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Abstract: Side-channel analysis (SCA) attacks constantly improve and evolve. Implementations are
therefore designed to withstand strong SCA adversaries. Different side channels exhibit varying
statistical characteristics of the sensed or exfiltrated leakage, as well as the embedding of differ-
ent countermeasures. This makes it crucial to improve and adapt pre-processing and denoising
techniques, and abilities to evaluate the adversarial best-case scenario. We address two popular
SCA scenarios: (1) a single-trace context, modeling an adversary that captures only one leakage
trace, and (2) a multi-trace (or statistical) scenario, that models the classical SCA context. Given
that horizontal attacks, localized electromagnetic attacks and remote-SCA attacks are becoming
evermore powerful, both scenarios are of interest and importance. In the single-trace context, we
improve on existing Singular Spectral Analysis (SSA) based techniques by utilizing spectral property
variations over time that stem from the cryptographic implementation. By adapting overlapped-SSA
and optimizing over the method parameters, we achieve a significantly shorter computation time,
which is the main challenge of the SSA-based technique, and a higher information gain (in terms
of the Signal-to-Noise Ratio (SNR)). In the multi-trace context, a profiling strategy is proposed to
optimize a Band-Pass Filter (BPF) based on a low-computational cost criterion, which is shown to
be efficient for unprotected and low protection level countermeasures. In addition, a slightly more
computationally intensive optimized ‘shaped’ filter is presented that utilizes a frequency-domain
SNR-based coefficient thresholding. Our experimental results exhibit significant improvements
over a set of various implementations embedded with countermeasures in hardware and software
platforms, corresponding to varying baseline SNR levels and statistical leakage characteristics.

Keywords: countermeasures; dual-rail; filtering; hiding; OV-SSA; preprocessing; shuffling; side
channel analysis; signal to noise ratio; singular spectral analysis; SSA

1. Introduction

Side-channel analysis (SCA) attacks over cryptographic implementations are con-
stantly evolving and improving. Current and future primitives and their implementa-
tions are designed to enable low-cost embedding of security mechanisms as much as
possible [1,2]. However, new channels and adversarial mechanisms are constantly on
the rise; for example screaming channels [3] that target Radio Frequency (RF) ID IoTs,
multiple-SOCs/Network/cloud SCAs, e.g., [4–9], which are directed towards more general
computing platforms, to name a few. Future Lightweight Crypto. and Post-Quantum
Crypto. proposals are nowhere near to a solution to the side-channel issue with respect
to the low electronic cost requirements of countermeasures. In particular, information
extraction and exfiltration mechanisms provide leakages with different statistical character-
istics. For example, the electromagnetic channel provides leakages with less algorithmic
noise which are more sensitive to specific frequency ranges. Information sniffing over
multi-process computation platforms shape different characteristics of the leakage due to
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the characteristics of these SCA channels; e.g., through on-chip sensors or analog-to-digital
converters (ADCs). Therefore, preprocessing and denoising tools and abilities must be
improved and adapted to evaluate worst-case leakage scenarios.

In this paper, we address two scenarios. The first, denoted as the single-trace context,
depicts a scenario in which an adversary has access to only one leakage trace, e.g., corre-
sponding to one encryption (or only a few traces). This scenario is applicable when very
frequent re-keying takes place, or other randomization mechanisms exist. This scenario is
particularly important in the context of asymmetric protocols and horizontal attacks [10,11].
The second scenario refers to the multi-trace (or statistical) context, and corresponds to the
classical SCA attack context where an adversary has access to numerous measurements.
This scenario is highly applicable to symmetric protocols. Both scenarios are of interest,
and will continue to be subjected to adversarial activity.

Filtering techniques are utilized in both the single- and multi-trace scenarios. For the
two, the SCA literature tends to suggest heuristic optimization techniques to pre-process the
traces and reduce the noise or filter the raw traces. There are many meta-parameters includ-
ing the bandwidth and frequency ranges of a filter, its shape, and the domain it is manipu-
lating [12–17] (e.g., time, frequency or other domains, such as the wavelet domain [15,18]).
Filters are utilized extensively in the field and in particular in the side-channel related
literature. However, experimentation or reports typically only deal with one ad hoc chosen
filter. Thus, to the best of our knowledge, different filters have not been compared and
analyzed in a systematic fashion. Stated differently, filters have never been concretely
compared with respect to an optimization criterion from the SCA security context with
a clear holistic approach. Nevertheless, this type of approach has promise since it can
lead to sharper conclusions in the quest to find the ‘best’ filter for this specific purpose.
These efforts should also be complemented by an informative metric, to enable an accurate
quantitative comparison to a simple or trivial filter.

Most attacks and widespread security analyses, especially on low-cost countermea-
sures (simple power randomization, flattening countermeasures, shuffling, etc.) are natu-
rally univariate when low computational complexity is desired. For example, although it is
well known that a multivariate analysis would be the most effective approach to extracting
information from a shuffled design, typically a univariate analysis is utilized subsequent
to a tailored filter such as convolution with a window function or averaging to combine
the different leakages stemming from a shuffled set of time samples. This underscores the
need to analyze and compare different filtering techniques focusing on such univariate ad-
versaries. This manuscript thus addresses the potential gains while using an optimization
criterion to devise the best (in some well-defined sense) filter. In addition, we explore a set
of different cryptographic implementations embedded with countermeasures, where each
provides different leakage characteristics; in turn, these different characteristics exemplify
whether these optimized filters respond better than other more naive filters.

Another frontier, which is much less theoretically analyzed or experimented with, is
the single-trace context. Statistical noise reduction techniques utilized in the single-trace
scenario, such as Singular Spectral Analysis [19] (SSA), mostly serve heuristic single-
spectrum thresholds and evaluation techniques to exclude noise components. In this
work, we extend the original proposal [20], which is adapted to the SCA context. Our
initial observations, supported by concrete demonstrations, is that most SCA leakages
vary the spectrum characteristics of their leakage as a function of the time sample. These
characteristics also behave differently when different countermeasures are examined,
as discussed below. While considering this property, we utilize a technique of overlapped
SSA (OVSSA [21]) over a piece-wise constant spectral-characteristics time window. This
approach produces considerably improved noise-removal capabilities, and perhaps more
importantly, significantly reduces the processing time complexity, which constitutes the
SSA/OVSSA bottleneck.

