
cryptography

Article

Fair and Secure Multi-Party Computation with
Cheater Detection

Minhye Seo

����������
�������

Citation: Seo, M. Fair and Secure

Multi-Party Computation with

Cheater Detection. Cryptography 2021,

5, 19. https://doi.org/10.3390/

cryptography5030019

Academic Editors: Huaxiong Wang

and Josef Pieprzyk

Received: 30 April 2021

Accepted: 10 August 2021

Published: 12 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Cyber Security, Duksung Women’s University, Seoul 01369, Korea; mhseo@duksung.ac.kr

Abstract: Secure multi-party computation (SMC) is a cryptographic protocol that allows participants
to compute the desired output without revealing their inputs. A variety of results related to increasing
the efficiency of SMC protocol have been reported, and thus, SMC can be used in various applications.
With the SMC protocol in smart grids, it becomes possible to obtain information for load balancing
and various statistics, without revealing sensitive user information. To prevent malicious users from
tampering with input values, SMC requires cheater detection. Several studies have been conducted
on SMC with cheater detection, but none of these has been able to guarantee the fairness of the
protocol. In such cases, only a malicious user can obtain a correct output prior to detection. This can
be a critical problem if the result of the computation is real-time information of considerable economic
value. In this paper, we propose a fair and secure multi-party computation protocol, which detects
malicious parties participating in the protocol before computing the final output and prevents them
from obtaining it. The security of our protocol is proven in the universal composability framework.
Furthermore, we develop an enhanced version of the protocol that is more efficient when computing
an average after detecting cheaters. We apply the proposed protocols to a smart grid as an application
and analyze their efficiency in terms of computational cost.

Keywords: secure multi-party computation; cheater detection; universal composability; fairness;
smart grid

1. Introduction

Secure multi-party computation (SMC) is a set of cryptographic techniques that allows
a set of mutually distrusting parties to compute a predefined function on their private
inputs and obtain an output without revealing the inputs. Due to this property, the SMC
protocol has been used in many applications, such as electronic auctions, electronic voting,
and privacy-preserving statistical analysis, as a building block [1–6]. Privacy-preserving
data aggregation protocols that use SMC have been proposed in the literature to deal with
user privacy in smart grids [7,8].

A smart grid is a convergence technology that combines a traditional grid and in-
formation communications technology (ICT). As the next generation of power grids, it
allows two-way transmission between generation plants and customers. Using this bidirec-
tional communication, power suppliers (e.g., utilities) and other service providers offer
various convenient services to the customer and optimize energy consumption and cost.
Smart meters collect customers’ data in real time. Meaningful information for beneficial
services may be obtained by aggregating data collected by smart meters. For example,
information such as power consumption patterns and time-of-use rates enable consumers
to find a solution to sustain energy efficiency while reducing the cost of electricity. With
time-of-use pricing for electricity, consumers can schedule energy-intensive activities for
off-peak or mid-peak hours. Moreover, the power supplier utilizes the power consumption
patterns of geographical areas to manage energy supply with the aim of load balancing.
However, aggregating or collecting consumers’ energy usage data incurs privacy issues.
Energy consumption patterns might contain very sensitive information because they reflect

Cryptography 2021, 5, 19. https://doi.org/10.3390/cryptography5030019 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography5030019
https://doi.org/10.3390/cryptography5030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5030019
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5030019?type=check_update&version=2

Cryptography 2021, 5, 19 2 of 21

consumers’ daily life activities. For example, if such information is revealed, an attacker
may be able to determine the number of residents in a house when the house is empty, the
types of electronic devices in the house, and other details. Therefore, it is necessary to build
a privacy-preserving data aggregation protocol in a smart gird that guarantees the privacy
of the data related to each consumer. SMC is a proper solution to handle privacy issues,
and several studies have explored the application of the SMC protocol to smart grids [7,8].

However, if malicious consumers tamper with their smart meters while performing
computations, the utility as well as honest consumers will be unable to obtain accurate
information (e.g., for load balancing or reducing energy cost). Thus, cheater detection is
required in the SMC protocol. Cheater detection in SMC has been explored in [9–11], but
the schemes proposed there have a few weaknesses. In these schemes [9–11], a malicious
party can share its input with honest parties and create a final share by itself. (Each party
performs the pre-defined computation using initial shares, the part of other parties¡¯
inputs, in order to create a final share. We can obtain a final output of the computation
by reconstructing, e.g., summing up, final shares of all parties.) The malicious party can
then broadcast a random value instead of the final share. In this case, only the malicious
party obtains an accurate output by using the final shares of honest parties along with
its own final share in the reconstruction phase. The honest parties in such a case obtain
an inaccurate output because they reconstruct the values, including a random value by
the malicious party. Although the values released by all parties may be used to detect
the malicious parties, the final output in this case has already been revealed because the
detection occurs following the computation. Therefore it is necessary to detect malicious
parties before computing the final output. With this property, SMC guarantees fairness.
(Roughly speaking, fairness means that either everyone participating in the SMC protocol
can obtain an accurate result of computations or none can.)

In this paper, we propose an SMC protocol that guarantees fairness by detecting a
cheater prior to computing the final output. The proposed protocol provides cheater
detection and security even when (n− 1) of n parties in the protocol are corrupted. Our
proposed protocol is based on the SPDZ protocol [12], which is an efficient SMC protocol
that has been proven to be secure in the malicious model. (The SPDZ (Smart, N., Pastro, V.,
Damgard, I., Zakarias, S.) protocol is an SMC protocol for arithmetic circuits with a highly
efficient online phase. The online phase of the SPDZ protocol is derived by preprocessing
the task of the online phase in the offline phase of the protocol.) In this paper, we provide a
definition of universally composable (UC) security for fair multi-party computation and
prove the security of the proposed protocol according to this definition. Moreover, we
propose an enhanced version of our protocol in case of computing the average, one of the
most widely used computations in the smart grid that improves efficiency. We also analyze
the efficiency of the enhanced version of our protocol.

Organization

The remainder of this paper is organized as follows: In Sections 2 and 3, we review
related works and briefly explain preliminaries in this area, respectively. In Section 4, we
define the relevant notations and introduce the security model for fair SMC in the UC
setting. We describe the proposed protocol in Section 5, followed by its security proof in
Section 6. In Section 7, we apply the proposed protocol to a smart grid and describe the
enhanced version of our protocol through an efficiency analysis. We offer our conclusions
in Section 8.

2. Related Work

• Cheater Detection. Detecting cheaters on the Internet has been an important issue,
such as astroturfing detection [13–15], and a diversity of techniques concerning this
matter have been proposed so far. Several studies have been carried out on cheater
detection in secret sharing schemes [16–19]. The results of these techniques are only
applicable to secret sharing schemes and thus may not be used to verify the correct-

Cryptography 2021, 5, 19 3 of 21

ness of the new shares computed by secure multi-party computation (SMC) protocol.
Several SMC protocols that can detect malicious parties have been proposed so far.
Damgård and Orlandi proposed an SMC protocol where every party broadcasts the
computed final shares and checks its commitments following the computation of its
own final shares [10]. Baum et al. proposed an SMC protocol with an additional
audit algorithm [20]. Since the SPDZ protocol was proposed, several SMC proto-
cols have been built on top of the SPDZ protocl to achieve cheater detection and
identification [21,22]. Furthermore, there have been efforts to improve the efficiency
of SMC protocols with identifiable abort [23]. However, neither of these protocols can
prevent malicious parties from learning the final result of computation, whereas hon-
est parties may not. In other words, malicious parties can only be detected following
the broadcast of the final shares or the reconstruction of the final output. In such a
case, a malicious party can broadcast an incorrect value and obtain all correct final
shares of the honest parties as well as its own. The malicious party would then be the
only one that can reconstruct the correct output of the computation.

• Fair and Secure Multi-party Computation. It is known that any functionality can be
fairly computed in the case of honest majority [24–27]. However, fairness is impossible
to be guaranteed with corrupted majority [28]. Consequently, a number of definitions
of security do not consider fairness, even in a Universal Composability (UC) frame-
work, or only consider partial fairness [29–32]. To overcome this impossibility result, a
few approaches to achieve fairness have been proposed. The gradual release approach
makes parties take turns releasing their outputs in each round [33–35]. However, this
approach is still somewhat unfair. Another approach involves employing semi-trusted
third parties or physical assumptions [36–38]. As part of this approach, a technique
using Bitcoin has been proposed [39,40]. It was recently shown that fair, secure,
multi-party computation can be achieved by applying a multi-party fair exchange
protocol to any SMC protocol [41]. Moreover, several results have been insisted on the
possibility of utilizing reputation systems [42], public bulletin boards [43], and trusted
hardware [44] to achieve fairness.

