
cryptography

Article

Contemporary Physical Clone-Resistant Identity for IoTs and
Emerging Technologies

Emad Hamadaqa 1,*, Saleh Mulhem 2 , Wael Adi 1 and Mladen Berekovic 2

����������
�������

Citation: Hamadaqa, E.; Mulhem, S.;

Adi, W.; Berekovic, M. Contemporary

Physical Clone-Resistant Identity for

IoTs and Emerging Technologies.

Cryptography 2021, 5, 32. https://

doi.org/10.3390/cryptography5040032

Academic Editor: Jim Plusquellic

Received: 16 September 2021

Accepted: 27 October 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer and Network Engineering, Technical University of Braunschweig,
Hans-Sommer Str. 66, D-38106 Braunschweig, Germany; w.adi@tu-bs.de

2 Institute of Computer Engineering, Gebäude 64, University of Lübeck, Ratzeburger Allee 160,
D-23562 Lübeck, Germany; mulhem@iti.uni-luebeck.de (S.M.); berekovic@iti.uni-luebeck.de (M.B.)

* Correspondence: e.hamadaqa@tu-bs.de; Tel.: +49-176-3766-5555

Abstract: Internet of things (IoT) technologies have recently gained much interest from numerous
industries, where devices, machines, sensors, or simply things are linked with each other over open
communication networks. However, such an operation environment brings new security threats
and technology challenges in securing and stabilizing such large systems in the IoT world. Device
identity in such an environment is an essential security requirement as a secure anchor for most
applications towards clone-resistant resilient operational security. This paper analyzes different
contemporary authenticated identification techniques and discusses possible future technologies
for physically clone-resistant IoT units. Two categories of identification techniques to counteract
cloning IoT units are discussed. The first category is inherently cloneable and includes the classical
identification mechanisms based on secret and public key cryptography. Such techniques deploy
mainly secret keys stored permanently somewhere in the IoT devices as classical means to make units
clone-resistant. However, such techniques are inherently cloneable as the manufacturer or device
personalizers can clone them by re-using the same secret key (which must be known to somebody)
or reveal keys to third parties to create cloned entities. In contrast, the second, more resilient
category is inherently unclonable because it deploys unknown and hard to predict born analog
modules such as physical unclonable functions (PUFs) or mutated digital modules and so-called
secret unknown ciphers (SUCs). Both techniques are DNA-like identities and hard to predict and
clone even by the manufacturer itself. Born PUFs were introduced two decades ago; however, PUFs
as analog functions failed to serve as practically usable unclonable electronic identities due to being
costly, unstable/inconsistent, and non-practical for mass application. To overcome the drawbacks
of analog PUFs, SUCs techniques were introduced a decade ago. SUCs, as mutated modules, are
highly consistent, being digital modules. However, as self-mutated digital modules, they offer only
clone-resistant identities. Therefore, the SUC technique is proposed as a promising clone-resistant
technology embedded in emerging IoT units in non-volatile self-reconfiguring devices. The main
threats and expected security requirements in the emerging IoT applications are postulated. Finally,
the presented techniques are analyzed, classified, and compared considering security, performance,
and complexity given future expected IoT security features and requirements.

Keywords: internet of things; IoT security; clone-resistant entities; physical unclonable function
PUF; secret unknown cipher SUC; public key cryptography; authentication; identification; secret
key identification

1. Introduction

The Internet of things (IoT) is an essential enabler of the next industrial revolution
in the digital world. IoT allows everyday objects (or things) to be connected to the open
internet network by equipping such devices with various sensing, networking, and pro-
cessing capabilities. Such capabilities enable things to communicate with each other and

Cryptography 2021, 5, 32. https://doi.org/10.3390/cryptography5040032 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-7380-5270
https://doi.org/10.3390/cryptography5040032
https://doi.org/10.3390/cryptography5040032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5040032
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5040032?type=check_update&version=2

Cryptography 2021, 5, 32 2 of 29

with additional devices or cloud services over the open network environment to perform
IoT application tasks. Unfortunately, such IoT objects/items can be replaced, in order
to abuse the system. According to the US Department of Homeland Security, physical
security solutions are required by regulators to secure and protect IoT devices and their
integrity [1]. Therefore, IoT units are required to be physically unique and individually
securely identifiable (unclonability is necessary) to prevent abuse of the system. In the
context of Industry 4.0, IoT technologies and concepts are also made to be usable for the
industrial environment. The “industrial Internet of things” (IIoT) refines the IoT with
higher-quality devices, even with reduced functions, and more sensitive sensors that de-
liver precise and trustworthy information. Efficiency, cost reduction, and fast processes
with as much flexibility as possible are the main goals of IIoT. IoT applications require high
reliability and integrity for the data reported by the IoT units.

To attain that goal, resilient physical unclonable identifiers of IoT devices are needed
to secure the system against dangerous replacement attacks. A single replacement of an
abused device can cause an entire system to collapse. According to International Data
Corporation (IDC) forecasts [2], currently, around 3.8 billion smartphones are connected to
the Internet and operating worldwide, and overall up to 55.7 billion networked devices,
vehicles, and machines are expected to be operating on the same open network by 2025,
all of which are exposed to remote attacks globally. IoT electronic tends to deploy low-
end chips that are relatively small and inexpensive, so they offer limited memory and
processing power for sophisticated security functionalities. Hence, most contemporary IoT
devices operate insecurely on the open internet and are highly vulnerable to theft, abuse,
and hence possibly to a complete system breakdown. Unfortunately, the contemporary
security mechanisms do not work as required [3]. Such security gaps need to be fixed
before other massive attacks on smart homes, intelligent transportation systems, smart
buildings, smart cities, smart grids, etc. are encountered. The traditional secret- and
public-key techniques deploying keys stored in volatile or non-volatile memory do not
offer real unclonability.

In this paper, two classes of cryptographic mechanisms for physical device identifi-
cation are investigated and compared. The first is inherently-cloneable and includes the
relatively weak and primitive traditional secret- and public-key techniques. The second is
inherently-unclonable and includes the analog physical unclonable functions (PUFs) [4], in
addition to our proposed clone-resistant digital secret unknown cipher (SUC) technique [5].
The public and secret-key solutions deploy simple memory storage accommodating the
IoT device identity as a secret key with some cryptographic protocols, which is inherently
clonable as somebody knows the key memory contents. In comparison, PUF and SUC
provide hardwired unknown fingerprints without storing any secrets known to a person.
Therefore, such techniques are basically clonable. Both PUF and SUC techniques provide
a DNA-like resilient identity concept that is hard to model, unique and unclonable, and
hard to clone clone-resistant. Regarding future mass production, the SUC technique seems
to be a promising technique to make emerging IoT units clone-resistant through highly a
resilient digital identity at reasonable cost. Figure 1 shows the full picture of taxonomy in
this work.

The remainder of this paper is organized as follows. In Section 2, we discuss the
IoT security and identity features and requirements. In Section 3, we introduce and
define the IoT device’s clonability and clone-resistance concepts. In Section 4, inherently
cloneable solutions are presented, and in Section 5, the inherently unclonable solutions are
investigated and compared. Finally, Section 6 concludes the paper.

Cryptography 2021, 5, 32 3 of 29

Cryptography 2021, 5, x FOR PEER REVIEW 2 of 29

with additional devices or cloud services over the open network environment to perform

IoT application tasks. Unfortunately, such IoT objects/items can be replaced, in order to

abuse the system. According to the US Department of Homeland Security, physical secu-

rity solutions are required by regulators to secure and protect IoT devices and their integ-

rity [1]. Therefore, IoT units are required to be physically unique and individually securely

identifiable (unclonability is necessary) to prevent abuse of the system. In the context of

Industry 4.0, IoT technologies and concepts are also made to be usable for the industrial

environment. The “industrial Internet of things” (IIoT) refines the IoT with higher-quality

devices, even with reduced functions, and more sensitive sensors that deliver precise and

trustworthy information. Efficiency, cost reduction, and fast processes with as much flex-

ibility as possible are the main goals of IIoT. IoT applications require high reliability and

integrity for the data reported by the IoT units.

To attain that goal, resilient physical unclonable identifiers of IoT devices are needed

to secure the system against dangerous replacement attacks. A single replacement of an

abused device can cause an entire system to collapse. According to International Data

Corporation (IDC) forecasts [2], currently, around 3.8 billion smartphones are connected

to the Internet and operating worldwide, and overall up to 55.7 billion networked devices,

vehicles, and machines are expected to be operating on the same open network by 2025,

all of which are exposed to remote attacks globally. IoT electronic tends to deploy low-

end chips that are relatively small and inexpensive, so they offer limited memory and

processing power for sophisticated security functionalities. Hence, most contemporary

IoT devices operate insecurely on the open internet and are highly vulnerable to theft,

abuse, and hence possibly to a complete system breakdown. Unfortunately, the contem-

porary security mechanisms do not work as required [3]. Such security gaps need to be

fixed before other massive attacks on smart homes, intelligent transportation systems,

smart buildings, smart cities, smart grids, etc. are encountered. The traditional secret- and

public-key techniques deploying keys stored in volatile or non-volatile memory do not

offer real unclonability.