The main contributions of this paper are as follows:
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• We improve upon the SSA technique adapted to the single-trace SCA context by
utilizing the variations in spectral properties over time. By implementing OVSSA [21],
adapting it to the single trace scenario and optimizing over the method parameters, we
achieve not only a significantly shorter computation time, which is the main Achilles’
heel of the method, but also lower the data complexity and generate an overall
higher information gain (in terms of the Signal-to-Noise Ratio (SNR)). Concretely,
the proposed technique provides ∼5× max. SNR improvement for about the same
number of leakage traces (data complexity). However, the main improvement is in
the pre-processing evaluation time. The SSA based pre-processing technique time
complexity depends primarily on a Singular Value Decomposition (SVD), which is
generally quadratic in time as a function of the number of leakage time samples,
n. The OVSSA based pre-processing technique time complexity depends on SVDs
over chunked leakage traces (fewer samples), with a parameter Z, i.e., n/Z. That
is, the time complexity improvement is generally O( n

Z ), which was shown to be
significant in our experiments. i.e., Z depends on the spectral characteristics of the
leakage throughout the trace and for round-base cryptographic implementations the
n/Z factor is expected to yield significant improvements.

• In the multi-trace SCA context, we devise a profiling tactic to optimize a Band-Pass
Filter (BPF) based on a criterion utilizing a low computational cost SNR metric in
Section 2.4.3. Our experiments below achieve optimal results for unprotected designs.
However, as the protection level increases, the (optimized) BPF shows a significant
reduction in performance that can be attributed to the different and more complex
spectrum of the leakage, which requires more sophisticated filters. Therefore, we
also propose an optimized shaped filter utilizing a frequency domain SNR-based
coefficient thresholding for the multi-trace scenario. The results obtained when using
this filter show significant improvements over all datasets and designs, yield the
highest SNR compared to all the other methods with an improvement of an order of
magnitude, and reduce data-complexity by a factor of ∼2.5×, as reported in Table 1.

Table 1. Summary of the main results: Upper (resp. lower) half of the table list comparison values of
the single- (resp. multiple-) trace context.

Technique Context x(SNR) x(Time) x(Data) Counter. *

No filtering (baseline) Single 1 1 1 CMOS-none

Adapting SSA [19,20] Single 2.5 1 1 CMOS-none

Proposed (adapting [21]) Single 5 ∼ ( n
Z ) 1 CMOS-none

No filtering (baseline) Multi 1 1 1 Dual Rail

Optimized BPF (proposed) Multi 6.74 1 2.5 Dual Rail

Shaped filter (proposed) Multi 10.75 1 2.5 Dual Rail
∗ Various implementations with countermeasures were evaluated. Here, we exemplify through our implementa-
tion yielding the largest improvement. No filtering serves as a baseline for comparison.

The rest of the paper is organized as follows. In Section 2, we present the low computa-
tional effort toolbox we chose to evaluate security, which is used in our proposed criterion
for optimal filter design. In Section 2.3, we describe single-trace pre-processing techniques
and possible improvements by adapting OVSSA Section 2.3.2, and in Section 2.4.3 we detail
the multiple-trace (statistical) pre-processing techniques, while defining our optimization
criterion and set of parameters that are optimized for band-pass filters and shaped filters.
In Section 3, we present the designs and countermeasures from which we collected datasets
to apply these tools. In Section 4, we describe the experimental results, and the data and
complexity gains for both the single-trace and multi-trace scenarios in Sections 4.1 and 4.2,
respectively. Finally, a discussion of the results along with some concluding remarks are
provided in Section 5.
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2. Tools and Theory

In this section, we first discuss our optimization criterion for optimal filter design
and our evaluation setting. We then describe in detail the single-trace and multiple-traces
pre-processing techniques proposed in this paper.

2.1. A Simple, Computationally Attractive Optimization Criterion

In this subsection, we discuss the simple metric we use to evaluate security, namely the
SNR, and present the rationale for this particular metric. We further detail the evaluation
scenario; i.e., a profiling adversary, in the context of filter estimation (profiling), utilized
in an attack campaign. Consider an internal variable manipulated by a cryptographic
algorithm, Y of n-bit, and y its realization. Throughout the data manipulation by a device,
information leaks via side-channels and is associated with the manipulated data, as well as
with other physical parameters. We assume henceforth that an adversary takes a divide-
and- conquer approach over a small chunk of a secret variable of sk bits, such that sk ≤ n.
Denote a leakage trace by a measurement set of T time points, i ∈ {1, . . . , T}. The leakage
trace, corresponding to the manipulation of y, is therefore denoted by L = {L1, L2, . . . , LT}.
A matrix of these leakage traces, containing a set of measurements of several realizations y,
is denoted by L.

In what follows, we focus on a univariate analysis of the leakage distribution targeting
one of the most widespread adversarial scenarios, which also enables a tractable analysis.
Our main goal is to devise a simple security oriented metric that can be efficiently processed
on the one hand, but on the other is sufficiently statistically robust to capture the main
leakage characteristics of simple countermeasures embedded within a device. The ratio-
nale for this fast processing metric is our goal to utilize it as an optimization criterion for
filters, which is why the procedure is repeated across multiple optimization parameters.
Theoretically, there are scenarios which can be augmented by a multivariate analysis (or a
multivariate leakage distribution over multiple leakage time samples jointly), e.g., when
shuffling [22] or serial masking [23,24] countermeasures are embedded. However, in our
measurement and evaluation environment, we evaluate a large set of different counter-
measures that are almost all low-cost and univariate by nature. We address several basic
questions concerning optimal filtering with varying leakage distributions. We also use the
univariate approach in the shuffled leakages scenario, though a very complex multivariate
approach could be applied [22], albeit with exponential data complexity in the number of
dimensions. This is due to the fact that the univariate approach is still indicative of the
level of leaked information from a shuffled design.