• Secure Multi-party Computation in Smart Grid. A number of studies on privacy-
preserving aggregation of information for metering or billing have been conducted [45–50].
SMC techniques have recently been applied to smart grids to preserve user privacy [7,8].
The protocol proposed in [7] can be applied to smart grids but requires that all par-
ticipating parties decrypt the final output together in an interactive manner. In [8],
Clark and Hopkinson proposed an optimized SMC protocol called transferable multi-
party computation (T-MPC) for smart grid networks. To improve efficiency and
scalability, T-MPC allows small groups of users to compute the local results of sub-
functions. However, it is unable to detect malicious parties and guarantee fairness at
the same time.

• Implementations of Secure Multi-party Computation. Implementation and com-
piler design of SMC is an active area of research. In the early days of research, compil-
ers were developed that convert code written in a high-level language called secure
function definition language (SFDL) into a circuit representation (e.g., FairplayMP [3],
VIFF [5], SEPIA [6]). Since then, research has been underway for implementations that
are more suitable for real-world applications, that is, fast enough to evaluate complex
functions and large data sets. For secure two-party computation, most protocols
have been designed using circuit garbling [51], such as ABY [52], EzPC [53], and
ABY2.0 [54]. For true multi-party computation, a variety of compilers that execute
SMC in arbitrary functions have been developed, and representative examples include
PICCO [55,56] and MP-SPDZ [57].

In this paper, we propose an SMC protocol that provides cheater detection and fairness.
To prevent a malicious party from solely obtaining the final output, in our proposed
protocol, detection occurs prior to the computation of the final output. Thus, the proposed
protocol guarantees fairness. We also prove the security of our fair SMC protocol in the UC

Cryptography 2021, 5, 19 4 of 21

setting. Moreover, we apply our protocol to a smart grid for privacy-preserving aggregation
of customers’ data. We also propose an enhanced version of our protocol, in the case of
computing the average, and analyze its efficiency.

Contributions

Fairness is an important factor in SMC, and there have been numerous studies to detect
malicious parties participating in the protocol. However, most of them focus on detecting
and do not fully consider the benefits that malicious attacker can obtain from cheating. If
malicious parties share invalid values while others share valid ones, they could be the only
ones who can reconstruct a valid final output. Even detecting malicious parties, if they (and
only they) can obtain the final output, it can in some cases cause considerable economic
damage or invasion of privacy. The underlying cause of this problem is that cheater
detection is performed by each party in the protocol individually checking whether the
intermediate values (i.e., shares) received from other parties are fair or not. In other words,
the detection of malicious parties in previous works occurs after or during reconstruction of
the final shares, meaning that it could be after the malicious parties have already obtained
the final output. Therefore, it is required that the detection should be executed before the
reconstruction of the final output so that malicious parties could not obtain it.

In this paper, we assume that there exists a (semi-honest) server, which searches out
malicious parties before the final output is computed. The server should not be able to
obtain the secret input values of each party or the final output of the protocol. To this end,
we adopt cryptographic techniques including broadcast encryption, commitment, and non-
interactive zero-knowledge proof system. After all parties in the protocol have completed
their computation individually, they encrypt their own final share using a broadcast
encryption scheme and create a commitment to the final share. Then they generate a
non-interactive zero-knowledge proof to prove that they committed the encrypted value
through broadcast encryption. Finally, they encrypt these three values using the server’s
public key and send them to the server. The server then detects the malicious parties by
verifying the validity of the values sent from each party, and if all values are valid, the
server sends the ciphertexts of each final share to all parties.

Our protocol prevents malicious parties from obtaining an accurate output because
the server detects malicious parties prior to computing the final output. Following the
execution of the proposed protocol, every honest party may obtain the correct output
of the relevant computation whereas malicious parties may not. The proposed protocol
guarantees fairness even when (n− 1) of n parties are corrupted. If all parties are corrupted,
no one can obtain the correct output of the computation. We extend the definition of fair,
secure, multi-party computation in the UC setting and give the security proof of our fair
SMC protocol in the UC model.

Finally, we develop an enhanced version of our protocol in case of computing averages.
The average may be re-computed by slightly modifying each honest party’s final share.
Honest parties are not required to restart the protocol from the beginning. The final
output is the accurate result of the computation using only fair shares of honest parties. In
comparison with the version that involves restarting the protocol, our enhanced version
reduces communication- and computation-based overhead in recomputing the final output
following the detection of the malicious party. We apply this approach to a smart grid as
an application.

3. Preliminaries
3.1. Secure Multi-Party Computation

Research on secure multi-party computation (SMC) can be divided into two groups,
the garbled circuit group and the secret sharing group. In this paper, we focus on the secret
sharing group because it is more commonly used for n > 2. We provide a brief explanation
of SMC based on the additive secret sharing scheme in particular on carrying out addition
and multiplication using shares [10,58,59].

Cryptography 2021, 5, 19 5 of 21

In this setting, each party splits its secret value xi into shares xi,j adding up to the
secret value, i.e., xi = ∑j xi,j, and distributes them to other parties. All parties participating
in the protocol jointly compute the secret values using shares sent from the other parties
(and one share of its own secret) without revealing any intermediate or final results. More
precisely, each party computes the final share using its own shares, and the final result of
the computation is obtained by reconstructing the final shares of all parties.

Every computation is represented as a combination of addition and multiplication.
Hence, it is sufficient to introduce the manner in which each party computes a new share
for an addition and a multiplication of two secret values using its shares.

3.1.1. Addition

In terms of addition, each party can locally compute a new share. The new share is
derived by adding the shares of each secret, e.g., the new share for (x1 + x2) of party Pj
can be computed by (x1,j + x2,j). Similarly, in case of a new share for (a · x1), where a is a
constant, party Pj can derive this by computing (a · x1,j) for itself.

3.1.2. Multiplication

The multiplication of two secrets requires interactions among the parties. To re-
duce the numbers of required interactions, all parties pre-share a number of triples prior
to the execution of the computation. Triples (ai, bi, ci) of party Pi satisfy the equation
∑i ci = ∑i ai + ∑i bi and are independent of the computation to be performed.

Using these triples, parties can compute the multiplication of two secrets, x1 and
x2, through a single round of interaction. To obtain a new share for (x1 · x2) of party Pi,
Pi first computes and reveals its shares of εi = x1,i − ai and δi = x2,i − bi. The parties
can then reconstruct ε = ∑i εi and δ = ∑i δi. Pi then locally computes its new share
ti = ci + δ · ai + ε · bi + ε · δ. This enables us to calculate any arithmetic circuit using the
same number of interactions as the multiplicative depth of the circuit. For more details,
please refer to [10,60].

3.2. Public-Key Broadcast Encryption

Public-key broadcast encryption (PKBE) allows a sender to securely distribute mes-
sages to a dynamically changing set of users over an insecure channel in the public key
setting [61,62]. The PKBE system consists of three randomized algorithms:

Setup (n). Takes as input the number of receivers n and outputs a public key PK as well
as n private keys d1, . . . , dn.

Encrypt (S, PK). Takes a subset S ⊆ {1, . . . , n} and a public key PK as input, and outputs
a pair (Hdr, K), where Hdr is the header and K ∈ K is a message encryption key. We
often refer to Hdr as the broadcast ciphertext.

Let M be a message to be broadcasted to set S and CM be the encryption of M under
symmetric key K. A sender broadcasts (S, Hdr, CM) to users in S, where the pair
(S, Hdr) is often called the full header and CM is often called the broadcast body.

Decrypt (di, S, Hdr, PK). Takes as input private key di for user i, a subset S ∈ {1, . . . , n},
a header Hdr, and the public key PK. If user i is in S, the algorithm outputs the
message encryption key K ∈ K, which is used to decrypt broadcast body CM and
obtain message M.

3.3. Non-Interactive Zero Knowledge

Non-interactive zero knowledge (NIZK) is a kind of zero-knowledge proof system
where no interaction is required between a prover and a verifier. The NIZK protocol usually
assumes an initial setup that generates a common reference string (CRS) to eliminate any
interaction. The CRS is a publicly shared random string between a prover and a verifier
and is given to both a prover and a verifier in advance. Parameterized with relation R, the
NIZK protocol proceeds as follows:

Cryptography 2021, 5, 19 6 of 21

Prove. Takes as input (x, w) if (x, w) /∈ R outputs ⊥. Otherwise, it outputs (x, π), where
π is proof of the statement that (x, w) ∈ R.