In this paper, two classes of cryptographic mechanisms for physical device identifi-

cation are investigated and compared. The first is inherently-cloneable and includes the

relatively weak and primitive traditional secret- and public-key techniques. The second is

inherently-unclonable and includes the analog physical unclonable functions (PUFs) [4],

in addition to our proposed clone-resistant digital secret unknown cipher (SUC) technique

[5]. The public and secret-key solutions deploy simple memory storage accommodating

the IoT device identity as a secret key with some cryptographic protocols, which is inher-

ently clonable as somebody knows the key memory contents. In comparison, PUF and

SUC provide hardwired unknown fingerprints without storing any secrets known to a

person. Therefore, such techniques are basically clonable. Both PUF and SUC techniques

provide a DNA-like resilient identity concept that is hard to model, unique and unclona-

ble, and hard to clone clone-resistant. Regarding future mass production, the SUC tech-

nique seems to be a promising technique to make emerging IoT units clone-resistant

through highly a resilient digital identity at reasonable cost. Figure 1 shows the full picture

of taxonomy in this work.

Paper Taxonomy

2 IoT Security and Identity in Real Field Applications

2.1 The role of Identity in IoT Device Lifecycle

2.2 Identity-Related Security Threats and Challenges in IoT

2.3 IoT Security Requirements

3 Device Identification for IoT Environment:

Classification & Definition

3.1 Inherently-Clonable IoT Units Identities

3.2 Inherently-Unclonable Units and Physical Unclonability

4 Inherently-Cloneable Identification Mechanisms

4.1 Stored Key as Identity Embodiment

4.2 Symmetric Key-based Identity

4.3 Asymmetric Key-based Identity
4.4 Discussing Inherently-Clonable Identification Mechanisms

5. Inherently-Cloneable Identification Mechanisms

6. Conclusion

5.1 Identification Based on Analog Physical Unclonable Functions
5.2 Clone-Resistant IoT Identity based on Digital Secret Unknown Cipher
5.3 PUF-Based Unclonability Versus Digital Clone-Resistant SUC Techniques

Figure 1. Organization of the paper.

2. IoT Security and Identity in Real Field Applications

This section will discuss the most relevant security and identity aspects in a real field
IoT application. First, we present the role of identity in the IoT device lifecycle, followed by
security threats and challenges in IoT environments. Security requirements are investigated
showing the necessity for unclonable identification and authentication for IoT devices.

2.1. The Role of Identity in IoT Device Lifecycle

Setting up IoT device identity: Figure 2 shows the lifecycle of a device in IoT, includ-
ing the bootstrapping, operational, and maintenance phases [6]. The device identity plays
an essential role in all phases of the IoT lifecycle. The benefits of such an identity can be
perceived as follows:

Cryptography 2021, 5, x FOR PEER REVIEW 3 of 29

Figure 1. Organization of the paper.

The remainder of this paper is organized as follows. In Section 2, we discuss the IoT

security and identity features and requirements. In Section 3, we introduce and define the

IoT device’s clonability and clone-resistance concepts. In Section 4, inherently cloneable

solutions are presented, and in Section 5, the inherently unclonable solutions are investi-

gated and compared. Finally, Section 6 concludes the paper.

2. IoT Security and Identity in Real Field Applications

This section will discuss the most relevant security and identity aspects in a real field

IoT application. First, we present the role of identity in the IoT device lifecycle, followed

by security threats and challenges in IoT environments. Security requirements are inves-

tigated showing the necessity for unclonable identification and authentication for IoT de-

vices.

2.1. The Role of Identity in IoT Device Lifecycle

Setting up IoT device identity: Figure 2 shows the lifecycle of a device in IoT, in-

cluding the bootstrapping, operational, and maintenance phases [6]. The device identity

plays an essential role in all phases of the IoT lifecycle. The benefits of such an identity

can be perceived as follows:

Figure 2. IoT device lifecycle.

Device Bootstrapping: Currently, IoT devices are produced by different manufac-

tures. Various fabrication processes raise challenges in approaching the bootstrapping of

the required security footprint in such devices to ensure trusted communication between

nodes from the beginning of active operations. One of the first tasks that should take place

during the bootstrapping phase is to set up a unique identifier or identity for the IoT de-

vice. The secret keys or passwords used during regular operation are made available to

the device in this phase. With the device’s production, the device is brought into active

life during the bootstrapping phase. As a result, the thing is initiated and commissioned

by a responsible administrator in a network.

Device Authentication during the Operational Phase: After the device is ready for

operation, the device and the system of things are ready to perform the functions of the

IoT system, requiring strong, scalable, and cost-effective identification and authentication

between IoT entities. The application execution represents the operational phase, in which

the IoT device is authentic and functioning as intended.

During the Maintenance Phase: the device’s software often needs to be updated, or

the device needs to be reconfigured. The device continues through the operation phase

and eventual maintenance phase until it is decommissioned at the end of its life cycle. The

Figure 2. IoT device lifecycle.

Device Bootstrapping: Currently, IoT devices are produced by different manufactures.
Various fabrication processes raise challenges in approaching the bootstrapping of the
required security footprint in such devices to ensure trusted communication between
nodes from the beginning of active operations. One of the first tasks that should take place
during the bootstrapping phase is to set up a unique identifier or identity for the IoT device.
The secret keys or passwords used during regular operation are made available to the
device in this phase. With the device’s production, the device is brought into active life
during the bootstrapping phase. As a result, the thing is initiated and commissioned by a
responsible administrator in a network.

Device Authentication during the Operational Phase: After the device is ready for
operation, the device and the system of things are ready to perform the functions of the
IoT system, requiring strong, scalable, and cost-effective identification and authentication
between IoT entities. The application execution represents the operational phase, in which
the IoT device is authentic and functioning as intended.

Cryptography 2021, 5, 32 4 of 29

During the Maintenance Phase: the device’s software often needs to be updated,
or the device needs to be reconfigured. The device continues through the operation
phase and eventual maintenance phase until it is decommissioned at the end of its life
cycle. The end of a device’s life does not necessarily mean that it is defective, but rather
that the IoT system needs to be upgraded to the next generation to provide additional
functionality. In some cases, the IoT device (such as a sensor or actuator) can be removed
and re-commissioned to be used in another IoT system by restarting the lifecycle. As a
result, replacing clone-resistant IoT devices in a secured manner needs careful management
to deal with unclonable physical identities throughout the whole life cycle.

2.2. Identity-Related Security Threats and Challenges in IoT

To design and implement complete security solutions for IoT systems, identifying
threats and challenges for all IoT networks, IoT devices, and IoT applications is of great
importance. We list the identity-related IoT security threats in Table 1, as provided by the
Internet Engineering Task Force (IETF) [6].

Table 1. IoT security threats identified by (IETF) [6].

Security Threats Description

1 Cloning of things

An untrusted vendor can easily clone the physical characteristics, firmware/software,
or security configuration of an IoT device during the manufacturing process. Running
devices can also be compromised and their software reverse-engineered to allow cloning

or software modifications; therefore, a clone-resistant physical identity is a must.

2 Malicious substitution of things A fake device, including a fake identity, replaces a genuine device during installation
without being detected.

3 Elevation of privilege
An attacker with low privileges can exploit weaknesses in the implemented

authentication and authorization mechanisms of an IoT device to gain more privileged
access to the device and its data.

4 Eavesdropping attack
Operation of a device on a network may be vulnerable to eavesdropping, typically when
operative keying materials, security parameters, or configuration settings are exchanged

in clear text over a wireless network or when device authentication is not enabled.

5 Covert channels

Network covert channels are used to hide data in legitimate transmissions in
communication networks by deploying different network protocols as carriers and
hiding confidential data from network devices. In [7], Lampson introduced covert

channels, divided into storage and timing channels. The technique of covert storage
channels is a process that writes (directly or indirectly) to a shared resource while

another process reads from it. In the context of network steganography, covert storage
channels hide data by storing it in the protocol header and or in the protocol data unit.

On the other hand, timing channels hide data by deploying event timing, e.g., by
sending the same protocol data unit multiple times or by changing the order of packets.
Several countermeasures can be performed to prevent covert channel attacks based on
identifying and detecting these ad-hoc, or by using a formal method [8]. However, if the
legitimate network users are the only uniquely identified users, then the probability of

successful detection of convert channels is significant high. Therefore, an
inherently-unclonable IoT identification mechanism is required to prevent

and mitigate such attacks.

It is notable that unclonable identity is essentially relevant and needed to prevent
cloning and malicious substituting of things. It plays the role of trusted anchor for the
whole IoT system. This trusted anchor prevents unauthorized access to IoT devices and is
considered the first countermeasure against several attacks, such as eavesdropping.