The SNR is a statistical measure that indicates how informative a signal is within
a noisy environment: it compares the power level of a signal to the power level of the
background noise; hence, the assumption is that the evaluator has access to labeled leakages.
Traditionally, the SNR is defined as the ratio of the signal power to the noise power. SNR
in the side-channel sense, as first proposed by Mangard [25]. The SNR has been utilized
in numerous works and aims to indicate the univariate informativeness of a leakage time
sample. To do so, both the signal and noise components are estimated. The signal power
is estimated by first averaging out the noise in the leakage per secret variable state (y),
and then computing the outcome-leakage variance over y. The noise first captures the level
of noise (variance) in the leakage per y state, and averages the outcome-leakage over the
states. Specifically, for the t-th leakage trace, the SNR defined by

SNR(t) ,
Var
(
E
[

Lj,t(y)
∣∣y])

E
[
Var
(

Lj,t(y)
∣∣y)] . (1)

Of course, in practice, the true quantities in Equation (1) are unknown, so that we use
estimates (using empirical averages and standard deviations) to obtain an estimate of the
SNR. In the evaluation cases below we target y, giving y = Sbox(x⊕ k), where x and k are
the plaintext and key, respectively, and Sbox is the substitution-box step taking place in the
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first round of the advanced encryption standard (AES) algorithm implemented within our
encryption cores.

Note that although the univariate SNR makes use of simplifying statistical assump-
tions regarding the leakage distribution, it is still probably the most widespread and viable
tool to identify points-of-interest (POI) in time where the manipulation of a secret variable
takes place, and is also used to link higher level security estimations such as the guessing
entropy (GE) or the attack success rate (SR). In addition, it typically serves as a tool for
valuable speedup of security evaluations. Generally, information-theoretic-based metrics,
such as the ones used in [26,27], and full distribution analysis would be more statistically
correct to use. However, in the context of this particular work, they are less practical for
performing fast calibrations of many filter parameters due to their high computational
complexity and their underlying data complexity, which are required to fully capture the
leakage distribution.

2.2. A Profiled Evaluation

Template attacks [28] are performed in two subsequent (or interleaved) phases of
profiling and attack. It is assumed that the adversary has gotten hold of one device for
which the secret key can be programmed (in a controlled manner), so that the leakage
can be profiled. Then, another target device under an attack campaign is used, where the
adversary tries to extract information on the underlying key. In the context of a multi-trace
(statistical) scenario, where we aim to find a viable filter, we consider the template setting;
namely, we assume the leakages are y-labeled to optimize the SNR w.r.t. filter parameters.

2.3. Single Trace Techniques
2.3.1. SSA Utilized for SCA Denoising

SSA is a spectral estimation method, which is utilized in classical time series analy-
ses, multivariate statistics, multivariate geometry, dynamic systems analysis and signal
processing [29–34]. SSA can be applied to a single trace (i.e., it requires a single vector
observation, denoted by one measurement here). SSA can serve to decompose a signal into
meaningful components (usually divided into trends, oscillations, and noise) relying on
the celebrated SVD, which can be used for denoising. In our context, SSA can be applied as
a pre-processing tool to each measurement (time series measurement). Then, the estimated
SNR, based on a set of single processed measurements, can be utilized to evaluate the gain
in the security context. The feature of interest in this case is the ability to reduce noise with
SSA, as was successfully demonstrated in [20]. Formally, denote X ∈ RN×1, a time series
measurement (leakage trace), and further, define the matrix X as

X =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

...
. . .

...
xL xL+1 · · · xN

 ∈ RL×K, (2)

where K defines the window length of observations in X, allocated to each row of the
matrix. From the first row, each following row is skewed by one sample. The number of
rows, L, is set from N by the selection of the window size K, i.e., K = N − L + 1. X is a
general case of a “non-square Hankel matrix”. A Hankel matrix is a square matrix in which
each ascending skew-diagonal from left to right is constant.

The SSA procedure follows the computation of the (unnormalized) sample covariance
matrix S = XXT ∈ RL×L, where (·)T represents the transposition, computing the (non-
negative) eigenvalues of S, denoted by λ1, . . . , λL, and sorting them in a decreasing order,
where u1, . . . , uL represent their corresponding eigenvectors. Then, compute Xi = uiuT

i X,
while keeping only a subset eigenvectors which are associated with the trend and oscillation
components, and excluding ones associated with the noise components. That is, one needs
to choose sets of indices [I1, . . . , Im], corresponding to a set of eigenvalues, where Ii and Ij
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are disjoint for all {i, j}, and the union of all the sets {Ij}j sets is {Xi}L
i=1. Then, these sets

are associated with the trends, oscillations and noise components. Once the set of indices
associated with noise components is chosen, one can simply exclude them and compute:
X′ = ∑i XIi . This decision step is typically based on thresholding the slope of the sorted
descending eigenvalues as discussed below, and is generally highly heuristic; it depends
on various parameters such as the noise distribution, the characteristic of the signal, and
the parameters K and N. Therefore, closed-form formulas for thresholds are challenging to
achieve with high coverage.

Finally, in order to reconstruct a time series denoised leakage trace from the resulting
X’ matrix, a Diagonal Averaging (DA) step is utilized. If X’ is a Hankel matrix, DA can
simply average over elements corresponding to indices on each diagonal line in the matrix
to form the time series. Formally, for matrix A, it is defined as

DA(c) , avg(Ai,j, where i− j = c) ,
1

N − c

N−c

∑
i=1

Ai,i+c,

∀A ∈ RN×N , ∀c ∈ {0, . . . , N − 1}
(3)

If X’ is not a Hankel matrix, it can be Hankelized, utilizing the Hankel transform
(e.g., consider [35]).

An illustrative example is shown in Figure 1. Figure 1c shows an encryption current
measurement quantized with a 16-bit oscilloscope versus measurement time (in time
samples). Clearly, the repetitive round-based iterations of the encryption process are visible
within the leakage. Figure 1a shows the sorted descending eigenvalues of S corresponding
to one leakage trace after SVD over X. Finally, Figure 1b shows reconstructed elements
associated with trends noise and oscillations.

Figure 1. Exemplary SSA of AES leakage traces. (a) The eigenvalues in a decreasing order. (b) several
components of the decomposition. (c) The original trace. Current measurements were performed
with a 16-bit ADC.