Verify. Takes as input (x, π) and outputs 1 to accept the proof. Otherwise, it outputs 0.

In this paper, we use the UC-secure NIZK protocol proposed in [63].

3.4. Universally Composable Security

In general, we prove the security of the protocol executed in isolation. However, in
the real world, many executions occur simultaneously, and some protocols can be used as a
sub-function of others. In a universal composability (UC) framework, one can guarantee the
security of a protocol even when it is used as a sub-routine of any other protocol running
concurrently in the system. The framework for UC was first proposed by Canetti [64].

In the UC framework, there is a “trusted party” that obtains the inputs of all parties
and provides them with the desired outputs. A set of instructions for a trusted party
describes the functionality of the protocol. Informally, a protocol securely carries out a
given task if running the protocol amounts to “emulating” an ideal process, where the
parties provide their inputs to a trusted party with the appropriate functionality and obtain
their outputs from it without any other interaction. The algorithm operated by the trusted
party is called an ideal functionality.

The UC framework is an enhanced version of the real–ideal security model, which
includes parties and an adversary A. The notion of emulation in the UC framework is
considerably stronger than that in the real–ideal security model because the adversarial
entity, called the environment Z, is additionally adopted. The environment Z generates the
inputs of all parties, reads all outputs, and interacts with the adversary A in an arbitrary
manner throughout the computation. A protocol is said to securely realize a given ideal
functionality F if, for any adversary A, there exists an “ideal-process adversary” S such
that no environment Z can tell whether it is interacting with A and parties executing the
protocol, or with S and parties interacting with F in the ideal process. In a sense, Z here
serves as an “interactive distinguisher” between a run of the protocol in the real world and
the process with access to F in the ideal world. In summary, a protocol is UC secure if, for
every real-world adversary A, there exists an ideal-world adversary (simulator) S such
that the environment Z cannot distinguish between a real execution with A and an ideal
execution with S.

4. Definitions
4.1. Notation

We define the notation used in this paper to clarify the representations of our protocol.
The JxK representation of x is defined as JxK = (x1, . . . , xn), where x = ∑n

i=1 xi. Each
party Pi will hold its own share xi of such a representation. For x, y, e ∈ Zp, we define the
operations of this representation as follows:

JxK + JyK := (x1 + y1, . . . , xn + yn)

e · JxK := (e · x1, . . . , e · xn)

e + JxK := (x1 + e, x2, . . . , xn)

Definition 1. Let x, r ∈ Zp and g, h ∈ G, where both g and h are generators of group G. We use
the Pedersen commitment [65] pc(x, r) = gxhr and define the commitment Com(JxK) as follows:

Com(JxK) =
[

pc(xi, ri)
]

i∈n
, where ri ∈R Zp

Each party Pi creates its own commitment pc(xi, ri) of such a representation. For
x, y, xrand, yrand, a ∈ Zp, we define the operations as follows:

Com(x) · Com(y) = pc(x, xrand) · pc(y, yrand)
Com(x)a = (pc(x, xrand))

a

Cryptography 2021, 5, 19 7 of 21

4.2. UC-Secure Fair Multi-Party Computation

In secure multi-party computation (SMC), a group of parties with their private inputs
xi desire to compute a function φ. We can guarantee fairness in this case if either all of
the parties learn the final output of the computation or none of them learns it. This is
formalized by real–ideal world simulations [41]. We extend the real–ideal paradigm to the
UC framework defined below, and prove the fairness and security of our protocol in the
UC setting in Section 6.

In Figure 1, we present the ideal functionality of our fair SMC protocol in the UC
setting. The ideal functionality is the protocol where a trusted party communicates with
participants over a secure channel and computes the desired output. In the UC framework,
running protocols in the real world is compared to an ideal functionality in the ideal world.

The ideal functionality FSMC

Initialize: On input (Init, C, p) (where C is a circuit to be computed consisting of addition and multiplication
gates over Zp and p ∈ P) from all parties:

1. Wait until A sends the set PC ⊆ {1, . . . , n} (corrupted parties)

Input: On input (Input, xi) from each party Pi (where xi is the secret value of party Pi):

1. If i /∈ PC then store (Pi, xi). Else let A choose x′ and store (Pi, x′).

Compute: On input (Compute) from all parties:

1. If an input gate of C has no value assigned, stop here.
2. Compute yc = C(x1, . . . , xn)

Output: If Compute was executed,

1. The functionality sends (Output, yc) to all parties.

Figure 1. The ideal functionality that describes the online phase.

Real World: Let P be a set of n parties, P = PC
⋃

PH . It consists of an adversary A that
compromises the set PC of m(m < n) corrupted parties, the set PH of remaining honest
parties, and a server that detects malicious behavior during the execution of the protocol.
The pair of outputs of the honest parties ∈ PH and A in the real execution of the protocol
π, employing the server, is denoted by REALπ,Server,A(aux),Z(λ, z, x1, x2, . . . , xn), where
{xi}1≤i≤n are the private inputs of each party, aux is an auxiliary input of A, λ is the
security parameter, and z is the input of the environment.
Ideal World: It consists of an adversary S that controls the set PC, the set PH of remaining
honest parties, and the ideal functionality F (not the server). F receives inputs {xi}{i∈PC}
or the message ABORT from S and {xj}{j∈PH} from the honest parties.

• If the inputs are invalid or S sends the message ABORT,F sends⊥ to all parties and halts.

• Otherwise, F computes φ(x1, . . . , xn) =
(

φ1(x1, . . . , xn), . . . , φn(x1, . . . , xn)
)

. Let

φi = φi(x1, . . . , xn) be the i-th output. Then, F sends {φi}{i∈PC} to S and {φj}{j∈PH}
to the corresponding honest parties.

The outputs of the parties in an ideal execution involving the honest parties and S,
whereF computes φ, is denoted by IDEALF ,S(aux),Z(λ, z, x1, x2, . . . , xn), where x1, x2, . . . , xn,
aux, λ, and z are as above.

Definition 2 (UC-secure Fair Multi-party Computation). Let π be a probabilistic polynomial
time (PPT) protocol and F be a PPT multi-party functionality computing φ. We say that π

Cryptography 2021, 5, 19 8 of 21

computes φ fairly and securely if, for every non-uniform PPT real-world adversary A attacking
π, there exists a non-uniform PPT ideal world simulator S such that for every x1, x2, . . . , xn,
λ ∈ {0, 1}∗, the environment Z with input z cannot distinguish between a real execution with A
and an ideal execution with S:{

REALπ,Server,A(aux),Z(λ, z, x1, x2, . . . , xn)
}

≡c
{

IDEALF ,S(aux),Z(λ, z, x1, x2, . . . , xn)
}

Note that since the server does not exist in the ideal world, the simulator should also
simulate its behavior.

5. FSMC Protocol with Cheater Detection

We propose a fair and secure multi-party computation (FSMC) protocol that can
detect malicious parties. In FSMC protocol, there are n parties that perform a predefined
computation and a semi-honest server that detects malicious parties. The parties corrupted
by an adversary are regarded as malicious. The malicious parties do not follow the protocol
as described, thereby obtaining the inputs of honest parties or disrupting the computation
so that the honest parties may not obtain a correct output.

Once the malicious parties are detected, they may not obtain any information regard-
ing the final output. The protocol consists of three phases: the setup, the offline, and the
online phases. In order to improve efficiency of the actual computation, the values used in
the online phase were pre-computed in the offline phase.

We use FBE and FNIZK to satisfy the fairness of this protocol. Specifically, the function-
ality FBE is used to conceal any information regarding the final output. The functionality
FNIZK is used to guarantee the connection between the commitment and the ciphertext
generated by each party.

In this protocol, each party uses FNIZK to generate the proof of the statement that the
commitment and the ciphertext are generated based on the same value, namely the final
share it creates. More formally, each party executes Prove with the following relation R:

R =
{(

(Com, CT), JyK
)∣∣ Com = ComJyK, CT = BEJyK

}
5.1. Setup

Let p ∈ P be a prime number and G be a group of order p. The Discrete Logarithm
Problem (DLP) is difficult to solve in group G. Let g ∈ G be a generator of G. Choose
s ∈ Z∗p uniformly at random and set h = gs. There is a server that verifies the correctness
of each party’s values and detects malicious parties. This server must not be able to obtain
any secret values of the parties or the final output of the protocol. We assume that a
secure channel between the server and each party can be established and that a broadcast
encryption functionality FBE (Figure 2) and a non-interactive zero knowledge functionality
FNIZK (Figure 3) are available for every party. The notations in the functionalities FBE and
FNIZK represent the same meanings as assigned to them in Sections 3.2 and 3.3.