2.3. IoT Security Requirements

The standard IoT security architecture includes three layers: device-, network-, and
application layer. The security functions accommodating each of these layers need to be
adapted together to secure the whole IoT system. However, each layer’s security require-

Cryptography 2021, 5, 32 5 of 29

ments are different; therefore, we will discuss the layer-specific security requirements with
the focus on identity-related IoT security aspects:

2.3.1. Device Physical-Layer Operational Security Requirements

The device level is concerned with people, devices, and geolocations, so physical
security should be anchored into the device to secure all processes performed. The device
layer’s fundamental security requirements include secure booting, firmware updates, soft-
ware updates, authorization, and authentication. IoT devices shall provide a cryptographic
unique and secure identifier to protect the identity from modification and replacement and
serve as individual physical device authentication. The physical device identity may play
the role of a trusted anchor for the security requirements. All required operational security
keys can be derived from the device identity; this ensures the device’s trustworthiness. The
following application-related essential operations require resilient identity-related security
functions to ensure the security stability of the whole system:

(A) Secured Booting

When turning on the IoT device, the installed software’s integrity and authenticity
should be checked to ensure that only authorized applications can run on the specific
device by deploying non-clonable keys coupled with that device. The provided key should
be unique and unclonable for each device, otherwise, if one device’s secure boot key is
compromised, the secure boot of all the other devices using that same key is also compro-
mised. To eliminate this risk, a device-specific secure boot can be deployed. Traditional
solutions provide a unique key for every device stored in an NVM; however, the solution is
prone to some read-back attacks [9]. A better solution is to deploy a clone-resistant device
ID such as a PUF [10–13] in conjunction with the secure boot mechanism. Our proposed
solution is introducing a digital SUC-based secured booting as proposed in [14], which is
more resilient and practical for mass production than the analog PUF-technology solution
seen in Section 5.1.

(B) Secured Updates

IoT devices require software patches and updates due to bug fixing or to roll out new
releases to improve functionality. IoT devices should only install signed/authenticated
software patches to avoid malicious activities. The signing mechanisms should make use
of the device’s clone-resistant identity as a unique and robust signature.

(C) Secured Access Control

Access control mechanisms are required to define the access of applications and device
components in an IoT environment [15]. The implementation of access control should be
isolated such that compromised information can be restricted to specific, compromised
network regions. This procedure requires a unique and unclonable device identity as a
reference foundation stone to provide the eligible robust access control.

(D) Secured Device Authentication

As soon as new devices are connected to a network, they should identify and authen-
ticate each other via a secure and unique and unclonable/non-replaceable device identifier.
There is a need to adopt a physical authentication mechanism for IoT devices so that device
spoofing in an IoT environment can be significantly nullified.

2.3.2. Security Requirements on Network Layer

Network layer security mainly refers to the gateway that is used between the IoT
devices and the Internet. Gateway devices are mainly subject to physical intrusion or
replacement attacks; therefore, the identity protection of the IoT gateway is a primary
requirement. To ensure the protection of the IoT gateway, each IoT gateway should be able
to identify itself uniquely via the network. The network designer’s goals should ensure
that a clone-resistant identity-based key agreement protocol is devised to operate on the

Cryptography 2021, 5, 32 6 of 29

network layer to protect the gateway against malware by using access control lists and
filtering linked to the individual device identity.

2.3.3. Security Requirements on the Application Layer

The service layer in an IoT system deals with the device interactions that occur when
data are collected and presented to the user and control commands are sent to these IoT
devices. The service layer handles the communication between the device and gateway
layer. The interaction should proceed in such a way that the changes made by users
and devices cannot be refuted. An inspection track mechanism should be operationally
embedded and cover this non-repudiation of the user and device changes. Therefore,
identity-based protection mechanisms should be linked to this layer to enable the security
of the application layer.

Concluding the need for physical unclonable identity: The above security concerns
and requirements show that there is a need for solid unclonable physical identification
and authentication for IoT devices. Each device requires a physical, unclonable identity
embedded in the device in a secure environment, and which is, as a minimum, not visible
from the outside. Therefore, robust physical device identity plays an essential role in
protecting both IoT devices and the overall IoT systems.

IoT device unclonability needs to be discussed further in this context. We explicitly
distinguish between inherently-clonable and inherent-unclonable identities.

3. Device Identification for IoT Environment: Classification and Definition

Referring to Figure 3, identifying IoTs in a large IoT network can be classified in two
categories. The first traditional category is inherently-cloneable allowing production of
multiple IoT objects that have the same provable identity. The second category includes all
identities which are inherently-unclonable and do not allow the production of multiple
objects with the same provable identity. This identity-category is equivalent to biological
DNA identity, which inherently does not allow production of two entities with the same
identity, due to its natural creation process.

Cryptography 2021, 5, x FOR PEER REVIEW 6 of 29

identity-based protection mechanisms should be linked to this layer to enable the security

of the application layer.

Concluding the need for physical unclonable identity: The above security concerns

and requirements show that there is a need for solid unclonable physical identification

and authentication for IoT devices. Each device requires a physical, unclonable identity

embedded in the device in a secure environment, and which is, as a minimum, not visible

from the outside. Therefore, robust physical device identity plays an essential role in pro-

tecting both IoT devices and the overall IoT systems.

IoT device unclonability needs to be discussed further in this context. We explicitly

distinguish between inherently-clonable and inherent-unclonable identities.

3. Device Identification for IoT Environment: Classification and Definition

Referring to Figure 3, identifying IoTs in a large IoT network can be classified in two

categories. The first traditional category is inherently-cloneable allowing production of

multiple IoT objects that have the same provable identity. The second category includes

all identities which are inherently-unclonable and do not allow the production of multiple

objects with the same provable identity. This identity-category is equivalent to biological

DNA identity, which inherently does not allow production of two entities with the same

identity, due to its natural creation process.

Figure 3. The two categories of IoT device identification mechanisms.

3.1. Inherently-Clonable IoT Unit Identities

As shown in Figure 2, all identification mechanisms which basically allow the origi-

nator or the trusted authority to produce traceable duplicates result in virtual units. Such

units are usable in all applications where producing a duplicate does not violate the basic

security requirements. For example, production of a duplicate sim card by a mobile oper-

ator is permitted and required. However, producing two physically equal personal iden-

tity cards is abusing the system and is unacceptable, and it should be fully prohibited even

for the persons personalizing the identity cards. In that case, producing any physical iden-

tity is traceable, as the personalizing worker cannot produce two physically equal cards

even if he or she wants to. In addition, if it is done, it cannot happen without being traced.

All traditional secret-key and public-key identification mechanisms fall under this

category of basically-cloneable identity mechanisms. The reason is that the person who

generates the identity knows a secret, enabling him/her to generate a replicate for the same

object without being traced.

3.2. Inherently-Unclonable Units and Physical Unclonability

Physical clonability (PU) of IoT units indicates that inherently, no one can config-

ure/produce two devices/units with the same physical and provable identity. The unclon-

able property prevents even the manufacturer from producing identical IoT devices dur-

ing the manufacturing process. The unclonable device identity is essentially deployed as

a trusted anchor that cannot be physically replaced. It supports several security features

IoT Identification

Analog Unknown Mappings

Physical Unclonable

Functions (PUF)

Inherently-Unclonable

Identity based on unknown mappings

Secret-Key Crypto

Based

Public-Key Crypto

Based

Inherently Clonable

Identity based on known Secret key

Digital Unknown Mappings

Secret Unknown

Cipher (SUC)

Figure 3. The two categories of IoT device identification mechanisms.

3.1. Inherently-Clonable IoT Unit Identities

As shown in Figure 2, all identification mechanisms which basically allow the origi-
nator or the trusted authority to produce traceable duplicates result in virtual units. Such
units are usable in all applications where producing a duplicate does not violate the basic
security requirements. For example, production of a duplicate sim card by a mobile opera-
tor is permitted and required. However, producing two physically equal personal identity
cards is abusing the system and is unacceptable, and it should be fully prohibited even for
the persons personalizing the identity cards. In that case, producing any physical identity
is traceable, as the personalizing worker cannot produce two physically equal cards even if
he or she wants to. In addition, if it is done, it cannot happen without being traced.

All traditional secret-key and public-key identification mechanisms fall under this
category of basically-cloneable identity mechanisms. The reason is that the person who

Cryptography 2021, 5, 32 7 of 29

generates the identity knows a secret, enabling him/her to generate a replicate for the same
object without being traced.