Intuitively, rapidly changing eigenvalues correspond to trends, while slowly changing
eigenvalues correspond to oscillations. However, without additional, restricting assump-
tions regarding the signal model, it is generally unclear how to predict the decay rate
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(i.e., slow or fast) of the ordered eigenvalues. Therefore, there is no universal method for
consistent separation of the corresponding eigenvectors. Thus, heuristic approaches have
been proposed, which are only efficient to some extent. Here, we chose to classify the
eigenvectors based on their maximum discrete derivative with respect to the eigenvalues
index (or slope), and suggest two heuristic thresholds, denoted by a, b ∈ R, to classify the
eigenvectors, as specified in Algorithm 1.

Algorithm 1: Trends, oscillations and noise thresholds setting.

Data: Sorted [eigenvalues, eigenvectors] element pairs (the ith element is {λi, ui})
Result: Elements classification into {trend}, {oscillations} and {noise}

1 compute: maxD = max
i∈{0,...,L−1}

(λi − λi+1)

2 For(i = 0, i++, i = L− 1)
3 derivative = λi − λi+1;
4 if derivative > b·(maxD) then
5 Xi is in {trends};
6 else if derivative < a·(maxD) then
7 Xi is in {oscillations};
8 else
9 Xi is in {noise};

10 endFor

In order to find the optimal parameters {a, b}, we first compute the SNR over the
SSAa,b’ed traces, listed in the matrix L, independently for each time instance t. We then
focus on the maximal SNR, based on which the optimal parameters {a, b} are chosen.
Formally, this optimization is described as

{a∗, b∗} = argmax
a,b

max
t

(SNR(SSAa,b(L(:, t)), y)). (4)

Here, the matrix L is the leakage metric of all recordings corresponding to y realiza-
tions, listed in a vector y of labels (required for the SNR procedure). Note that optimal
thresholding for eigenvalue exclusion while reconstructing signals with SVD was inves-
tigated in [36]. Though there are some similarities, SSA embedding and reconstruction,
and SVD reconstruction are different. In addition, the threshold presented in [36] is only
optimal under certain conditions—for the noise (i.e., white), the dimensions of the measure-
ment, and the variance of eigenvalues—and is only guaranteed asymptotically. In the SCA
context, in most cases, the noise is not white nor can we meet the rest of these conditions,
especially the dimensions of the measurements in the single-trace context.

2.3.2. We Can Do Better with OVSSA

Typically, cryptographic computations generate a repetitive structure of the leakage as
a result of the periodicity of the computation (e.g., rounds in an SPN or sponge stages and
iterations in asymmetric protocols) and due to the periodicity of the clock strobe. However,
the spectral characteristics vary over the time sections throughout the computation. This
is because the leakage on the first (last) rounds changes abruptly between computations,
which is not related to encryption, to (from) a periodic sequence of encryption computations.
However, the crucial points in time, for a divide and conquer adversary that aims to
extract leakages prior to large key diffusion, are typically situated exactly where the
spectral characteristics change rapidly, in the final (resp. initial) rounds. For example,
the encryption spectogram exhibits varying spectral characteristics over time within the
leakage, as illustrated in Figure 2. Therefore, any attempt to estimate spectral characteristics
from the entire signal will not accurately characterize each and every individual time
section robustly.
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In this paper, to the best of our knowledge, OVSSA is proposed for the first time
in the SCA context. OVSSA is defined with parameters q for the overlap and Z for the
computation interval, where n is the number of time samples, and l is the window length
(see [21]), in our case, q = 100 and Z = 201. l is determined by α · (log(n))c, where α is a
small constant, and c ∈ [1.5, 3] (see derivation [37] and its use in the SCA context [20]).
The Z parameter was derived in our experiments by investigating the spectrograms (e.g.,
see Figure 2), and observing the rate at which the spectral characteristics changed, where
q was set to be roughly Z/2 for a good overlap width. We chose c to be 1.5 to reduce the
run time. Figure 2 shows that the most energized frequency components change with
time, and that the change roughly does not span more than 200 time samples. This is the
reason for a Z value of 201 (for example). More concretely, we specifically evaluate the
argument maximizing the objective criterion for each of the hardware/software designs
outlined below:

Z∗ = argmax
Z∈N

max
t

(SNR(OVSSAZ(L(:, t)), y)), (5)

where OVSSAZ implies performing OVSSA with a computation interval of Z.

Figure 2. A single leakage trace Spectogram of an unprotected standard (CMOS) rolled implementa-
tion of an AES.

2.4. Multiple Traces (Statistical) Techniques
2.4.1. Multi Trace—Evaluation Criterion in the Time Domain

Generally, it is understood that data are modulated into SCA leakage traces with
carrier frequencies such as the system clock. The reason for filtering the leakage is to
preserve the signal contribution from frequency ranges that are informative and exclude
all other frequency bands which contribute noise. However, it is difficult to know the type
of filter required in advance, since it depends on multiple factors such as the measurement
setup, the underlying device and the digital system complexity and the embedded counter-
measures. Typically, filters are found and reported by ad hoc experimentation (trial and
error), and parameters are set without any clear selection criterion, or alternatively they
are optimized by heuristic methods. For several examples of the large range of band-pass
(BP) filters, see [12–14], low-pass (LP) filters were recommended in [13,15], high-pass (HP)
filters in [16,17] and band-stop (BS) filters [14].

To filter traces in the frequency domain, the discrete Fourier transform (DFT) is
computed over the leakages, using the fast Fourier transform (FFT) [38], an efficient compu-
tation algorithm of the DFT. The magnitude and phase of the DFT components encapsulates
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their contribution to the overall signal. In our context, DFT evaluation can be used to ana-
lyze the frequency component separately from the filter noise-contributing components,
etc. FFT has been shown to be efficient to overcome different side-channel countermeasures
such as phase/time randomization [39], and to reduce sampling complexity [40,41].

An example of a standard cosine wave DFT versus a leakage traces DFT of one
unprotected simple AES encryption case is illustrated in Figure 3a,b, respectively. Even
this simple example captures the fact that most of the information is concentrated in a
specific frequency band, with varying amplitudes. In the following, we show the increased
complexity involved in finding good filters when countermeasures are embedded.

Figure 3. DFT examples: (a) A cosine wave. (b) An unprotected CMOS AES encryption.