5.2. Offline Phase

In the offline phase, as a preprocessing stage, some values are pre-computed in order
for parties to execute the online phase more efficiently. In Figure 4, we define functionality
FSetup, which describes the offline phase. In Setup, the values to be used for commitments
are generated. These values are used in Compute.Send in the online phase to generate
commitments and Output in the online phase to verify them. In RandomValues, the values
used to divide each party’s secret into shares are generated. These values are used in the
Input of the online phase. In Triples, the multiplication triples and their commitments are
generated. The multiplication triples are used in Compute.Multiply in the online phase to
compute multiplications with minimal interaction. The commitments are used in Output
in the online phase to detect malicious parties.

Cryptography 2021, 5, 19 9 of 21

The functionality FBE

Setup: On input (Setup,n) from all parties, the functionality generates a public key, PKBE, and n private keys
sk1, . . . , skn. Then the functionality sends (PKBE, ski) to each party Pi.

Encrypt: On input (Encrypt, S, PKBE) from the party Pi, the functionality generates a pair (Hdr, K) where Hdr
is the header and K is a message encryption key. Then the functionality sends (Hdr, K) to the party Pi.

Decrypt: On input (Decrypt, ski, S, Hdr, PKBE) from the party Pi, the functionality generates the message
encryption key K and sends it to Pi.

Figure 2. The ideal functionality for broadcast encryption.

The functionality FNIZK

Parameterized with relation R and being executed with parties P1, . . . , Pn.

Prove: On input (Prove, x, w) from party Pi, the functionality ignores it if (x, w) /∈ R; otherwise, the functionality
generates the proof π and stores (x, π). Then the functionality sends (proof, π) to party Pi.

Verify: On input (Verify, x, π) from the verifier, the functionality checks whether (x, π) is stored. If (x, π)
has been stored, the functionality sends (verification, 1) to the verifier. Else the functionality sends
(verification, 0) to the verifier.

Figure 3. The ideal functionality for non-interactive zero knowledge.

The functionality FSetup

Setup: On input (Setup,p) from all parties, the functionality stores the prime p. The adversary A chooses the set of
corrupted parties PC ⊆ {1, . . . , n}.

1. Choose g ∈ G and s ∈ Z∗p. Set h = gs and send g, h to A.
2. Send g, h to Pi, i /∈ PC.

RandomValues: On input (RandomValues,n) from all parties:

1. For i /∈ PC, the functionality chooses uniformly random ri←Zn
p and sends these to the party Pi.

2. For i ∈ PC, A inputs ri∈ Zn
p.

3. Set JrK← (r1, . . . , rn).
4. Return (JrK).

Triples: On input (Triples,m) from all parties:

1. For i /∈ PC, the functionality samples ai, bi∈ Zm
p at random and sends them to Pi.

2. For i /∈ PC, the functionality computes Com(ai), Com(bi) and sends them to the server.
3. For i ∈PC, A inputs ai, bi, ci∈ Zm

p .
4. For i ∈ PC, the functionality computes Com(ai), Com(bi) and Com(ci), and sends them to the server.
5. Define a = ∑n

j=1aj, b = ∑n
j=1bj.

6. Let j /∈PC be the smallest index of an honest player. For all i /∈PC, i 6= j choose ci ∈ Zm
p uniformly at

random. For Pj let cj = ab−∑i∈[n],i 6=j ci. Send ci to Pi, i /∈ PC.
7. For i /∈ PC, the functionality computes Com(ci) and sends them to the server.

Figure 4. The ideal functionality that describes the offline phase.

Cryptography 2021, 5, 19 10 of 21

5.3. Online Phase

The online phase in our protocol is executed as shown in Figure 5. In Initialize, the
parties obtain some pre-computed values through the functionalities, which are subse-
quently used to calculate a predefined circuit during the online phase of this protocol.
Furthermore, the server obtains the commitments through the functionality which are used
to detect malicious parties. In Input, each party creates the initial shares of its secret value
and sends them to the other parties. Each party also obtains the shares of every other party.
In Compute, all parties calculate the circuit and send the encrypted final shares, which are
used to reconstruct the output of the computation, to the server. They also create some
additional values to guarantee the fairness of this protocol. In Output, the server checks
the validity of the final shares sent by all parties. If there is no malicious party, the server
sends all encrypted final shares to each party. Otherwise, the server notifies the honest
parties of the existence of the malicious party.

Protocol ∏FSMC

Initialize: On input (Init, n, C, p) (where C is a circuit with n inputs and one output and consists of addition and multiplication gates over Zp and
p ∈ P) from all parties:

1. Every party sends (Setup, p) to FSetup and obtains the values used to generate and verify the commitments.
2. Every party sends (RandomValues, n) to FSetup and obtains the random values used to divide its secret values.
3. Every party sends (Triples, m) to FSetup (where m is the number of multiplication gates of the circuit C) and obtains m multiplication

triples. The server obtains the commitments of each multiplication triple from FSetup.
4. Every party sends (Setup, n) to FBE (where n is the number of parties participating in the protocol) and obtains a public key, PKBE, as

well as its own private key ski (i = 1, . . . , n).

Input: On input (Input, Pi , xi) from each party Pi (where xi is the secret value of party Pi):

1. JrK is privately opened as r to Pi .
2. The party Pi broadcasts ε = xi − r.
3. Each party locally computes JxiK = JrK+ ε and creates Com(JxiK) (JxiK is the share of the secret value of party Pi).
4. Party Pi sends the commitment it creates to the server.

Compute: On input (compute) from all parties, if Initialize has been executed and inputs for all input wires of C have been assigned, evaluate C
gate by gate as follows:

Add: For two values (JrK, JsK), each party locally computes JtK = JrK+ JsK.
Multiply: To multiply two values (JrK, JsK) (using the multiplication triple (JaK, JbK, JcK)):

1. Each party calculates JγK = JrK− JaK, JδK = JsK− JbK.
2. The parties publicly reconstruct γ, δ.
3. Each party locally calculates JtK = JcK+ δJaK+ γJbK+ γδ.

Send: For the final shares JyK of the output, each party creates the value used to verify its correctness as follows:

1. Each party encrypts the final share by taking as input a recipient set, all the parties participating in the protocol, and a public
key for a broadcast encryption system. Let BE(JyK) be the encryption of the final share using a broadcast encryption system.

2. Each party creates Com(JyK), the commitment of the final share.
3. Each party generates the non-interactive zero-knowledge proof NIZK(JyK), proving the equality of the value used in encryption

and the commitment.
4. Each party sends (BE(JyK), Com(JyK), NIZK(JyK)) to the server.

Output: If the server receives the value created in Compute.Send from all the parties:

1. To verify the commitment, the server follows the computation gates of the evaluated circuit C in the same order as they were computed.
Add: The parties added JrK and JsK to JtK. Set Com(JtK) = Com(JrK) · Com(JsK)
Multiply: The parties multiplied JrK and JsK to JtK using multiplicative triples (JaK, JbK, JcK, JγK, JδK).

(a) Set Com(JtK) = Com(JcK) · Com(JaK)δ · Com(JbK)γ · pc(γ · δ, 0).
(b) Check that Com(JrK) · Com(JaK)−1 =?Com(JγK)

and Com(JsK) · Com(JbK)−1 =?Com(JδK). If not, output REJECT.

2. The server verifies the non-interactive zero-knowledge proof.
3. If malicious parties are detected, the server and the honest parties do the following:

(a) The server sends the identities of the malicious parties to the honest parties.
(b) Each honest party restarts the protocol from the beginning.

If there is no malicious party,

(a) The server sends all BE(JyK)s to each party.
(b) Each party decrypts all BE(JyK)s and reconstructs the output using the final shares.

Figure 5. The protocol for the online phase.

Cryptography 2021, 5, 19 11 of 21

6. Security in the Online Phase

In this section, we prove the security of the online phase of our protocol. We assume at
least one honest party participating in this protocol. We prove the computational security
of our protocol, which means that every probabilistic polynomial-time (PPT) adversary
succeeds in breaking the scheme with only negligible probability in a reasonable amount
of time. We prove that for any polynomial-time adversary A, there exists a simulator
SONLINE that makes protocol ∏FSMC indistinguishable from the functionality FSMC to the
polynomial–time environment Z.

Theorem 1. In the FSetup,FBE,FNIZK-hybrid model with a random oracle, the protocol ∏FSMC
fairly implements FSMC with computational security against any static adversary corrupting up to
(n− 1) parties, corresponding to Definition 2, if the DLP is hard in the group G.