3.2. Inherently-Unclonable Units and Physical Unclonability

Physical clonability (PU) of IoT units indicates that inherently, no one can config-
ure/produce two devices/units with the same physical and provable identity. The unclon-
able property prevents even the manufacturer from producing identical IoT devices during
the manufacturing process. The unclonable device identity is essentially deployed as a
trusted anchor that cannot be physically replaced. It supports several security features
such as firmware integrity, software execution protection, the device’s security configura-
tion, etc. PU can be seen as a key property of IoT units that cannot be achieved by software
or algorithmic solutions. The requirement of physical clonability means that a physical
clone is not technologically or financially feasible according to the current state of the art.
According to [16], PU was defined mainly in the context of PUFs as practically hard to clone
entities. In the same sense, physical unclonability of an IoT Unit (PUU) can be classified in
three levels in a similar manner in reference to [16] as:

(A) Basic Unclonability Measure

Definition 1. A class of IoT units exhibits physical unclonability if it is hard to produce two
distinct IoT units with the same identity.

The qualifier “hard” in the above definition reflects the physical and technical dif-
ficulties (or impossibility) of creating such an IOT unit clone. These difficulties must be
evaluated in terms of the technical capabilities of the adversary, which are ultimately a
function of their expertise and equipment budget.

Let C and R be any challenge and response of specific IoT unit identity functions such
as A. Assume that A′ is an identification function clone of this IoT unit. The PUU can be
mathematically described as follows:

P
[
R← A(C) = R← A′(C)

]
< ε where ε is very low : For all C− R pairs

If # C-R pairs→ ∞, then a unit can be claimed to be theoretically unclonable.

(B) Mathematical Unclonability (Modeling-Impossible)

In this respect, uniqueness and PU is often not sufficient to ensure security. One also
needs unpredictability between responses to a single identification function instance, i.e.,
unobserved responses remain sufficiently random even after observing responses to other
challenges on the same entity. In context, an attacker is restricted to learning a limited
number of (possibly random) challenge–response pairs that it can use to train its prediction
algorithm. Typically, this is the case in a challenge–response-based protocol. However,
a more robust adversarial model must be considered when the attacker has unlimited
physical access to an entity. He or she can learn any number of challenge–response pairs
and may even make practical observations beyond the identification function.

Definition 2. A class of IoT units exhibits mathematical unclonability if the response of its
identification function is unpredictable.

Mathematical unclonability is the extension of unpredictability to an attacker with
unlimited physical access to an identification function. This implies that mathematical
unclonability leads to unpredictability.

(C) True Unclonability

We have defined two different notions of unclonability: physical and mathematical
unclonability. Both describe a property with the same objective, i.e., to make it hard
to clone an identification function, but from entirely different perspectives. Physical

Cryptography 2021, 5, 32 8 of 29

unclonability deals with the actual physical cloning of identification functions, while
mathematical unclonability deals only with cloning the challenge–response behavior of an
identification function. To ensure “true unclonability” for a class of IoT units, both physical
and mathematical unclonability measures need to be satisfied.

Definition 3. A class of IoT units exhibits true unclonability if it is both physically and mathemat-
ically unclonable.

From the above arguments, secured identity becomes an increasingly essential IoT
device requirement as an anchor to establish overall solid system security. A compre-
hensive comparison between traditional inherently-cloneable and inherently-unclonable
techniques will be investigated further in the following sections according to Figure 2: in
Section 4, devices deploying a key stored in a memory as an “inherently cloneable identity”
are presented and in Section 5, devices deploying inherently unclonable identity are inves-
tigated. These cover the following two types: first, a born unknown analog function as
PUF represents the unit’s identity. Second, a new proposed category of “digitally-mutated”
unknown digital functions replaces PUFs as embedded/hardwired modules in devices
called secret unknown ciphers (SUCs) as clone-resistant identities.

4. Inherently-Cloneable Identification Mechanisms

Traditionally, basic identification and authentication of IoT devices require storing a
unique device-key/identity in each device. This key is usually deployed together with
a cryptographic primitive to perform identification/authentication protocols [17]. The
motivation of using a memory-store for identity can be summarized as follows [18]:

• Memory is available in almost all computing platforms.
• The accessibility and flexibility of the memory is very high as it exhibits a short

time-delay.
• Memory is one of few reliable system-components.

Further, two types of memory are proposed as critical secret storage: non-volatile
memory (NVM) as permanent key storage and volatile memory as temporary key storage.
In order to use the stored key as a permanent device identity, NVM is desirable. Three
categories of NVMs have been introduced in several applications as follows [11]:

• Read-only memory (ROM).
• One-time programmable (OTP) NVM.
• Multiple-time programmable (MTP) NVM such as flash memory.

In the following, NVM-based IoT identification mechanisms are investigated care-
fully. Such a mechanism consists of two phases; first: identity establishment and second,
identity verification.

4.1. Stored Key as Identity Embodiment

Many methods are deployed to establish and verify the key/identity among several
IoT devices. In reference to Figure 4, two mechanisms are mainly deployed to create and
verify the device’s stored key/identity. First, symmetric key-based mechanisms, where
the key can be established and verified as discussed below. In addition, and secondly,
asymmetric key-based mechanisms, where each IoT device should have a public and
a private key. The private key is usually generated by using a true random number
generator (TRNG).

Cryptography 2021, 5, 32 9 of 29

Cryptography 2021, 5, x FOR PEER REVIEW 8 of 29

comprehensive comparison between traditional inherently-cloneable and inherently-un-

clonable techniques will be investigated further in the following sections according to Fig-

ure 2: in Section 4, devices deploying a key stored in a memory as an “inherently cloneable

identity” are presented and in Section 5, devices deploying inherently unclonable identity

are investigated. These cover the following two types: first, a born unknown analog func-

tion as PUF represents the unit’s identity. Second, a new proposed category of “digitally-

mutated” unknown digital functions replaces PUFs as embedded/hardwired modules in

devices called secret unknown ciphers (SUCs) as clone-resistant identities.

4. Inherently-Cloneable Identification Mechanisms

Traditionally, basic identification and authentication of IoT devices require storing a

unique device-key/identity in each device. This key is usually deployed together with a

cryptographic primitive to perform identification/authentication protocols [17]. The mo-

tivation of using a memory-store for identity can be summarized as follows [18]:

• Memory is available in almost all computing platforms.

• The accessibility and flexibility of the memory is very high as it exhibits a short time-

delay.

• Memory is one of few reliable system-components.

Further, two types of memory are proposed as critical secret storage: non-volatile

memory (NVM) as permanent key storage and volatile memory as temporary key storage.

In order to use the stored key as a permanent device identity, NVM is desirable. Three

categories of NVMs have been introduced in several applications as follows [11]:

• Read-only memory (ROM).

• One-time programmable (OTP) NVM.

• Multiple-time programmable (MTP) NVM such as flash memory.

In the following, NVM-based IoT identification mechanisms are investigated care-

fully. Such a mechanism consists of two phases; first: identity establishment and second,

identity verification.

4.1. Stored Key as Identity Embodiment

Many methods are deployed to establish and verify the key/identity among several

IoT devices. In reference to Figure 4, two mechanisms are mainly deployed to create and

verify the device’s stored key/identity. First, symmetric key-based mechanisms, where the

key can be established and verified as discussed below. In addition, and secondly, asym-

metric key-based mechanisms, where each IoT device should have a public and a private

key. The private key is usually generated by using a true random number generator

(TRNG).

Figure 4. IoT identity by deploying key-storage enrollment and verification mechanisms.

Identity Establishment and

Verfication

Symmetric Key-based

Certificate based

Asymmetric Key-based

Static Stored-Key Public Key Identity based

Figure 4. IoT identity by deploying key-storage enrollment and verification mechanisms.

4.2. Symmetric Key-Based Identity

Key Establishment: In the first scenario, one device shares a random, yet unique
value (to avoid duplicates) generated by a true random number generator (TRNG) with
other devices. All devices store their own random value in NVM and use it as a secret
key/identity. In the second scenario, all devices utilize a pseudorandom number generator
with the same shared seed to simultaneously generate the same random value. Here, the
generated value can be used as a key/identity; however, the shared seed and generated
value are required to be stored in NVM.

Key Verification Mechanism: In such schemes, communicating parties share a com-
mon secret key within the encrypted or decrypted exchanged messages, where the secret
key should be stored permanently in NVM. Such schemes are also known as a shared
key, single key, or secret key scheme. First, the involved communicating parties take
common credentials, which can be the symmetric key, along with some random bytes
previously deployed in the IoT device. The symmetric key is assumed to be used only for
communication with the intended devices; such schemes ensure implicit authentication in
the communication. These schemes can also use a server as a key distribution center (KDC)
to distribute the keys to IoT devices, and symmetric schemes provide a low computational
overhead, which is suitable for constrained sensing devices such as IoT.

Figure 5 illustrates how two IoT devices (prover and verifier) perform a basic au-
thentication protocol. The prover and verifier share the same secret key during the phase
of key/identity establishment, and they deploy the same agreed-on hash function H. In
a similar three-way protocol, the verifier may authenticate the prover by challenging
and asking him to respond by encrypting r by a cipher E using the shared secret key.
The verifier then checks if the response decrypted using the shared secret key results in
r’, which should be the same as the challenged random r. Many other refined and ex-
tended techniques are derived from the above two primitive three-way challenge–response
identification protocols.