In order to fit the best filter, one must evaluate all parameters jointly per target
design, i.e., without any prior knowledge. We denote the filter parameter set by {param},
and compute the SNR of the filtered traces in the time domain for each parameter set
realization. Each computation must be performed on the entire dataset (assume N traces
with n time samples each). We aimed to assemble sufficiently large datasets to reach
convergence in the SNR (i.e., to capture an accurate estimate of the SNR). The goal was
to obtain solid statistics and be able to compare the data complexity as well as SNR
levels. Generally, the complexity required to perform the fitting operation is as follows:
∏n

i=1 O(parami) ·O(SNR(L) + N · nlog(n)) = ∏n
i=1 O(parami) ·O(N · n · log(n)), where

O(SNR(L)) is N · n, which is negligible.
Denote a BPF as: BP(w, i) = [−i − w : −i] ∪ [i : i + w], where w is the width of

the filter, and i is the offset (or Slice as illustrated in Figure 4a. The filter is applied in
the frequency domain: iFFT(BP(w, i) · FFT(trace)). Let us now define the optimization
procedure for a BPF utilizing the time-domain metric formally:

BP∗ = argmax
w,i∈N

max
t

SNR(iFFT(FFT(L(j, :)) · BP(w, i)), y)(t). (6)

where FFT(L(j, :)) denotes we apply FFT over each leakage measurement in matrix L
independently (on each row).
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Figure 4. Filter design and optimization: (a) Parameters of different (frequency) band-pass filters,
and (b) exemplary general shaped filters.

2.4.2. Efficiency Metrics for the Multi-Trace Context

We start by listing our two main objective functions: (1) low adversarial data com-
plexity (Data) and (2) high leakage informativeness or information leakage (InfLk). More
specifically, we are interested in assessing the asymptotic value of our information leakage
evaluation metric (here, the SNR) along with the data complexity when reaching its asymp-
totic value. We weight both factors equally where the cost of data complexity is evaluated
by 1/Ntr, where Ntr is the number of required traces to reach the asymptotic maxt(SNR)
value. Our combined (Data · InfLk) efficiency scalar metric, Effmax, is therefore defined as

Effmax ,
maxt(SNR(L(t, :), y))

#Ntr
. (7)

The above efficiency metric is evaluated throughout this manuscript with one excep-
tion, for shuffling countermeasures. Because information spreads across time samples as
an outcome of instruction shuffling, instead of looking at maxt(SNR), we evaluate the
integration of the SNR across the shuffled time span, to approximately quantify the total
informativeness. More precisely, we define

Eff int ,

∫ NS ·T
0 SNR(L(t, :), y)dt

#Ntr
, (8)

where NS is a parameter for the number of shuffled clock cycles of the internal variable y.

2.4.3. Multi Trace—Frequency Domain Optimization Criterion

For protected designs giving rise to signals that sparsely occupy the frequency band
of interest, a simple BPF cannot pass all the dominant frequencies without transmitting
much of the noise with it. For example, Figure 12 shows that in the leakage spectograms of
several countermeasures, such as dual-rail and shuffling, there are more than one dominant
frequency bands. Hence, a different approach is required. To this end, we directly selected
the dominant frequencies by isolating the frequency coefficients and using the simple
univariate SNR metric in the frequency domain to filter for the informative ones. This
makes it possible to shape the filter (as illustrated in Figure 4b).

Formally, define SNRc := SNRcoeff(FFT(L), y), which denotes the SNR computed in
the frequency domain over the DFT coefficients of the traces. We then select a subset of the
DFT coefficients, denoted {c̃}, based on a predetermined threshold:

{c̃} ,

c :
SNRc

max
c̃

(SNRc̃)
> ηth

, (9)
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where ηth is the threshold from which we take DFT coefficients, based on their SNRc value,
relative to the maximal SNRc value.

In this context, it is interesting to consider wavelet (and other) signal decomposition
methods. The discrete wavelet transform (DWT) [15,18] is the sum over the duration of
both scaled and shifted versions of the wavelet function. In particular, it has several meta-
parameters for decomposition such as the number of scaled versions and shifts, and the
basis functions. DWT is associated with another step to find effective side-channel leakage
filters known as multi resolution analysis (MRA), which is a recursive composition of
low-pass and high-pass filters. The methodologies discussed in this paper can naturally
extend to other transforms and coefficient domains to filter out the noise in the transformed
domain using an efficient cryptographic criterion. However, we chose not to evaluate the
wavelets transform because of its very large space of associated meta-parameters. Our
goal here was to target low-computational complexity optimization and fast evaluation.
For slow but more complete approaches, one can also pursue information-theoretic based
metrics, e.g., [26,27].

3. Designs and Datasets

In the experimental section below, we evaluate several different countermeasures
leading to leakages with very different statistical characteristics, frequency domain charac-
teristics, noise levels (on both hardware (HW) and software (SW) platforms), hence with
different dataset sizes. Specifically, we evaluate the leakages captured from a:

• CMOS, 65 nm ASIC (HW)—unprotected rolled implementation of the AES (one round
per clock cycle);

• Amplitude Randomization, 65 nm ASIC (HW)—protected by hardware amplitude
randomization technique. Rolled implementation of the AES;

• Dual-Rail, 65 nm ASIC (HW)—protected by gate level flattening (WDDL implementa-
tion of Dual-Rail). Rolled implementation of the AES; and

• Shuffling, 40 nm Atmel 8-bit processor (SW)—protected by various instructions shuf-
fling flavors: randomly permuting all groups of {2, 4, 8} consecutive instructions
(denoted in the following by rp2, rp4, rp8, respectively;

The baseline (no pre-processing) SNR level, #traces available, the protection mecha-
nisms and platforms (SW or HW) are listed in Table 2.

Table 2. Summary table of all designs evaluated in this paper.