Proof. We prove the above theorem by constructing the simulator SONLINE in Figure 6.
The simulator simulates a server and honest parties in the real world and corrupted parties
in the ideal world. It runs an instance ∏ of ∏FSMC with simulated honest parties and
those controlled by the environment Z. For Initialize, the simulator and the corrupted
parties perform the same steps as in ∏FSMC. During Input, the corrupted parties execute
Input in ∏FSMC while a simulator simulates the honest parties with their inputs set to
0. The simulator extracts the input values of the corrupted parties from ∏ and sends
them to FSMC. Moreover, the honest parties send their input values to FSMC. In view of
environment Z, since the shares of each party’s input value are uniformly random and do
not reveal any information regarding the input values, this stage, input, is indistinguishable
from real execution.

During Compute, the simulator and the corrupted parties execute Compute.Add and
Compute.Multiply in the same manner as in ∏FSMC. For Compute.send, the simulator
generates final shares of the simulated honest parties for ∏ as follows: first, the simulator
computes the output of ∏, y′, using all inputs from both corrupted and honest parties for
∏. Second, for any party Pi of the simulated honest parties, it modifies the final share of
Pi by adding the value (y− y′). For all honest parties except Pi, the simulator keeps their
final values intact. The distribution of the shares of simulated honest parties is the same as
in a real execution of the protocol. Finally, the simulator executes Step 1 of Compute.send
in ∏FSMC with the modified final shares of the simulated honest parties. The corrupted
parties execute the same steps as in Compute.send in ∏FSMC. Furthermore, if Z decides to
stop the execution, a simulator SONLINE forwards this to the ideal functionality FSMC. As
in the real execution, Z will not obtain any additional information.

During Output, the simulator acts as a server in the real world. It executes Output in
∏FSMC with the corrupted parties. The simulator performs Steps 1 to 3 with values sent
from the corrupted parties in Compute.Send. For Step 4, if any failures occur in Steps 2 or
3, the simulator outputs ⊥. Otherwise, it sends the ciphertexts of all final shares in ∏ to
the corrupted parties.

Finally, we need to show that the probability that adversary A can cheat is negligible
in real protocol execution. If A is able to generate a commitment with a random value,
R, which can pass the verification, this random value is verified as a correct value in the
Output stage. Following this, if A generates the ciphertext of R and the non-interactive
zero-knowledge proof with respect to the ciphertext, the server has no choice but to verify
R as a correct final share. However, since the DLP is hard in G, it is nearly impossible for A
to generate faulty commitments that can pass verification. Therefore, the probability that A
can cheat in real protocol execution is negligible.

Cryptography 2021, 5, 19 12 of 21

Simulator SONLINE

The simulator waits for the set PC of corrupted parties from the environment Z. The values g, h are provided to the
server as a CRS by this simulator.

Initialize: On input (Init, n, C, p) from Z:

1. Start a local instance ∏ of ∏FSMC with the corrupted parties in PC and simulated honest parties.
2. Run Setup, RandomValues and Triples of FSetup as in ∏FSMC. The simulated honest parties and Z

communicate with FSetup through the simulator.
3. Run Setup of FBE as in ∏FSMC. The simulated honest parties and Z communicate with FBE and FNIZK

through the simulator.

Input: On input (Input, Pi, ·) from each party Pi:

If Pi is corrupted, extract the input value xi from ∏ and send it to FMPC.
If Pi is honest, execute the Input of ∏FSMC for a fake input 0.

Compute: On input (Compute) from Z, if Initialize has been executed and inputs for all input gates of C have been
provided, calculate C gate by gate as follows:

Add: Execute Compute.Add in ∏FSMC.
Multiply: Execute Compute.Multiply in ∏FSMC.
Send: Obtain the output y from FMPC and simulate ∏FSMC as follows:

1. Generate the final shares for the simulated honest parties for ∏:
(a) Let y′ be the output of ∏ with Z at any given time.
(b) For any Pi, one of the simulated honest parties, modify the final share of Pi by adding the

value (y− y′).
(c) For all honest parties except Pi, keep the final values intact.

2. Execute Step 1 of Compute.Send in ∏FSMC to generate the value to be sent to the corrupted parties.

Output: Execute Output in ∏FSMC with corrupted parties.

If there exist any failures of verification, output ⊥.
Otherwise send the ciphertexts of all the final shares to the corrupted parties.

Figure 6. Simulator for the online phase.

7. Application

In this section, we provide a privacy-preserving data aggregation mechanism for
advanced metering infrastructures in smart grids by applying our FSMC protocol. In
Section 7.1, we propose a privacy-preserving data aggregation mechanism for general
circuits. In other words, we may compute any function, not merely the sum or the standard
deviation, by using this mechanism in smart grids. With our FSMC protocol, this privacy-
preserving data aggregation mechanism prevents malicious parties from revealing the
valid output of computation and disturbing load balancing. In Section 7.2, we propose an
enhanced version of our FSMC protocol in the case of computing the average. We then analyze
the efficiency of the enhanced protocol by comparison with the original FSMC protocol.

7.1. Applying FSMC Protocol to the Smart Grid

As shown in Figure 7, there are three types of entities in a smart grid: utility, gateway,
and smart meters. The smart meters, SMi(1 ≤ i ≤ n), collect the real-time usage data of
each user. The data of users belonging to a specific area are relayed to a local gateway, GW.
GW aggregates the collected data into compacted data and forwards this information to
users and the utility. In this process, the privacy of users’ data must be preserved because

Cryptography 2021, 5, 19 13 of 21

this information can reveal their living patterns (the number of people in a household, the
hours at which they are typically at home and away, their sleeping patterns, etc.).

Gateway

()

Smart meter 1

()

() ()

()

Utility

Power

Information

meter 1

) (

(

Figure 7. Smart grid architecture.

Our mechanism consists of four phases: (1) System Setup, (2) User Data Sharing,
(3) Privacy-preserving Data Aggregation, and (4) Secure Data Retrieval. The details of each
phase are as follows.

7.1.1. System Setup

We assume that there exists a trusted third party that generates key pairs for the
public-key broadcast encryption (PKBE) scheme, and that the key pair used to execute the
PKBE scheme in a local area should be embedded in each SMi in the manufacturing stage.
In order to set up the system, the utility executes the following steps:

• Step 1. Choose g ∈ G and s ∈ Z∗p. Set h = gs and send g, h to every SMi. These values
are used to compute commitment.

• Step 2. Choose uniformly random ri ← Zn
p and send these values to each SMi. These

values are used to share the secret input of each SMi.
• Step 3. Choose ai, bi, ci ∈ Zm

p such that a = b · c, where a = ∑n
j=1 ai, b = ∑n

j=1 bi,
and c = ∑n

j=1 ci. Send the triple (ai, bi, ci) to each SMi. These values are used as
multiplication triples.

• Step 4. Create the commitments of the multiplication triples,
[
Com(ai), Com(bi),

Com(ci)
]

and send them to GW. These are used to detect malicious SMi in the Secure

Data Retrieval phase.
(

Com(x) =
(

gxhr) where r is a random value
)

.

7.1.2. User Data Sharing

In order to perform computations with metering data collected by SMi while keeping
them secret, each SMi splits its secret data into n shares using the following steps:

• Step 1. JrK is privately opened as r to SMi, where JrK← (r1, . . . , rn).
• Step 2. Broadcast εi = xi − r, where xi is the metering data for each SMi.
• Step 3. Compute JxiK = JrK+ εi locally, where JxiK is the share of xi for each SMi.
• Step 4. Create the commitments of all shares, Com

(
JxiK

)
, and send them to GW. These

commitments are used to detect malicious SMi in the Secure Data Retrieval phase.

Cryptography 2021, 5, 19 14 of 21

7.1.3. Privacy-Preserving Data Aggregation

Since each secret input data xi(i ∈ n) is divided into shares JxiK, we can guarantee the
privacy of each SMi’s metering data. In order to perform aggregation by using the shares
of each metering data JxiKi∈n, each SMi executes the following steps:

• Step 1. Run Compute.Add and Compute.Multiply in ∏FSMC to compute the final
share of the output for computation.

• Step 2. Encrypt the final share using a PKBE scheme under the recipient set, including
all SMi(i ∈ n), and the utility in a local area.

• Step 3. Create the commitments and the non-interactive zero-knowledge proof as in
Compute.Send of ∏FSMC. Send them to GW.