In conclusion, symmetric-key schemes have major disadvantages, such as that the
whole security resides with the trusted third party (Trusted Authority TA). In addition,
the use of symmetric (or secret) cryptographic keys raises the problem of how to securely
preconfigure or transfer such keying material into the device. Moreover, the symmetric
key-based identity does not fulfill the IoT unclonability requirements as a must for resilient
and solid overall system security.

Cryptography 2021, 5, 32 10 of 29

Cryptography 2021, 5, x FOR PEER REVIEW 9 of 29

4.2. Symmetric Key-Based Identity

Key Establishment: In the first scenario, one device shares a random, yet unique

value (to avoid duplicates) generated by a true random number generator (TRNG) with

other devices. All devices store their own random value in NVM and use it as a secret

key/identity. In the second scenario, all devices utilize a pseudorandom number generator

with the same shared seed to simultaneously generate the same random value. Here, the

generated value can be used as a key/identity; however, the shared seed and generated

value are required to be stored in NVM.

Key Verification Mechanism: In such schemes, communicating parties share a com-

mon secret key within the encrypted or decrypted exchanged messages, where the secret

key should be stored permanently in NVM. Such schemes are also known as a shared key,

single key, or secret key scheme. First, the involved communicating parties take common

credentials, which can be the symmetric key, along with some random bytes previously

deployed in the IoT device. The symmetric key is assumed to be used only for communi-

cation with the intended devices; such schemes ensure implicit authentication in the com-

munication. These schemes can also use a server as a key distribution center (KDC) to

distribute the keys to IoT devices, and symmetric schemes provide a low computational

overhead, which is suitable for constrained sensing devices such as IoT.

Figure 5 illustrates how two IoT devices (prover and verifier) perform a basic authen-

tication protocol. The prover and verifier share the same secret key during the phase of

key/identity establishment, and they deploy the same agreed-on hash function H. In a

similar three-way protocol, the verifier may authenticate the prover by challenging and

asking him to respond by encrypting r by a cipher E using the shared secret key. The

verifier then checks if the response decrypted using the shared secret key results in r’,

which should be the same as the challenged random r. Many other refined and extended

techniques are derived from the above two primitive three-way challenge–response iden-

tification protocols.

Figure 5. Hash-based challenge–response symmetric-key verification.

In conclusion, symmetric-key schemes have major disadvantages, such as that the

whole security resides with the trusted third party (Trusted Authority TA). In addition,

the use of symmetric (or secret) cryptographic keys raises the problem of how to securely

preconfigure or transfer such keying material into the device. Moreover, the symmetric

key-based identity does not fulfill the IoT unclonability requirements as a must for resili-

ent and solid overall system security.

Prover VerifierIoT Device B IoT Device A

TRNG

 NVM

 NVM

If ,
then B is authentic

B A

Figure 5. Hash-based challenge–response symmetric-key verification.

4.3. Asymmetric Key-Based Identity

Public key cryptography (PKC) enables IoT device manufacturers to embed a cryp-
tographically verifiable identity into each device to ensure secure access from and to the
IoT device.

4.3.1. Asymmetric Key-Based Establishment and Verification Mechanism

Asymmetric key identification schemes are based on PKC and use two types of keys:
public keys and private keys. As the name implies, the public key is known to all com-
municating parties, whereas the private key must be kept secret for each communicating
device. The two keys are mathematically related; however, deriving a private key from
the corresponding public key is mathematically infeasible. The relationship between the
two keys involves expensive mathematical operations such as exponentiation and inte-
ger factorization. Since such mathematical operations are computationally complex and
high energy-consuming, asymmetric algorithms are not suitable for performing on large
amounts of data, making such algorithms particularly attractive for IoT devices with con-
strained devices. RSA and ECC as well-known asymmetric algorithms are widely used on
the conventional Internet with a maximum data size of 1024-bit.

PKC-based identifiers are very scalable. However, the current technological challenges
in IoT are leading to new design requirements for PKC. For instance, the desired public key
cryptosystem should offer additional technological requirements such as low complexity,
low power consumption, and less latency. Therefore, the designed cryptosystem needs
to consume minor resources without compromising the required level of security. Such
design requirements have played a crucial role in introducing and developing a new
cryptographic paradigm, the so-called lightweight public-key [19]. The current lightweight
PKC still requires a special mechanism to update the public- and private-keys. In recent
years, however, much research has focused on optimizing the expensive PKC operations
for IoT devices.

Identity-Based Cryptography

Adi Shamir introduced identity-based cryptography (IBC) in 1984 [20]. IBC uses
open user identity attributes such as phone numbers or email addresses or device serial
numbers to verify signatures. In [21], Boneh and Franklin expanded the concept into a fully
functional identity-based encryption scheme. Currently, the IBC is also described in the
well-known standard IEEE 1363.3 [22]. This technique requires zero configuration by the

Cryptography 2021, 5, 32 11 of 29

receiver party. The IBC relies on a trusted third party known as the private key generator
(PKG).

Referring to Figure 6, the PKG generates the private key before the operation and
sends the key to the respective entity. However, it should be noted that identity-based
systems are vulnerable to key escrow attacks since the PKG knows the private keys of
all entities. Another known issue is to ensure a secure connection between the PKG and
the IoT device since the private key is passed from the PKG to the IoT device over this
connection. This technique offers inherently-clonable identity as somebody knows the
identity secrets.

Cryptography 2021, 5, x FOR PEER REVIEW 11 of 29

signed by the sensor and the cloud application using a one-way hash function and then

exchanged with the other party. As shown in Figure 7, after verifying each other’s ephem-

eral key, the communicating nodes conclusively derive the shared key. This technique

guarantees perfect forward secrecy, key confidentiality, key control, and scalability. It also

relieves the PKG of complete key dependency because even if the adversary compromises

the PKG, he or she cannot derive the shared key.

Figure 6. Identity-based Key Generation.

Figure 7. Identity-based cryptographic schemes.

Verifying Public Key Identity

The public key (PK) and the private key are generated and pre-installed on devices,

either offline or through an out-of-band mechanism. Therefore, authentication is ensured

offline or when an out-of-band mechanism binds the public key to the entity/identity

which the key represents. To reduce the certificate burden on resource-constrained de-

vices and to increase efficiency, the use of raw public keys for TLS and DTLS has been

standardized by the IETF [24]. In addition, even though these schemes require less mes-

saging than certificates and identities, they can only be used for small network scenarios

where each node’s public key is known in advance to all other nodes. As an example of

using a public key as identity, the authors in [25] proposed a public key-based identifica-

tion and authentication scheme for heterogeneous IoT networks on software-defined net-

working (SDN). In Figure 8, the central SDN controller translates the different technology-

specific identities from the various IoT domains into a common identity based on virtual

IPv6 addresses and authenticates devices and gateways using public and private keys.

The authors assumed that the public key of the SDN controller is hardcoded in each device

when the device is manufactured; the controller generates the public keys for things using

ECC. The gateway also generates its pair of public/private keys using ECC.

Private-key (

Generates private key

for IoT device A

IoT Device A
Private Key

Generator

Private Key Generator

BPRIV
APRIV

Key Establishment Process

IoT Device A

Processor Hardware

PrivA

PubA =

Hash(IDA)

IoT Device B

Processor Hardware

PrivB

PubB =

Hash(IDB)

Figure 6. Identity-based Key Generation.

To verify the static stored-key as identity, IBC was implemented by deploying RSA,
but ECC and EIGamal public-key locks were also explored for implementation. In IoT
communication environments, IBC based on ECC has been extensively investigated, as it
offers a more cost-effective alternative to RSA. An excellent approach based on IBC was
recently published by Saeed et al. [23]. The authors introduced an identity-based authenti-
cated key agreement between client sensor nodes and cloud servers. The base station hosts
the PKG, which supports ID-based schemes that issue private-public key pairs and other
system parameters based on their identities to the communicating nodes on the network.
On the other hand, the cloud and sensor nodes generate their Diffie–Hellman keys using
random integers and ECC-based curve multiplication. These ephemeral keys are signed by
the sensor and the cloud application using a one-way hash function and then exchanged
with the other party. As shown in Figure 7, after verifying each other’s ephemeral key,
the communicating nodes conclusively derive the shared key. This technique guarantees
perfect forward secrecy, key confidentiality, key control, and scalability. It also relieves the
PKG of complete key dependency because even if the adversary compromises the PKG, he
or she cannot derive the shared key.

Cryptography 2021, 5, x FOR PEER REVIEW 11 of 29

signed by the sensor and the cloud application using a one-way hash function and then

exchanged with the other party. As shown in Figure 7, after verifying each other’s ephem-

eral key, the communicating nodes conclusively derive the shared key. This technique

guarantees perfect forward secrecy, key confidentiality, key control, and scalability. It also

relieves the PKG of complete key dependency because even if the adversary compromises

the PKG, he or she cannot derive the shared key.