Design Name #Traces Base-Line SNR Protection Mechanism Platform

CMOS 2× 106 2.5× 10−3 None 65 nm ASIC (HW)

Dual-Rail 2× 106 1.5× 10−4 WDDL implementation 65 nm ASIC (HW)

Amp.-Rnd. 2× 106 10−5 Amplitude rand. technique 65 nm ASIC (HW)

Shuffling 6144 0.1 Rand. instr. perm. 40 nm Atmel 8-bit µC (SW)

4. Experimental Results

We analyzed the information gain and the data complexity of various design imple-
mentations of AES− 128, and suggest improvements to existing methods. We addressed
two contexts: multi-trace, and single-trace. In each context, our goal was slightly different.
In the multi-trace context, we aimed to achieve the highest SNR with the given toolbox
(i.e., filters), while simultaneously reducing the data complexity as much as possible. In
the single-trace context, we tried to achieve the highest SNR possible while efficiently
processing the data (i.e., maintaining low computational and time complexity) using only
a single trace. Before discussing the experimental results, we refer the reader to Table 3 for
a legend of the methods and naming conventions discussed in Section 2.
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Table 3. Legend of names and abbreviations used in the manuscript and Section 4.

Context Method Name Description

Single SSA Singular Spectrum Analysis
Single OVSSA Overlapping and segmented SSA
Multi BP-filter BPF, optimally fitted for each design
Multi SNRc Filter based on SNR threshold of the freq. coeffs. (Shaped)
Multi MI-FS Mutual Information based Feature Selection of freq. coeffs.

4.1. Multi-Trace

The most natural filter to utilize is a BPF given its simplicity and widespread use in
the community. Our goal was to fit the best BPF to the data. Intuitively, the leakage of
information from a device should only have a few dominant frequencies, since, for instance,
outputs of the Sboxes are computed once per round, and each device leakage is modulated
by a certain operation frequency (i.e., the clock frequency). Note that this is true for
an unprotected design, but might not be valid for protected designs with, for example,
randomized phase or complex analog-nature countermeasures (e.g., consider the shuffling
case in Figure 9). Our goal was to more formally devise a rigorous procedure to evaluate
various bandwidths (w) and offsets (i) empirically, and fit a different BPF on each hardware
design. Based on the optimization procedure discussed in Section 2.4.1 we evaluate BP∗ as
shown in Figure 5).

The optimization of the threshold decision and the bandwidth and offset parameters
are visualized in Figure 5: Figure 5a demonstrates that setting the threshold too low (too
many frequencies) or too high (too few frequencies) results in a decrease in the SNR of
the filtered frequencies. Figure 5b demonstrates that there is one zone (from 500 to 600 in
the DFT coefficients, roughly) in which the informativeness (evaluated via SNR) resides,
where the optimal width is located in the ‘dense’ region of the graph. Notice that as
the bandwidth increases, the graph becomes sparser. This is due to the fact that as the
bandwidth increases, there are fewer frames. The parameter optimization results (CMOS)
were: bandwidth (w) = 56 and offset (i) = 588 DFT coefficients, corresponding to 40 and
420 MHz, respectively.

Though the initial results were good; that is, the optimization process as compared to
the results from the raw leakages showed significant gains, we predicted that the optimized
BPF approach would not adapt well to more protected designs. Therefore, instead of trying
to fit the best BPF filter, we turned to the shaped filter approach, which involves selectively
keeping frequency coefficients, which are informative by using a metric to evaluate them,
as discussed above.

For this purpose, a thresholding optimization procedure was defined in Section 2.4.1
to determine whether to include a certain frequency coefficient by evaluating its magnitude
against the maximum value across all coefficients. The outcome filter obtained by choosing
all informative frequencies formed a custom filter devolved to each of the designs/data
sets/countermeasures embedded, a shaped filter (see Figure 6). This step resulted in a very
significant impact on both data-complexity and extracted signal level.
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(a)
(b)

Figure 5. Optimizing a band-pass filter: (a) SNR of filtered signal by SNR-FFT vs. filter threshold-
factor, (b) max SNR vs. frame width (bandwidth), and offset (slice number).

With both methods in mind, we tested various designs and implementations. In Figure 6,
the first row of the sub-figures shows a visual representation of the filters, the second
row shows the corresponding SNR of the optimal filters applied to the data sets; in other
words, the optimal BP and the optimal shaped filter, as defined in Equations (6) and (9),
respectively. As can be seen, the optimal BP-filter worked well for unprotected designs
(e.g., unprotected CMOS), but failed to keep up as the design became more protected;
e.g., for dual-rail and shuffling. The shape of the SNRc filter is rather interesting: for
unprotected CMOS, we only observed one frequency cluster matching the optimal BP-
Filter. For dual-rail, there were at least two main clusters, which are due to the fact that this
design leaks at two carrier frequencies relating to the complete precharge phase (Return To
Zero, RTZ) and evaluation phase. For the exemplary Shuffling rp2 test case, there are a few
dominant frequencies, one of which is the clock of the micro-controller, and the others are
a direct result of the shuffling operation: the Sbox computation can occur at two points in
time, hence at several different frequencies.

Figure 6. Visual comparison between different filters (top) and SNR(t). (Bottom): (Left) unprotected
CMOS, (Center) Dual-Rail, (Right) Shuffling rp2.

We next made one apples-to-apples comparison between the unprotected CMOS
and dual-rail designs: as shown in Figure 7, the shaped SNR-based filtering method (top
figure) kept providing good filtering for both the CMOS and dual-rail designs. However,
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the optimal BP-Filter (bottom figure) failed to keep up with the dual-rail design in terms
of SNR, yielding approximately a factor of 2 between the filters and also a change in the
required data complexity, as will be detailed next. Note that the results of the dual-rail
design were scaled by a factor of 10 to visualize them on the same plot as the results of the
CMOS design (as noted in the figures).

To summarize, to assess the efficiency of the devised filters as compared to the raw
(unfiltered) results, we evaluated the rate of convergence (ROC) of our metrics as a function
of the #samples as shown in Figure 8. From left to right, the different figures relate to the
CMOS, dual-rail and Shuffling rp8 designs. The vertical grey lines indicate the approx-
imated data complexity required for convergence. It is clear that except for the CMOS
design, the SNRc filter achieved the highest SNR (and even for CMOS, the difference is
negligible—0.001 ≈ 5% diff.). Nevertheless, the BP-Filter always made a considerable
improvement over the unfiltered data, though not as good as the SNRc filter (with the
protected designs). Although the difference between the BP-Filter and the SNRc filter seems
small, owing to the log-scale of the figures, the numbers suggest a considerable factor of
X2-3. While the Shuffling data sets we used in the manuscript were not large enough for
full convergence, we can still observe two phenomena: (a) Since the implementation is in
software, the order of magnitude of the SNR is much higher/the data complexity required
is much lower; attacks are therefore very viable. (b) We can already see that there is a
significant difference in the informativeness metric between the various methods.