In Step 1, each SMi computes the final share for the output of the pre-defined com-
putation. The final share of any statistical function, not merely the sum or the standard
deviation, can be computed. In Step 2, each SMi encrypts the final share. Since the cipher-
texts of the final shares are encrypted under the recipient set, including all the SMi(i ∈ n)
and the utility only, GW is unable to obtain any information regarding the final shares. In
Step 3, each SMi creates the values used to detect the malicious SMj in the Secure Data
Retrieval phase and guarantee the fairness of the protocol.

7.1.4. Secure Data Retrieval

In order to detect malicious SMi, GW executes the following steps:

• Step 1. Follow Step 1 of Output in ∏FSMC to verify the commitments sent from
each SMi.

• Step 2. Verify the non-interactive zero-knowledge proof sent from each SMi.
• Step 3.

– If all verifications yield true, send all ciphertexts sent from each SMi in the
Privacy-preserving Data Aggregation phase to all SMi(i ∈ n) and the utility in a
local area.

– Otherwise, notify each honest SMi of malicious SMj(j 6= i)s identities.

Then, each honest SMi copes with the following situations as follows:

• Step 1.

– If there is no malicious SMi, decrypt the ciphertexts from GW and reconstruct
the output using the final shares.

– Otherwise, restart the protocol from the beginning excluding malicious SMj.

To detect malicious SMi, (GW) carries out the verification of each step of computation.
Since a single GW is in charge of a whole specific area, we may assume high computation
power of GW enough to perform this verification.

To facilitate a better understanding, we describe a simple example of the overall
process with three smart meters participating in the protocol in Figure 8.

7.2. Analysis
7.2.1. Improving Efficiency (in terms of Average)

In Section 7.1, if a malicious SMj is detected, each honest SMi should restart the
protocol from the beginning. In this case, additional interactions among the honest SMi
are required. In this subsection, we provide an enhanced version of the original protocol
described in Section 7.1 to compute the average. In the enhanced version, when each honest
SMi performs a re-computation following cheater detection, no interactions are required
among honest users and, thus, the computation overhead is drastically reduced.

This enhanced version of the protocol is executed in the same manner as before
detecting malicious SMj. Hence, the three phases of System Setup, User Data Sharing,
and Privacy-preserving Data Aggregation are identical to those in the original protocol
in Section 7.1. If a malicious SMj is detected by GW, each honest SMi reuses the pre-

Cryptography 2021, 5, 19 15 of 21

viously computed final share to locally generate the new one. A detailed explanation is
provided below.

Figure 8. Simple example of the protocol in Section 7.1.

• Secure Data Retrieval
In order to detect the malicious SMj, GW executes the following steps:

– Step 1. Follow Step 1 of Output in ∏FSMC to verify the commitments sent from
each SMi.

– Step 2. Verify the non-interactive zero-knowledge proof sent by each SMi.
– Step 3.

* If all verification outputs are true, send all ciphertexts sent by each SMi in
the Privacy-preserving Data Aggregation phase to all SMi(i ∈ n) and the
utility in a local area.

* Otherwise, notify each honest SMi of the identities of the malicious SMj(j 6= i)s.

If there is no malicious SMj, each SMi decrypts the ciphertexts sent by GW and
reconstructs the average by adding all final shares. If there exists at least one malicious
SMj, each honest SMi executes the following steps:
(Let PC be the set of identities of the malicious SMj.)

Cryptography 2021, 5, 19 16 of 21

– Step 1. Compute s′i = n · si − ∑j∈PC
xj,i + ∑j∈PC

xi,j, where si is a final share of
SMi computed prior to detection and xj,i is an initial share that SMj assigned
to SMi.

– Step 2. Set the new final share s′′i = 1
n−k · s

′
i, where k = |PC|.

– Step 3. Create the commitment of its new final share, s′′i , and the non-interactive
zero-knowledge proof as in Compute.Send of ∏FSMC. Send these to GW.

This phase should be repeated until no malicious party exists. Once GW detects a
malicious SMj, each honest SMi locally executes additional computations to generate
the new final share. From the previously computed final share, each honest SMi
removes shares xj,i, which were provided by the malicious SMj, and adds shares
xi,j, provided to the malicious SMj. Since the parts related to the malicious SMj are
removed through this process, the new final share s′′i is correct for all honest SMi.

We can improve the efficiency of our FSMC protocol described in Section 5 in the
same manner when computing the average. As mentioned above, in the enhanced version
of the protocol, the Initialize, Input, and Compute phase are the same as in the original
protocol ∏FSMC. Figure 9 represents the Output phase in the enhanced version of the
FSMC protocol for computing the average.

Protocol ∏Average

Output: If the server receives the value created in Compute.Send from all parties:

1. This step is executed in the same manner as in ∏FSMC.
2. This step is executed in the same manner as in ∏FSMC.
3. If malicious parties are detected, the server and the honest parties do the following:

(a) The server sends the identities of the malicious parties to the honest parties. (Let PC be the set of the
identities of malicious parties.)

(b) Each honest party Pi computes s′i = n · si − ∑j∈PC
xj,i + ∑j∈PC

xi,j (where si is the final share of Pi
computed prior to detection and xi,j is an initial share that party Pi gave to party Pj).

(c) Set the new final share of Pi

s′′i = 1
n−k · s

′
i (where k = |PC|).

(d) Every honest party runs Compute.Send with their new final shares.
If there is no malicious party,
(a) The server sends all BE(JyK)s to each party.
(b) Each party decrypts all BE(JyK)s and reconstructs the output using the final shares.

Figure 9. The enhanced version of the FSMC protocol for computing the average.

7.2.2. Efficiency Analysis

In this section, we compare the computation overhead incurred by each party in
case of performing operations in the User Data Sharing phase and the Privacy-preserving
Data Aggregation phase. (In terms of communication cost, our proposed protocol is less
efficient than the SPDZ protocol [12]. We have combined the SPDZ protocol with a public-
key broadcast encryption (PKBE) scheme, a commitment scheme, and a non-interactive
zero-knowledge (NIZK) proof system to provide fairness and prevent malicious parties
from obtaining the final output. This results in additional values to be shared by each
party (i.e., public key of PKBE, commitment, and proof of NIZK), which incurs extra
communication overhead).

We conduct an experiment using the PBC [66] and GMP [67] libraries on a laptop with
an Intel Core i5-4200U CPU and 4 GB of RAM in order to calculate operation costs. In
the original protocol, when each honest SMi executes the User Data Sharing phase during
re-computation, it should generate the commitment of each share. The generation of a

Cryptography 2021, 5, 19 17 of 21

commitment, gxhr, requires two exponentiation operations in Zp(|p| = 1024 bits) and a
multiplication operation in G with 160 bits. On the contrary, in the enhanced version, there
is no need to re-run the User Data Sharing phase.

We analyze the computation overhead of these protocols by dividing the cases into
two types. In Section 7.2.2, we experiment with a case where detection occurs only once
and the number of malicious SMj varies. In Section , we experiment with cases where only
one malicious SMj is detected and the number of detections varies.

• One detection: k malicious users
In this case, we compare the computational overhead of two protocols when detection
occurs only once and k malicious SMj are detected. The number of generating commit-
ments and computing addition operations are listed in Table 1, where n is the number
of smart meters. According to the experimental results, a single addition operation in
Zp and a single commitment generation cost 0.0004 ms (Tadd) and 397.3102 ms (Tcom),
respectively. Since the User Data Sharing phase is not required during re-computation
in the enhanced version of the protocol, only the Privacy-preserving Data Aggregation
phase influences the computational cost of the enhanced version.
The computational cost of original protocol depends on both k and n. We show the
variation in computational overhead in terms of both k and n in Figure 10a. Given
that n is fixed, the greater the value of k, the smaller the computational cost of the
protocol. On the contrary, computational cost of the enhanced version of the protocol
depends only on k. We thus depict the difference in computational overhead between
two protocols in terms of k in Figure 10b, given that n = 1000. From the figure, we see
that the enhanced version is more efficient until k becomes approximately 999.99. This
means that the enhanced version of the protocol is more efficient than the original one,
excluding the case where all smart meters are detected as malicious.

Table 1. Comparison of Computational Complexity-One detection, k malicious users.

Original Protocol Enhanced Version

Input
(n− k)× Tcom -(commitment)

Compute
(n− k)× Tadd 2k× Tadd(addition)

(a) Computational cost of original protocol (b) Comparison of computational overheads

Figure 10. Computational overhead-one detection, k malicious users.