Figure 6. Identity-based Key Generation.

Figure 7. Identity-based cryptographic schemes.

Verifying Public Key Identity

The public key (PK) and the private key are generated and pre-installed on devices,

either offline or through an out-of-band mechanism. Therefore, authentication is ensured

offline or when an out-of-band mechanism binds the public key to the entity/identity

which the key represents. To reduce the certificate burden on resource-constrained de-

vices and to increase efficiency, the use of raw public keys for TLS and DTLS has been

standardized by the IETF [24]. In addition, even though these schemes require less mes-

saging than certificates and identities, they can only be used for small network scenarios

where each node’s public key is known in advance to all other nodes. As an example of

using a public key as identity, the authors in [25] proposed a public key-based identifica-

tion and authentication scheme for heterogeneous IoT networks on software-defined net-

working (SDN). In Figure 8, the central SDN controller translates the different technology-

specific identities from the various IoT domains into a common identity based on virtual

IPv6 addresses and authenticates devices and gateways using public and private keys.

The authors assumed that the public key of the SDN controller is hardcoded in each device

when the device is manufactured; the controller generates the public keys for things using

ECC. The gateway also generates its pair of public/private keys using ECC.

Private-key (

Generates private key

for IoT device A

IoT Device A
Private Key

Generator

Private Key Generator

BPRIV
APRIV

Key Establishment Process

IoT Device A

Processor Hardware

PrivA

PubA =

Hash(IDA)

IoT Device B

Processor Hardware

PrivB

PubB =

Hash(IDB)

Figure 7. Identity-based cryptographic schemes.

Cryptography 2021, 5, 32 12 of 29

Verifying Public Key Identity

The public key (PK) and the private key are generated and pre-installed on devices,
either offline or through an out-of-band mechanism. Therefore, authentication is ensured
offline or when an out-of-band mechanism binds the public key to the entity/identity which
the key represents. To reduce the certificate burden on resource-constrained devices and to
increase efficiency, the use of raw public keys for TLS and DTLS has been standardized
by the IETF [24]. In addition, even though these schemes require less messaging than
certificates and identities, they can only be used for small network scenarios where each
node’s public key is known in advance to all other nodes. As an example of using a
public key as identity, the authors in [25] proposed a public key-based identification and
authentication scheme for heterogeneous IoT networks on software-defined networking
(SDN). In Figure 8, the central SDN controller translates the different technology-specific
identities from the various IoT domains into a common identity based on virtual IPv6
addresses and authenticates devices and gateways using public and private keys. The
authors assumed that the public key of the SDN controller is hardcoded in each device
when the device is manufactured; the controller generates the public keys for things using
ECC. The gateway also generates its pair of public/private keys using ECC.

Cryptography 2021, 5, x FOR PEER REVIEW 12 of 29

Figure 8. Public key-based authentication scheme for the IoT.

Managing Certificate-based Identity

From a security standpoint, it is well known that one of the best approaches to au-

thenticating public keys is to have the various entities participate in a public key infra-

structure (PKI). A PKI defines, in practice, the set of policies and procedures to manage

public key encryption and other services such as the creation, distribution, management,

storage, and revocation of digital certificates. A PKI ensures authentication of public keys

of users and devices by binding them to their identities. In a PKI, a trusted third party,

known as the certificate authority (CA), holds responsibility for registration and issuance

of certificates to the various entities. The third component in a PKI repository stores cer-

tificates and certificate revocation lists (CRL).

The digital certificates issued by the CA are verified by a chain of trust, and to map

the services of a PKI in each IoT environment, the root node can act as the root CA respon-

sible for the registration, issuance, storage, and revocation operations. A certificate has

three major constituents: the identification data, a public key, and a digital signature that

binds the public key to the identity of the IoT device/user. We also note that certificates

may be managed implicitly or explicitly:

• Explicit or conventional certificates are managed and signed by a trusted third party

(a CA). Any entity in the network can validate the certificate by verifying the signa-

ture of the CA contained in it. This process is illustrated in Figure 9, where Cert is the

IoT device certificate including certified signature (Sign) by CA, device identity (ID),

and device public key (Pub).

• Implicit certificates are another variant of the public key certificate, where all the cer-

tificate components such as identification data, a public key, and digital signatures

are superimposed on one another in such a way that the size of the certificate is equal

to the size of the public key [26]. Compared to explicit certificates, in the context of

which the certificate components are distinct elements, the size of implicit certificates

is considerably smaller because digital signatures are superimposed on the public

key. The fact that this type of certificate is called implicit is related to the fact that the

public key can be extracted and verified from the signature portion of the digital cer-

tificate [27]. This makes implicit certificates faster than conventional certificates. In

[28], the authors propose that implicit certificates are preconfigured in each device

by the network administrator before activating the network. Figure 10 shows the

steps in the implicit certificate-based mutual authentication protocol.

Gateway Gateway

IoT Domain

Gateway Gateway

IoT Domain

SDN Controller SDN Controller

Central Data Store

Things

Figure 8. Public key-based authentication scheme for the IoT.

Managing Certificate-Based Identity

From a security standpoint, it is well known that one of the best approaches to authen-
ticating public keys is to have the various entities participate in a public key infrastructure
(PKI). A PKI defines, in practice, the set of policies and procedures to manage public key
encryption and other services such as the creation, distribution, management, storage, and
revocation of digital certificates. A PKI ensures authentication of public keys of users and
devices by binding them to their identities. In a PKI, a trusted third party, known as the
certificate authority (CA), holds responsibility for registration and issuance of certificates
to the various entities. The third component in a PKI repository stores certificates and
certificate revocation lists (CRL).

The digital certificates issued by the CA are verified by a chain of trust, and to map the
services of a PKI in each IoT environment, the root node can act as the root CA responsible
for the registration, issuance, storage, and revocation operations. A certificate has three
major constituents: the identification data, a public key, and a digital signature that binds
the public key to the identity of the IoT device/user. We also note that certificates may be
managed implicitly or explicitly:

Cryptography 2021, 5, 32 13 of 29

• Explicit or conventional certificates are managed and signed by a trusted third party
(a CA). Any entity in the network can validate the certificate by verifying the signature
of the CA contained in it. This process is illustrated in Figure 9, where Cert is the IoT
device certificate including certified signature (Sign) by CA, device identity (ID), and
device public key (Pub).

• Implicit certificates are another variant of the public key certificate, where all the
certificate components such as identification data, a public key, and digital signatures
are superimposed on one another in such a way that the size of the certificate is equal
to the size of the public key [26]. Compared to explicit certificates, in the context of
which the certificate components are distinct elements, the size of implicit certificates
is considerably smaller because digital signatures are superimposed on the public
key. The fact that this type of certificate is called implicit is related to the fact that
the public key can be extracted and verified from the signature portion of the digital
certificate [27]. This makes implicit certificates faster than conventional certificates.
In [28], the authors propose that implicit certificates are preconfigured in each device
by the network administrator before activating the network. Figure 10 shows the steps
in the implicit certificate-based mutual authentication protocol.

Cryptography 2021, 5, x FOR PEER REVIEW 13 of 29

Figure 9. Certificate-based IoT device identification mechanism.

Figure 10. Implicit certificate-based mutual identification protocol.

Furthermore, identity establishment is also defined in IEEE 802.1AR. In this standard,

a secure identifier is considered as the most promising approach for a secure device ID in

IoT systems. IEEE 802.1AR defines the security credentials to be used for device identifi-

cation and a device ID module with the interface to use and manage the identifiers. The

802.1AR identifier is based on X.509v3 certificates which, for example, can be used by

802.1X authentication protocols. Manipulation requires the private CA key; depending on

the intended security level, binding of the identity to the device can be supported by the

hardware; in this case, it is tough to remove or copy the identity and clone the device.

In conclusion, asymmetric-key schemes have similar major disadvantages to secret-

key schemes in that the whole system’s security resides with the trusted third party

(trusted authority—TA). In addition, the use of secret and public keys (or secret) raises

the problem of how to preconfigure or transfer such keying material into the device se-

curely and avoid clonability attacks. Moreover, asymmetric key-based identity does not

fulfill the IoT unclonability requirements as a must for resilient and solid overall system

security.

Certificate Authority

IDCA , PubCA PrivCA

Cert [{ , }, ,]A priv A A A A
CA

Sign ID Pub ID Pub=Cert [{ , }, ,]B priv B B B B
CA

Sign ID Pub ID Pub=

Key Establishment Process

IoT Device A

Processor Hardware

PrivA
IDA,CertA

IoT Device B

Processor Hardware

PrivB
IDB,CertB

IoT Device DA IoT Device DB

A A B A B
)

Prove the possession of the Pre Link Key,

sends α = AUTH P , ,ρ ,ρ(P

B B A B A
)

Prove the possession of the Pre Link e

(

 K y,

sends α = AUTH P , P ,ρ ,ρ

Verifying the correctness of received

authentication fields

Key Derivation Function is used

to generate the Link Key

BB B
 Device D , sends implicit certificate P and a non e ρcA

B

Device D verifies the

public key of the device D

B

A

Device D verifies the

public key of the device D

Verifying the correctness of

received authentication fields

Mutual authentication completed

AA A
 Device D , sends implicit certificate P and a non e ρc

Key Derivation Function is

used to generate the Link Key

Figure 9. Certificate-based IoT device identification mechanism.