All of the above illustrate the fact that the filters not only provide a higher SNR, but also
reduce the data complexity to perform an attack. Recall that since both the optimized
band-pass and the shaped filters are optimized versions proposed in this manuscript, a fair
comparison would be to compare to the raw traces (No Filter).

Figure 7. SNR versus time of CMOS and dual-rail filtered leakages: (Top) SNRc, (Bottom) SNRBP∗ .
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Figure 8. Rate of convergence of different filters-different designs: Left: unprotected CMOS, Center:
Dual-Rail, Right: Shuffling rp8.

4.1.1. A Shuffled Software Example

We next compared a software implementation of instruction shuffling to demonstrate
the effect of different pre-processing techniques on different countermeasures and specif-
ically on different shuffling implementations with different level of protection. Below,
unshuffled refers to the basic unprotected software implementation, and shuffled rpi to the
case where i Sboxes’ computation order is permuted over (in sets of 16). We acknowledge
that we cannot directly compare the following results to the hardware implementations
due to the clear baseline SNR difference in the SW case. However, the results still reveal im-
portant insights regarding pre-processing techniques. Thus, we only compare the different
shuffling implementations to each other and to the unshuffled implementation. As can be
seen in Figure 9, there was already a notable reduction in the univariate SNR for all of the
shuffling methods. Furthermore, as the number of shuffling instructions increased (time
variance), the SNR decreased. Clearly, as the number of shuffling instructions increased,
the more peaks there were (i.e., the information is spread out). This observation led us to
define different efficiency criterion, as shown in Equation (8).

Figure 9. SNR of different shuffling implementations.

Figure 10 shows the effect of different filters on the shuffled implementations. Note
that in order to fit all the plots on the same graph, the SNR of rp4, rp8 were scaled. As noted
on the graph, rp4 was scaled by a factor of 2, and rp8 by a factor of 4. This follows theory
nicely where the SNR levels decrease linearly with the number of shuffled instructions as
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the probability that a computation of the target Sbox will take place at the i-th round is
uniform. Therefore, the reduction in SNR is linear.

The top sub-figure in Figure 10 shows the SNR levels of the SNRc filter applied to the
shuffling implementations. It is clear that as the random permutation size increases, so
does the length of time samples containing useful information (i.e., for rp2 from 500 to 600,
for rp4 from 500 to 700, for rp8 from 500 to 800). We can further see that the number of
peaks increases as the number of shuffling instructions increases (for rp2 two distinctive
peaks, for rp4 four peaks, for rp8 at least four peaks, but with some aliasing due the leakage
measurement impedance).

The middle sub-figure in Figure 10 shows the SNR levels of the optimal BP-Filter
applied on shuffling implementations. It is evident that this filter failed to deliver the same
SNR levels as the SNRc. Moreover, the optimal BPF smooths out the gains as compared to
the SNRc filter. This was more pronounced in the SNR of rp8 and rp2 (the smoothing action
is compared to the SNRc filter). The smoothing effect actively reduced the time span in
which distinct SNR levels appeared; in turn, it reduced the overall informativeness (for our
criterion in Equation (8)). The bottom plot in Figure 10 shows the SNR levels of a univariate
feature selection in the frequency domain applied on the shuffling implementations. This
feature selection also creates a custom filter, but it also failed to keep up with the SNR levels
of the SNRc filter. We elaborate further on feature selection techniques in Section 4.1.2.

Figure 10. SNR of different filters—shuffling: (Top) SNRc, (Center) SNRBP∗ , (Bottom) feature selec-
tion (FS).

Figure 11 shows the rate of convergence of the different filters compared to the
baseline SNR. We used the metric of Eff int. The figures show the

∫ NS ·T
0 SNR(·)dt, denoted

in abbreviated form by
∫

SNR. This Eff int metric not only weighs the SNR levels, but also
the number of contributing time samples, compared to maxt(SNR), which works on a
single time point. Note that as discussed above, the data set was not large enough for full
convergence, but still large enough to see considerable differences between the methods.
To the right of each plot on the figure is a ‘zoom in’ view that visualizes the difference
between the methods more clearly. In all cases, the filters were considerably better than the
baseline SNR, and as the permutation size increased, the amount of information extracted
from the optimal BP-Filter decreased. In contrast, the results for the SNRc filters were more
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efficient. Another advantage of using the Eff int metric and showing the
∫ NS ·T

0 SNR(·)dt
rather than maxt(SNR) is that the integral of the baseline SNR over time remains the same,
independently of the permutation size. It implies that the overall information leakage is
preserved. Therefore, it is possible to compare the results of filters across rpi, i ∈ {2, 4, 8}.

For rp2 (top Sub-figure), SNRc filter yielded 1.878x compared to 1.798x for the Optimal
BP-Filter, where 1x denotes no pre-processing. For rp4, SNRc filter yielded 1.602x compared
to 1.264x for the Optimal BP-Filter, and for rp8, SNRc filter yielded 1.5161x compared to
1.332x for the Optimal BP-Filter. Thus, there was a considerable difference between SNRc

and the optimal BPFs. Interestingly, the optimal filter gain was roughly 2x for the shuffling
flavors (SW), but roughly 10x for the hardware implementations. This stems from the
overall lower levels of noise present in software implementations; i.e., the potential to filter
out noise is much lower in software, because the signal is already very large.

Figure 11. Rate of convergence—shuffling: (Top) rp2, (Center) rp4, (Bottom) rp8.

4.1.2. Multi Trace—A Cautionary Note on Feature-Selection Tools

It is interesting to compare popular filters from artificial intelligence (AI)/machine
learning (ML) tools since they have become highly popular for pre-processing and SCA
attacks (in a general context) [42–45]. For that purpose, we implemented various feature
selection (FS) tools and processed them in the frequency domain over the FFT leakages to
find the best shaped filter. The two main observations deriving from this analysis are that:

• As illustrated in the bottom plot in Figure 10, FS with complex statistical tools such
as the Mutual-Information (MI) exhibit extremely poor results. This is clearly due to
the fact that for information theoretic tools to function properly, the distribution of
the leakage needs to be decently captured, which implies a large observation space;
i.e., statistically, the full distribution is badly characterized and the filter is far from
converging.