• One malicious user: k detection
In this case, we compare the computation overhead of two protocols when detection
occurs k times and one malicious SMj is detected at a time. The number of generating
commitments and computing addition operations is listed in Table 2, where n is the

Cryptography 2021, 5, 19 18 of 21

number of smart meters.
(
As above, Tadd = 0.0004 ms and Tcom = 397.3102 ms.

)
We show the variation in computational costs of the original protocol in terms of
both k and n in Figure 11a, where detection occurs k times and only one malicious
SMj is detected at a time. Given that n is fixed, the greater the value of k, the greater
the computational cost of the protocol. On the contrary, computational cost of the
enhanced version of the protocol depends only on k. We thus depict the difference in
computational overhead between two protocols in terms of k in Figure 11b, given that
n = 1000. From the figure, we see that the enhanced version of the protocol is more
efficient than the original one in all cases.

Table 2. Comparison of Computational Complexity-One malicious user, k detections.

Original Protocol Enhanced Version

Input {
nk− 1

2 k(k + 1)
}
× Tcom -(commitment)

Compute {
nk− 1

2 k(k + 1)
}
× Tadd 2k× Tadd(addition)

(a) Computational cost of original protocol (b) Comparison of computational overheads

Figure 11. Computational overhead-one malicious user, k detections.

8. Conclusions and Future Research Directions

In this paper, we have proposed a secure multi-party computation (SMC) protocol that
guarantees fairness and provides cheater detection. The proposed protocol has an efficient
online phase because it is based on the SPDZ protocol and is secure if at least one party of
n is honest. Our protocol guarantees both the correctness of the output of computation by
detecting malicious parties as well as the fairness of the protocol by performing detection
prior to deriving the final output. We provided a definition of UC-secure fair SMC and
proved the security of fair SMC in the UC setting. Moreover, we proposed an enhanced
version of our protocol, in terms of efficiency, for smart grids and analyzed the difference
between the original protocol and an improved one.

In future work, we plan to construct an enhanced version of protocols for various
kinds of operations, as well as reduce the overall communication overhead. The multi-party
computation protocol requires a lot of communication by its nature, and it would be better
to combine various kinds of techniques to reduce the amount of communication with our
proposed protocol.

Author Contributions: Conceptualization, M.S.; methodology, M.S.; software, M.S.; validation, M.S.;
formal analysis, M.S.; investigation, M.S.; resources, M.S.; writing—original draft preparation, M.S.;
writing—review and editing, M.S.; visualization, M.S. The author have read and agreed to the
published version of the manuscript.

Cryptography 2021, 5, 19 19 of 21

Funding: This research was supported by the Basic Research Program through the National Research
Foundation of Korea(NRF) funded by the MSIT(grant number: 2021R1A4A502890711).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naor, M.; Pinkas, B.; Sumner, R. Privacy Preserving Auctions and Mechanism Design. In Proceedings of the 1st ACM Conference

on Electronic Commerce, Denver, CO, USA, 3–5 November 1999; EC’99, pp. 129–139.
2. Bogetoft, P.; Christensen, D.; Damgård, I.; Geisler, M.; Jakobsen, T.; Krøigaard, M.; Nielsen, J.; Nielsen, J.; Nielsen, K.; Pagter,

J.; et al. Secure Multiparty Computation Goes Live. In Financial Cryptography and Data Security; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5628, pp. 325–343.

3. Ben-David, A.; Nisan, N.; Pinkas, B. FairplayMP: A system for secure multi-party computation. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, New York, NY, USA, 27–31 October 2008; pp. 257–266.

4. Bogdanov, D.; Laur, S.; Willemson, J. Sharemind: A framework for fast privacy-preserving computations. In European Symposium
on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2008; pp. 192–206.

5. Damgård, I.; Geisler, M.; Krøigaard, M.; Nielsen, J.B. Asynchronous multiparty computation: Theory and implementation. In
International Workshop on Public Key Cryptography; Springer: Berlin/Heidelberg, Germany, 2009; pp. 160–179.

6. Burkhart, M.; Strasser, M.; Many, D.; Dimitropoulos, X. SEPIA: Privacy-preserving aggregation of multi-domain network events
and statistics. Network 2010, 1, 15–32.

7. Peter, A.; Tews, E.; Katzenbeisser, S. Efficiently Outsourcing Multiparty Computation Under Multiple Keys. IEEE Trans. Inf.
Forensics Secur. 2013, 8, 2046–2058. [CrossRef]

8. Clark, M.; Hopkinson, K. Transferable Multiparty Computation With Applications to the Smart Grid. IEEE Trans. Inf. Forensics
Secur. 2014, 9, 1356–1366. [CrossRef]

9. Kerschbaum, F. Adapting Privacy-Preserving Computation to the Service Provider Model. In Proceedings of the CSE’09,
International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31 August 2009; Volume 3,
pp. 34–41.

10. Damgård, I.; Orlandi, C. Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost.
In Advances in Cryptology-CRYPTO 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010;
Volume 6223, pp. 558–576.

11. Hirt, M.; Tschudi, D. Efficient General-Adversary Multi-Party Computation. In Advances in Cryptology-ASIACRYPT 2013; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8270, pp. 181–200.

12. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption. In Advances
in Cryptology-CRYPTO 2012; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7417,
pp. 643–662.

13. Peng, J.; Choo, R.K.K.; Ashman, H. Astroturfing detection in social media: Using binary n-gram analysis for authorship
attribution. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 121–128.

14. Mahbub, S.; Pardede, E.; Kayes, A.; Rahayu, W. Controlling astroturfing on the internet: a survey on detection techniques and
research challenges. Int. J. Web Grid Serv. 2019, 15, 139–158. [CrossRef]

15. Mahbub, S.; Pardede, E.; Kayes, A. Detection of Harassment Type of Cyberbullying: A Dictionary of Approach Words and Its
Impact. Secur. Commun. Netw. 2021, 2021. [CrossRef]

16. Cabello, S.; Padro, C.; Saez, G. Secret Sharing Schemes with Detection of Cheaters for a General Access Structure. Des. Codes
Cryptogr. 2002, 25, 175–188. [CrossRef]

17. Araki, T. Efficient (k,n) Threshold Secret Sharing Schemes Secure Against Cheating from n–1 Cheaters. In Information Security and
Privacy; Lecture Notes in Computer Science; Pieprzyk, J., Ghodosi, H., Dawson, E., Eds.; Springer: Berlin/Heidelberg, Germany,
2007; Volume 4586, pp. 133–142.

18. Harn, L.; Lin, C. Detection and identification of cheaters in (t, n) secret sharing scheme. Des. Codes Cryptogr. 2009, 52, 15–24.
[CrossRef]

19. Obana, S. Almost Optimum t-Cheater Identifiable Secret Sharing Schemes. In Advances in Cryptology-EUROCRYPT 2011; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6632, pp. 284–302.

20. Baum, C.; Damgård, I.; Orlandi, C. Publicly Auditable Secure Multi-Party Computation. In Security and Cryptography for Networks;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8642, pp. 175–196.

21. Spini, G.; Fehr, S. Cheater detection in SPDZ multiparty computation. In International Conference on Information Theoretic Security;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 151–176.

22. Cunningham, R.; Fuller, B.; Yakoubov, S. Catching MPC cheaters: Identification and openability. In International Conference on
Information Theoretic Security; Springer: Berlin/Heidelberg, Germany, 2017; pp. 110–134.

23. Baum, C.; Orsini, E.; Scholl, P.; Soria-Vazquez, E. Efficient constant-round MPC with identifiable abort and public verifiability. In
Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2020; pp. 562–592.

24. Goldreich, O.; Micali, S.; Wigderson, A. How to Play ANY Mental Game. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987; STOC’87, pp. 218–229.

http://doi.org/10.1109/TIFS.2013.2288131
http://dx.doi.org/10.1109/TIFS.2014.2331753
http://dx.doi.org/10.1504/IJWGS.2019.099561
http://dx.doi.org/10.1155/2021/5594175
http://dx.doi.org/10.1023/A:1013856431727
http://dx.doi.org/10.1007/s10623-008-9265-8

Cryptography 2021, 5, 19 20 of 21

25. Ben-Or, M.; Goldwasser, S.; Wigderson, A. Completeness Theorems for Non-cryptographic Fault-tolerant Distributed Compu-
tation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May 1988;
STOC’88, pp. 1–10.

26. Chaum, D.; Crépeau, C.; Damgard, I. Multiparty Unconditionally Secure Protocols. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May 1988; STOC’88, pp. 11–19.

27. Rabin, T.; Ben-Or, M. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In Proceedings of the Twenty-First
Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 14–17 May 1989; STOC’89, pp. 73–85.