Cryptography 2021, 5, x FOR PEER REVIEW 13 of 29

Figure 9. Certificate-based IoT device identification mechanism.

Figure 10. Implicit certificate-based mutual identification protocol.

Furthermore, identity establishment is also defined in IEEE 802.1AR. In this standard,

a secure identifier is considered as the most promising approach for a secure device ID in

IoT systems. IEEE 802.1AR defines the security credentials to be used for device identifi-

cation and a device ID module with the interface to use and manage the identifiers. The

802.1AR identifier is based on X.509v3 certificates which, for example, can be used by

802.1X authentication protocols. Manipulation requires the private CA key; depending on

the intended security level, binding of the identity to the device can be supported by the

hardware; in this case, it is tough to remove or copy the identity and clone the device.

In conclusion, asymmetric-key schemes have similar major disadvantages to secret-

key schemes in that the whole system’s security resides with the trusted third party

(trusted authority—TA). In addition, the use of secret and public keys (or secret) raises

the problem of how to preconfigure or transfer such keying material into the device se-

curely and avoid clonability attacks. Moreover, asymmetric key-based identity does not

fulfill the IoT unclonability requirements as a must for resilient and solid overall system

security.

Certificate Authority

IDCA , PubCA PrivCA

Cert [{ , }, ,]A priv A A A A
CA

Sign ID Pub ID Pub=Cert [{ , }, ,]B priv B B B B
CA

Sign ID Pub ID Pub=

Key Establishment Process

IoT Device A

Processor Hardware

PrivA
IDA,CertA

IoT Device B

Processor Hardware

PrivB
IDB,CertB

IoT Device DA IoT Device DB

A A B A B
)

Prove the possession of the Pre Link Key,

sends α = AUTH P , ,ρ ,ρ(P

B B A B A
)

Prove the possession of the Pre Link e

(

 K y,

sends α = AUTH P , P ,ρ ,ρ

Verifying the correctness of received

authentication fields

Key Derivation Function is used

to generate the Link Key

BB B
 Device D , sends implicit certificate P and a non e ρcA

B

Device D verifies the

public key of the device D

B

A

Device D verifies the

public key of the device D

Verifying the correctness of

received authentication fields

Mutual authentication completed

AA A
 Device D , sends implicit certificate P and a non e ρc

Key Derivation Function is

used to generate the Link Key

Figure 10. Implicit certificate-based mutual identification protocol.

Cryptography 2021, 5, 32 14 of 29

Furthermore, identity establishment is also defined in IEEE 802.1AR. In this standard,
a secure identifier is considered as the most promising approach for a secure device
ID in IoT systems. IEEE 802.1AR defines the security credentials to be used for device
identification and a device ID module with the interface to use and manage the identifiers.
The 802.1AR identifier is based on X.509v3 certificates which, for example, can be used by
802.1X authentication protocols. Manipulation requires the private CA key; depending on
the intended security level, binding of the identity to the device can be supported by the
hardware; in this case, it is tough to remove or copy the identity and clone the device.

In conclusion, asymmetric-key schemes have similar major disadvantages to secret-
key schemes in that the whole system’s security resides with the trusted third party (trusted
authority—TA). In addition, the use of secret and public keys (or secret) raises the problem
of how to preconfigure or transfer such keying material into the device securely and
avoid clonability attacks. Moreover, asymmetric key-based identity does not fulfill the IoT
unclonability requirements as a must for resilient and solid overall system security.

4.4. Discussing Inherently-Clonable Identification Mechanisms

As shown above, two schemes were investigated targeting identification mechanisms
in IoT environment. First: symmetric-key schemes exhibit several drawbacks as discussed
in Section 4.1 Second: asymmetric key schemes have low memory requirements, high
scalability, and resistance to attacks. They use computationally intensive operations that
increase energy consumption and computation costs connected with IoT applications.
Table 2 summarizes the results for the inherently-clonable identification mechanisms based
on comparison criteria.

Table 2. Comparison criteria of inherently clonable identification mechanisms for IoT security services.

Features Result

Suitable for IoT constrained devices Fulfilled
Perfect forward secrecy Fulfilled

Resilience to physical attack Not fulfilled
Resilience to modeling attack Not relevant
Resilience to cloning attack Not fulfilled

High performance/response time Fulfilled [11]
NVM usage YES

Cryptographic primitive usage YES
Unclonability Not Fulfilled

Key space Scalable
Key Entropy HIGH

Key update needed? YES
Identification/authentication Fulfilled

Mutual authentication Fulfilled

The clear clonability disadvantages of both schemes according to Table 2 motivate the
search for alternatives, which should be physically unclonable or clone-resistant techniques
to counteract physical attacks in many relevant IoT applications.

5. Inherently-Unclonable Identification Mechanisms

In this section, the inherently-unclonable identification technologies and mechanisms
will be investigated: first, devices using physical unclonable functions (PUF) as identity,
and then devices using secret unknown cipher (SUC) as identity. Finally, a comparison
between PUF and SUC will conclude this section.

5.1. Identification Based on Analog Physical Unclonable Functions

Physically unclonable functions or physical unclonable functions (PUFs) were built
based on the physical characteristics (random manufacturing variations) of silicon devices.
PUF can be perceived as a DNA-like identity for the device. The random, unpredictable,

Cryptography 2021, 5, 32 15 of 29

and uncontrollable nature of PUFs makes them physically very hard to clone, even for
the manufacturer. Several PUFs were proposed two decades ago. In the following, three
well-known technologies of PUFs are presented as a sample [29]:

• Arbiter PUF

The arbiter PUF, shown in Figure 11a, is composed of two parallel paths of consecutive
multiplexers as symmetric paths and a flip-flop or a latch as arbiter circuit [30]. The arbiter
circuit includes N input bits (0 and 1 every stage) and has one-bit output. The core idea of
arbiter PUF is to extract the delay of tow paths. The path that reaches the arbiter circuit first
decides the output of the arbiter circuit, i.e., either 0 or 1 [29]. Arbiter PUF is classified as a
strong PUF as for multiple inputs it responds with multiple corresponding outputs [17].

Cryptography 2021, 5, x FOR PEER REVIEW 15 of 29

• Ring Oscillator PUF

The ring oscillator PUF (RO PUF) is also defined as a delay-based PUF. Several iden-

tical ring oscillators and two counters compare RO frequencies and generate one-bit out-

put as shown in Figure 11b [31]. RO PUF is classified as a weak PUF since it generates a

limited number of challenge–response pairs [17].

• SRAM PUF

A static random-access memory (SRAM) is composed of several cells that can store

one bit, either 0 or 1. When the SRAM cell is powered on, the SRAM cell will have either

0 or 1 as an initial value. This random behavior of SRAM memory leads to the construction

of SRAM PUF as illustrated in Figure 11c [32]. SRAM PUF is categorized as a memory-

based PUF [29]. SRAM PUF is classified as a weak PUF since it generates a limited number

of challenge–response pairs [17].

Figure 11. (a) Arbiter PUF; (b) Ring Oscillator PUF; (c) SRAM PUF; PUF proposals adapted from [29,31–33].

5.1.1. PUF-Based Identification Protocol: Challenges and Drawbacks

PUF can be perceived as unknown, highly non-linear physical mapping. For an input

C, PUF responds with an output R. The input–output PUF-pairs or so-called challenge–

response pairs (CRPs) are mainly utilized to identify and authenticate the device.

As silicon-based technologies, PUFs are very sensitive to temperature and voltage

variants, aging, and circuit noise. Therefore, it is very difficult to ensure that whenever a

PUF is fed by a challenge 𝐶, the PUF can respond with the same and stable repetedly.

This problem is well-known as a reproducibility problem in PUF-technologies [17]. To

ensure the reproducibility of the PUF-response, an additional circuit (a so-called fuzzy

extractor) is attached to a PUF to stabilize its PUF-response [34]. The fuzzy extractor can

be perceived as an error correction code mechanism where it generates extra data (helper

data) allowing correction of the PUF response R for any given challenge C. This solution

Figure 11. (a) Arbiter PUF; (b) Ring Oscillator PUF; (c) SRAM PUF; PUF proposals adapted from [29,31–33].

• Ring Oscillator PUF

The ring oscillator PUF (RO PUF) is also defined as a delay-based PUF. Several
identical ring oscillators and two counters compare RO frequencies and generate one-bit
output as shown in Figure 11b [31]. RO PUF is classified as a weak PUF since it generates a
limited number of challenge–response pairs [17].

