)⊕ x ∧ f (0, y)), the output of the input preserving XOR is
f (x, y)⊕ x̄ ∧ f (1, y)⊕ x ∧ f (0, y) = f (0, y)⊕ f (1, y), which is y or ȳ. The input f (x, y) is
preserved, thus the output can be commit(y) and commit( f (x, y))

The security of Alice and Bob comes from the security of the AND protocol and the
XOR protocol with input preserving.
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Lastly, we show n-variable Boolean function protocols that preserve inputs.

Protocol 17. (Protocol for n-variable Boolean function that preserve inputs)
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit( f (x1, x2, . . . , xn)) and commit(xi)(i = 1, 2, . . . , n).

1. Alice executes a private random bisection cut on commit(xi) (i = 1, 2, . . . , n). Let the
results be commit(x′i)(i = 1, 2, . . . , n). x′i = xi ⊕ bi(i = 1, 2, . . . , n). Note that one random
bit bi is selected for each xi(i = 1, 2, . . . , n). Alice generates 2n commitment Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit( f (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)).
Alice sends commit(x′i)(i = 1, 2, . . . , n) and Sa1,a2,...,an (ai ∈ {0, 1}, i = 1, 2, . . . , n) to Bob.

2. Bob executes a private reveal on commit(x′i) (i = 1, 2, . . . , n). Bob outputs Sx′1,x′2,...,x′n . Bob
sends back commit(x′i)(i = 1, 2, . . . , n) to Alice.

3. Alice executes a private reverse cut on commit(x′i) using bi(i = 1, 2, . . . , n). Alice obtains
commit(xi)(i = 1, 2, . . . , n).

The protocol is three rounds.

Theorem 17. Protocol 17 is correct and secure.

Proof. Correctness: From the correctness of Protocol 5, commit( f (x1, x2, . . . , xn)) is ob-
tained. After Bob privately reveals commit(x′i)(i = 1, 2, . . . , n), he can send back commit(x′i)
(i = 1, 2, . . . , n) to Alice. commit(xi)(i = 1, 2, . . . , n) can be obtained since xi ⊕ bi ⊕ bi =
xi(i = 1, 2, . . . , n).

The security of Alice and Bob is the same as the n-variable Boolean function protocol
without input preserving.

Protocol 18. (Protocol for n-variable Boolean function that preserves inputs without private reveals)
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit( f (x1, x2, . . . , xn)) and commit(xi)(i = 1, 2, . . . , n).

1. Alice executes a private random bisection cut on commit(xi) (i = 1, 2, . . . , n). Let the
results be commit(x′i)(i = 1, 2, . . . , n). x′i = xi ⊕ bi(i = 1, 2, . . . , n). Note that one random
bit bi is selected for each xi(i = 1, 2, . . . , n). Alice generates 2n commitment Sa1,a2,...,an

(ai ∈ {0, 1}, i = 1, 2, . . . , n) as Sa1,a2,...,an = commit( f (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn)).
Alice sends commit(x′i)(i = 1, 2, . . . , n) and Sa1,a2,...,an (ai ∈ {0, 1}, i = 1, 2, . . . , n) to Bob.

2. Bob executes a private random bisection cut on commit(x′i)(i = 1, 2, . . . , n). Note that one
random bit b′i is selected for each x′i(i = 1, 2, . . . , n). Let commit(x′′i ) (i = 1, 2, . . . , n)
be the obtained value. x′′i = xi ⊕ bi ⊕ b′i(i = 1, 2, . . . , n) is satisfied. Bob privately re-
locates Sa1,a2,...,an(ai ∈ {0, 1}, i = 1, 2, . . . , n) so that S′a1,a2,...,an = Sa1⊕b′1,a2⊕b′2,...,an⊕b′n
(ai ∈ {0, 1}, i = 1, 2, . . . , n). The cards satisfy that S′a1,a2,...,an = commit( f (a1 ⊕ b1 ⊕ b′1,
a2 ⊕ b2 ⊕ b′2, . . . , an ⊕ bn ⊕ b′n)).
Bob publicly reveals commit(x′′i ) and obtains x′′i (i = 1, 2, . . . , n). Alice can see
x′′i (i = 1, 2, . . . , n). Bob publicly selects S′x′′1 ,x′′2 ,...,x′′n

. Bob privately sets commit(x′′i ⊕ b′i)

(i = 1, 2, . . . , n). Note that x′′i ⊕ b′i = xi ⊕ bi(i = 1, 2, . . . , n). Bob sends these pairs to Alice.
3. Alice privately executes a private reverse cut on commit(xi ⊕ bi) using bi for each

i(i = 1, 2, . . . , n). Alice obtains commit(xi)(i = 1, 2, . . . , n).

The protocol is three rounds.

Theorem 18. Protocol 18 is correct and secure.