28. Cleve, R. Limits on the Security of Coin Flips when Half the Processors Are Faulty. In Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing, Berkeley, CA, USA, 28–30 May 1986; STOC’86, pp. 364–369.

29. Beaver, D.; Goldwasser, S. Multiparty Computation with Faulty Majority. In Advances in Cryptology-CRYPTO 1989; Lecture Notes
in Computer Science; Springer: New York, NY, USA, 1990; Volume 435, pp. 589–590.

30. Goldwasser, S.; Levin, L. Fair Computation of General Functions in Presence of Immoral Majority. In Advances in Cryptology-
CRYPTO 1990; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 537, pp. 77–93.

31. Fitzi, M.; Gottesman, D.; Hirt, M.; Holenstein, T.; Smith, A. Detectable Byzantine Agreement Secure Against Faulty Majorities. In
Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, Monterey, CA, USA, 21–24 July
2002; PODC’02, pp. 118–126.

32. Goldwasser, S.; Lindell, Y. Secure Computation without Agreement. In Distributed Computing; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2002; Volume 2508, pp. 17–32.

33. Even, S.; Goldreich, O.; Lempel, A. A Randomized Protocol for Signing Contracts. Commun. ACM 1985, 28, 637–647. [CrossRef]
34. Boneh, D.; Naor, M. Timed Commitments. In Advances in Cryptology-CRYPTO 2000; Lecture Notes in Computer Science; Springer:

Berlin/Heidelberg, Germany, 2000; Volume 1880, pp. 236–254.
35. Garay, J.; MacKenzie, P.; Prabhakaran, M.; Yang, K. Resource Fairness and Composability of Cryptographic Protocols. In Theory of

Cryptography; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3876, pp. 404–428.
36. Asokan, N.; Shoup, V.; Waidner, M. Optimistic fair exchange of digital signatures. In Advances in Cryptology-EUROCRYPT’98;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1403, pp. 591–606.
37. Cachin, C.; Camenisch, J. Optimistic Fair Secure Computation. In Advances in Cryptology-CRYPTO 2000; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1880, pp. 93–111.
38. Lepinski, M.; Micali, S.; Peikert, C.; Shelat, A. Completely Fair SFE and Coalition-safe Cheap Talk. In Proceedings of the

Twenty-third Annual ACM Symposium on Principles of Distributed Computing, St. John’s, NL, Canada, 25–28 July 2004;
PODC’04, pp. 1–10.

39. Andrychowicz, M.; Dziembowski, S.; Malinowski, D.; Mazurek, L. Secure Multiparty Computations on Bitcoin. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; SP ’14, pp. 443–458.

40. Bentov, I.; Kumaresan, R. How to Use Bitcoin to Design Fair Protocols. In Advances in Cryptology-CRYPTO 2014; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8617, pp. 421–439.

41. Kılınç, H.; Küpçü, A. Optimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party Computation. In Topics in
Cryptology-CT-RSA 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9048, pp. 330–349.

42. Asharov, G.; Lindell, Y.; Zarosim, H. Fair and Efficient Secure Multiparty Computation with Reputation Systems. In Advances in
Cryptology-ASIACRYPT 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8270,
pp. 201–220.

43. Choudhuri, A.R.; Green, M.; Jain, A.; Kaptchuk, G.; Miers, I. Fairness in an unfair world: Fair multiparty computation from
public bulletin boards. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017, pp. 719–728.

44. Paul, S.; Shrivastava, A. Efficient fair multiparty protocols using Blockchain and trusted hardware. In International Conference on
Cryptology and Information Security in Latin America; Springer: Berlin/Heidelberg, Germany, 2019; pp. 301–320.

45. Li, F.; Luo, B.; Liu, P. Secure Information Aggregation for Smart Grids Using Homomorphic Encryption. In Proceedings of
the 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), Gaithersburg, MD, USA, 4–6
October 2010; pp. 327–332.

46. Kursawe, K.; Danezis, G.; Kohlweiss, M. Privacy-Friendly Aggregation for the Smart-Grid. In Privacy Enhancing Technologies;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6794, pp. 175–191.

47. Lu, R.; Liang, X.; Li, X.; Lin, X.; Shen, X. EPPA: An Efficient and Privacy-Preserving Aggregation Scheme for Secure Smart Grid
Communications. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1621–1631.

48. Yang, L.; Xue, H.; Li, F. Privacy-preserving data sharing in Smart Grid systems. In Proceedings of the 2014 IEEE International
Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 878–883.

49. Mustafa, M.A.; Cleemput, S.; Aly, A.; Abidin, A. An MPC-based protocol for secure and privacy-preserving smart metering. In
Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29
September 2017; pp. 1–6.

50. Mustafa, M.A.; Cleemput, S.; Aly, A.; Abidin, A. A secure and privacy-preserving protocol for smart metering operational data
collection. IEEE Trans. Smart Grid 2019, 10, 6481–6490. [CrossRef]

http://dx.doi.org/10.1145/3812.3818
http://dx.doi.org/10.1109/TSG.2019.2906016

Cryptography 2021, 5, 19 21 of 21

51. Yao, A.C.C. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer
Science (sfcs 1986), Toronto, ON, Canada, 27–29 October 1986; pp. 162–167.

52. Demmler, D.; Schneider, T.; Zohner, M. ABY-A Framework for Efficient Mixed-Protocol Secure Two-Party Computation; NDSS:
San Diego, CA, USA, 8–11 February 2015.

53. Chandran, N.; Gupta, D.; Rastogi, A.; Sharma, R.; Tripathi, S. EzPC: Programmable and efficient secure two-party computation
for machine learning. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm,
Sweden, 17–19 June 2019; pp. 496–511.

54. Patra, A.; Schneider, T.; Suresh, A.; Yalame, H. ABY2. 0: Improved mixed-protocol secure two-party computation. In Proceedings
of the 30th {USENIX} Security Symposium ({USENIX} Security 21), Virtual Event, 11–13 August 2021.

55. Zhang, Y.; Steele, A.; Blanton, M. PICCO: A general-purpose compiler for private distributed computation. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8 November 2013; pp. 813–826.

56. Zhang, Y.; Blanton, M.; Almashaqbeh, G. Implementing support for pointers to private data in a general-purpose secure
multi-party compiler. ACM Trans. Priv. Secur. (TOPS) 2017, 21, 1–34. [CrossRef]

57. Keller, M. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, 9–13 November 2020; pp. 1575–1590.

58. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
59. Goldreich, O.; Micali, S.; Wigderson, A. How to play any mental game, or a completeness theorem for protocols with honest

majority. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 307–328.

60. Beaver, D. Efficient multiparty protocols using circuit randomization. In Annual International Cryptology Conference; Springer:
Berlin/Heidelberg, Germany, 1991; pp. 420–432.

61. Naor, D.; Naor, M.; Lotspiech, J. Revocation and tracing schemes for stateless receivers. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 2001; pp. 41–62.

62. Dodis, Y.; Fazio, N. Public key broadcast encryption for stateless receivers. In ACM Workshop on Digital Rights Management;
Springer: Berlin/Heidelberg, Germany, 2002; pp. 61–80.

63. Groth, J.; Ostrovsky, R.; Sahai, A. Perfect Non-interactive Zero Knowledge for NP. In Advances in Cryptology-EUROCRYPT 2006;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4004, pp. 339–358.

64. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, Washington, DC, USA, 14–17 October 2001; pp. 136–145.

65. Pedersen, T. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Advances in Cryptology-CRYPTO 1991;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 576, pp. 129–140.

66. pbc Library. 2012. Available online: https://crypto.stanford.edu/pbc/ (accessed on 15 March 2021).
67. gmp Library. 2014. Available online: https://gmplib.org (accessed on 15 March 2021).

http://dx.doi.org/10.1145/3154600
http://dx.doi.org/10.1145/359168.359176
https://crypto.stanford.edu/pbc/
https://gmplib.org

	Introduction
	Related Work
	Preliminaries
	Secure Multi-Party Computation
	Addition
	Multiplication

	Public-Key Broadcast Encryption
	Non-Interactive Zero Knowledge
	Universally Composable Security

	Definitions
	Notation
	UC-Secure Fair Multi-Party Computation

	FSMC Protocol with Cheater Detection
	Setup
	Offline Phase
	Online Phase

	Security in the Online Phase
	Application
	Applying FSMC Protocol to the Smart Grid
	System Setup
	User Data Sharing
	Privacy-Preserving Data Aggregation
	Secure Data Retrieval

	Analysis
	Improving Efficiency (in terms of Average)
	Efficiency Analysis

	Conclusions and Future Research Directions
	References