• More (statistically) simple FS tools were attempted, such as the Pearson-corr (ρ) to
filter frequency coefficients.The experiments showed that it performed quite similarly
to our SNR based criterion. However, consistently results were slightly poorer since
the correlation was not scaled to the noise such as the SNR.
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4.2. Single-Trace

As discussed above a spectogram provides considerable information relating to the
type of filter required in the multi-trace context, but also in terms of the Z parameter and
the spectral characteristics that change over time, which is important for OVSSA in the
single-trace context. Figure 12 illustrates the spectogram of an exemplary trace taken from
the unprotected CMOS rolled implementation (left), the dual-rail implementation (middle)
and the rp2 shuffling SW implementation.

These spectograms can generate a good intuition as to whether a certain filter will work
well or poorly. For instance, shuffling-rp2 demonstrates at least two dominant frequencies
at any given time sample throughout the trace. The unprotected CMOS implementation
exhibits only one dominant band, which is why, intuitively, BPFs will work well for
unprotected CMOS, but not for shuffling. The dual-rail design demonstrates leakages at
a smaller frequency than the CMOS design (since the precharege and evaluation phases
generate a larger effective clock period). However, for all designs, the X-axis (time) shows
that the spectrum characteristics change as discussed in Section 2.3.2.

Figure 12. Spectogram of different designs: Left: unprotected CMOS, Center: Dual-Rail, Right:
Shuffling rp2.

Overall, in this manuscript, we processed 1× 106 traces with SSA/OVSSA, where
the goal was to capture enough cleaned traces to evaluate the SNR of each technique as
a comparison metric to evaluate performance. The processing took ∼5 months on a very
powerful server with 50 machines where each multi-threaded over 20 processors. Each
SSA computation took about 30 s, compared to 10 s for OVSSA. Figure 13 shows two
exemplary pre-processed traces; the resulting traces from the OVSSA and SSA processing
are significantly different as possible to see.
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Figure 13. Post-SSA vs. post-OVSSA leakage trace. Current measurements were performed with a
16-bit ADC.

Figure 14 shows an exemplary SNR following SSA and OVSSA (with 0.5× 106 traces)
in the top-left sub-plot. Clearly, the OVSSA generated larger amplitudes, but perhaps more
importantly, the noise was significantly reduced. In this example, the SNR was computed
with y labeling following the first Sbox layer in an AES round, therefore SNR peaks appear
closer to the beginning of the trace. However, in later rounds we observed that the SNR
of the SSA still exhibited small SNR peaks where the y-classification was clearly wrong
(diffusion); the OVSSA, however, cleans these regions nicely, as its SNR indicates.

The top-right sub-plot in Figure 14 shows the SNR convergence with the number of
traces of the baseline {unprocessed traces, the SSA- and OVSSA- processed} traces. The plot
shows that 0.2–0.3×106 traces are sufficient for convergence. The SNR of all pre-processing
techniques converged with similar data complexity. However, the maximum-SNR achieved
with SSA was ∼2.5× as compared to unprocessed traces, while OVSSA achieved ∼5×
improvement as compared to unprocessed traces.

The last important point as mentioned in Sections 1 and 2.3.2, relates to the pre-
processing time-complexity. The bottom sub-plot in Figure 14 shows the time complexity
required to process the data set as a function of the data set size in samples. As both
SSA/OVSSA worked on a single trace every time, both graphs are linear. Clearly, OVSSA
had much lower time complexity, with a respective gain of ∼4× over SSA (see next
paragraph) due to the fact that OVSSA works on small segments of the trace, while SSA
works on the entire trace at once. All in all, OVSSA exhibited more efficiency than SSA
both in time complexity and information extraction (SNR).

Concretely, the proposed technique provides ∼2×max. SNR improvement for about
the same number of leakage-traces (data-complexity), as compared to SSA-based approach.
However, the main improvement is in the pre-processing evaluation time. The time
complexity of the SSA based pre-processing technique depends on SVD, which is generally
quadratic in time as a function of the number of leakage time samples, n. The OVSSA
based pre-processing technique time complexity depends on SVDs over chunked leakage
traces (fewer samples), with a parameter Z; i.e., n/Z chunks. That is, the time complexity
improvement is generally O( n

Z ), which was shown to be very significant in our experiments,
although we failed to perfectly achieve the suggested gain of 1000/201 ≈ 5. This is due
to software implementation variations, server computing power variations and neglected
arithmetic. As discussed above, Z depends on the spectral characteristics of the leakage
throughout time and for round-base cryptographic implementations the n/Z factor is
expected to yield significant improvements as exemplified.
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Figure 14. SSA vs. OVSSA: Top-Left: SNR(t) post-SSA and post-OVSSA, Top-Right: Rate of conver-
gence of max(SNR), Bottom: Preprocessing time complexity versus the number of time samples in
a trace.

5. Conclusions

In this paper, we presented several advances in two SCA contexts. In the single-trace
context, we improved upon existing SSA-based techniques by exploiting informative varia-
tions in spectral properties over time, stemming from the cryptographic implementation.
By adapting overlapped-SSA and further optimizing over subsequent processing-related
key parameters, we achieved a significant gain compared to SSA and no pre-processing,
both in terms of (shorter) computation time and (higher) information gain, i.e., SNR. In the
multi-trace context, we proposed a profiling strategy for a BPF optimization based on a com-
putationally attractive objective function, which was shown to be efficient for unprotected
and weakly protected implementations (albeit with reduced effectiveness). In addition,
we also proposed a differently optimized filter, exploiting frequency-domain SNR-based
coefficients thresholding, which is slightly more computationally demanding. The sim-
ulation results of our extensive empirical examination show the significant performance
improvement over a set of implementations embedded with countermeasures, both in
hardware and software platforms. In all the implementations/platforms we considered,
our proposed shaped filter achieved the highest SNR levels, while the BPF-based filters
suffered from reduced effectiveness when applied to varying protection-level countermea-
sures embedded.
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