Proof. Correctness: From the correctness of Protocol 11, commit( f (x1, x2, . . . , xn)) is ob-
tained. After Bob publicly reveals commit(x′′i )(i = 1, 2, . . . , n), he can send back commit(x′i)
(i = 1, 2, . . . , n) to Alice. commit(xi)(i = 1, 2, . . . , n) can be obtained since xi ⊕ bi ⊕ bi =
xi(i = 1, 2, . . . , n).
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The security of Alice and Bob is the same as the n-variable Boolean function protocol
without input preserving.

6. Parallel Computations

The XOR protocol and AND-type protocol shown above can be executed in parallel, us-
ing the technique in [9]. Consider the case when commit(x) and commit(yi)(i = 1, 2, . . . , n)
are given and commit( fi(x, yi))(i = 1, 2, . . . , n) need to be calculated.

For example, we show the case of the minimum round protocols in Protocol 2 and 3. Alice
executes a private random bisection cut on S0 = commit(x) and Si = commit( fi(0, y))||
commit( fi(1, y))(i = 1, 2, . . . , n) (Note that if fi(x, yi) = x⊕ yi, Si = commit(yi)) using the
same random bit b. Let the results be S′i(i = 0, 1, 2, . . . , n). Alice sends S′i(i = 0, 1, 2, . . . , n)
to Bob. Bob executes a private reveal on S′0 and obtains x′ = x⊕ b. Bob executes a private
reverse selection (or a private reverse cut) on S′i using x′ and obtains commit( fi(x, yi))
(i = 1, 2, . . . , n).

By the procedure, commit( fi(x, yi))(i = 1, 2, . . . , n) are simultaneously obtained in
two rounds. Parallel computations can also be considered for the other protocols.

7. Asymmetric Card Protocols

This section shows protocols when we use asymmetric cards shown in Section 2. one

bit data can be represented by one card as = 0 and = 1.
For such an encoding method, a private random bisection cut on a committed bit is

changed to turning the card upside-down, according to the random bit. A private reverse
cut and a private reverse selection on an even sequence are unchanged. A private reverse
cut and a private reverse selection on a single card are changed to turning the card upside
down, according to the given bit. Using these private operations, all protocols shown
above work for the asymmetric cards. The numbers of cards used by these protocols are
half of the two-color card protocols. For example, XOR, AND, and copy protocols with the
minimum number of rounds are shown below.

Protocol 19. (asymmetric card XOR protocol with the minimum number of rounds)
Input: commit(x) and commit(y).
Output: commit(x⊕ y).

1. Alice randomly selects bit b. If b=1, Alice turns commit(x) and commit(y) upside down,
otherwise does nothing. Let the result be S1 and S′1, respectively. Note that S1 = commit(x′)
and S′1 = commit(y′), where x′ = x⊕ b and y′ = y⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private reveal on S1 and obtains x′. If x′ = 1, Bob privately turns S′1 upside
down and otherwise does nothing. Let the result be S2. Bob outputs S2.

The protocol is two rounds. The protocol uses two cards.

Protocol 20. (asymmetric card AND protocol with the minimum number of rounds)
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(0)||commit(y) using a random bit b.
Let the result be S′1. If b=1, Alice turns commit(x) upside down, and otherwise does nothing. Let
the output be S1 = commit(x′). Note that x′ = x⊕ b. Alice sends S1 and S′1 to Bob.

2. Bob executes a private reveal on S1. Bob executes a private reverse selection on S′1, using x′.
Let the selected card be S2. Bob outputs S2 as the result.

The protocol is two rounds. The protocol uses three cards.

Protocol 21. (asymmetric card copy protocol with the minimum number of rounds)
Input: commit(x).
Output: m copies of commit(x).
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1. Alice randomly selects bit b. If b=1, Alice privately turns commit(x) upside down, otherwise
does nothing. Let the result be S1 = commit(x′). Note that x′ = x⊕ b. Alice privately sets
S′1 as m copies of commit(b). Alice sends S1 and S′1 to Bob.

2. Bob executes a private reveal on S1 and obtains x′. Bob privately upside down all cards of S′1
if x′ = 1, otherwise does nothing. Let the results be S2. Bob outputs S2.

The protocol is two rounds. The protocol uses m + 1 cards.

Theorem 19. Using asymmetric cards, XOR, AND, and a copy can be realized in two rounds.

Proof. The correctness and security proofs are the same as those for the two-color card
protocols.

8. Conclusions

This paper proposes round optimal card-based cryptographic protocols, using private
operations. We showed protocols without private reveal operations and several variant
protocols. This paper contributes the following new results, compared to the conference
version: (1) new XOR and copy protocols without private reveals; (2) correctness and
security proofs, given to all protocols; (3) parallel computation of the AND/XOR type
protocols; and (4) protocols with asymmetric cards.

Further study will include round optimal protocols for the other fundamental problems.
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