• SRAM PUF

A static random-access memory (SRAM) is composed of several cells that can store one
bit, either 0 or 1. When the SRAM cell is powered on, the SRAM cell will have either 0 or 1
as an initial value. This random behavior of SRAM memory leads to the construction of
SRAM PUF as illustrated in Figure 11c [32]. SRAM PUF is categorized as a memory-based
PUF [29]. SRAM PUF is classified as a weak PUF since it generates a limited number of
challenge–response pairs [17].

Cryptography 2021, 5, 32 16 of 29

5.1.1. PUF-Based Identification Protocol: Challenges and Drawbacks

PUF can be perceived as unknown, highly non-linear physical mapping. For an input
C, PUF responds with an output R. The input–output PUF-pairs or so-called challenge–
response pairs (CRPs) are mainly utilized to identify and authenticate the device.

As silicon-based technologies, PUFs are very sensitive to temperature and voltage
variants, aging, and circuit noise. Therefore, it is very difficult to ensure that whenever a
PUF is fed by a challenge C, the PUF can respond with the same and stable R repetedly.
This problem is well-known as a reproducibility problem in PUF-technologies [17]. To
ensure the reproducibility of the PUF-response, an additional circuit (a so-called fuzzy
extractor) is attached to a PUF to stabilize its PUF-response [34]. The fuzzy extractor can be
perceived as an error correction code mechanism where it generates extra data (helper data)
allowing correction of the PUF response R for any given challenge C. This solution requires
extra hardware resources and decreases the PUF entropy, i.e., it reduces the number of
usable CRPs.

Additionally, several side-channel attacks can threaten PUFs, such as invasive [35],
semi-invasive [36], and non-invasive attacks [37]. Such attacks aim to create a physical
clone of a PUF in the best-case scenario [38] and build a virtual PUF-model in the worst-
case scenario.

5.1.2. Primitive PUF-Based Identification Protocol

As shown in Figure 12, a basic PUF-based identification protocol can be carried out
after the enrollment phase. In the enrollment phase, PUF is fed by a set of challenges
{Ci}m

i=1 , and the helper data {hi}m
i=1 are stored in a server database together with the

corresponding responses {Ri}m
i=1. In the identification phase, the server selects one(

Cj, Rj, hj
)

out of m stored CRPs and sends
(
Cj, hj

)
to the device. The device responds by

its PUF and fuzzy extractor with R′j. The server compares the received R′j with the stored
Rj to verify the PUF.

Cryptography 2021, 5, x FOR PEER REVIEW 16 of 29

requires extra hardware resources and decreases the PUF entropy, i.e., it reduces the num-

ber of usable CRPs.

Additionally, several side-channel attacks can threaten PUFs, such as invasive [35],

semi-invasive [36], and non-invasive attacks [37]. Such attacks aim to create a physical

clone of a PUF in the best-case scenario [38] and build a virtual PUF-model in the worst-

case scenario.

5.1.2. Primitive PUF-Based Identification Protocol

As shown in Figure 12, a basic PUF-based identification protocol can be carried out

after the enrollment phase. In the enrollment phase, PUF is fed by a set of challenges
{𝐶𝑖}𝑖=1

𝑚 , and the helper data {ℎ𝑖}𝑖=1
𝑚 are stored in a server database together with the cor-

responding responses { 𝑖}𝑖=1
𝑚 . In the identification phase, the server selects one (𝐶𝑗 𝑗 ℎ𝑗)

out of 𝑚 stored CRPs and sends (𝐶𝑗 ℎ𝑗) to the device. The device responds by its PUF

and fuzzy extractor with 𝑗. The server compares the received 𝑗 with the stored 𝑗 to

verify the PUF.

Figure 12. Basic PUF-based identification protocol.

5.1.3. Security Evaluation of PUF-Based Identification Protocol

Due to the limited number of CRPs in many weak PUF technologies, an adversary

can feed a PUF with all possible challenges and store the corresponding responses in a

PUF-codebook which can be perceived as a PUF-substitution. This PUF-codebook can

carry out the mentioned basic PUF-based identification protocol similar to the original

PUF. Therefore, this attack is equivalent to a/the PUF-cloning attack. On the other hand,

if a PUF can generate an exponentially-large number of CRPs, the PUF is called a strong

PUF [17]. However, if the generated CRPs are highly correlated, then a set of PUF-CRPs

can be fed to a machine learning (ML) algorithm which may build a PUF-predictive model

[39]. For a new challenge 𝐶𝑘 , a/the PUF-predictive model responds with the same re-

sponse 𝑘 as the original PUF. Thus, an adversary (man in the middle attack) can suc-

cessfully perform this attack scenario against the mentioned basic PUF-based identifica-

tion protocol after collecting a large enough number of CRPs as a training set. Table 3

summarizes several successful molding attacks against different types of PUFs along with

their prediction rates. For instance, a successful molding attack on the Arbiter PUF with

64-bit size of the challenge requires approximately 20,000 CRPs to construct a predictive

PUF-model within 0.60 s by using logistic regression. As a result, most of the proposed

PUFs can be molded by using a few CRPs within a short time. More details about the

molding attacks on PUFs can be found in [39].

Identification PhaseDevice with PUF Server

CRPs Helper Data

𝐶1 1 ℎ1

𝐶𝑗 𝑗 ℎ𝑗

𝐶𝑚 𝑚 ℎ𝑚

Database

𝐶𝑗 ℎ𝑗 𝐶𝑗 𝑗 and ℎ𝑗

 𝑗

PUF FE𝐶𝑗 𝑗

ℎ𝑗

If 𝑗 𝑗 rejects

PUF

FE

Physical Unclonable Function

Fuzzy Extractor

Figure 12. Basic PUF-based identification protocol.

5.1.3. Security Evaluation of PUF-Based Identification Protocol

Due to the limited number of CRPs in many weak PUF technologies, an adversary
can feed a PUF with all possible challenges and store the corresponding responses in a
PUF-codebook which can be perceived as a PUF-substitution. This PUF-codebook can
carry out the mentioned basic PUF-based identification protocol similar to the original PUF.
Therefore, this attack is equivalent to a/the PUF-cloning attack. On the other hand, if a PUF
can generate an exponentially-large number of CRPs, the PUF is called a strong PUF [17].
However, if the generated CRPs are highly correlated, then a set of PUF-CRPs can be fed
to a machine learning (ML) algorithm which may build a PUF-predictive model [39]. For
a new challenge Ck, a/the PUF-predictive model responds with the same response Rk as
the original PUF. Thus, an adversary (man in the middle attack) can successfully perform

Cryptography 2021, 5, 32 17 of 29

this attack scenario against the mentioned basic PUF-based identification protocol after
collecting a large enough number of CRPs as a training set. Table 3 summarizes several
successful molding attacks against different types of PUFs along with their prediction
rates. For instance, a successful molding attack on the Arbiter PUF with 64-bit size of the
challenge requires approximately 20,000 CRPs to construct a predictive PUF-model within
0.60 s by using logistic regression. As a result, most of the proposed PUFs can be molded
by using a few CRPs within a short time. More details about the molding attacks on PUFs
can be found in [39].

Table 3. Successful molding attacks against different types of PUFs (adapted from [39]).

PUF-Types Challenge Size Response Size Algorithm/
ML Technique

Required
CRPs

Prediction
Rate

Time
Complexity

Arbiter PUF 64-bit One bit Logistic
Regression 18,050 99.9% 0.60 s

XOR Arbiter PUFs 64-bit as input of 4
Arbiter PUFs One bit Logistic

Regression 12,000 99% 03:42 min

Feed Forward
Arbiter PUF 64-bit One bit Evolution

Strategies 50,000 97.72% 07:51 min

RO-PUF 256-Oscillators One bit Quick Sort 28,891 99.9% Not Available

In order to provide a PUF with immunity against modeling attacks, additional
algorithm on software level or a cryptographic function should be deployed [17]. Such
countermeasures increase both the execution time and the hardware complexity.

5.1.4. PUF for IoT Device Identification and Authentication

Every IoT system aims to achieve a balance between hardware cost, performance,
and security. In [40], PUFs were presented as a robust solution for securing IoT devices.
The idea was to investigate how PUF-based protocols meet the requirements of secure
communication with little resource overheads [40]. As a result of their investigations, a
secure PUF-based IoT system should be robust and resilient against side channel attacks
and man in the middle attacks. In the following, new criteria for PUF-based IoT systems
are addressed and discussed. Such criteria give good indications for the performance and
hardware cost of PUF-based IoT systems.

5.1.5. PUF-Based IoT Identification Protocols: Communication Complexity

As mentioned above, a/the basic PUF-based identification protocol cannot be de-
ployed for IoT systems due to the security concerns mentioned above. Therefore, several
PUF-based identification protocols have been designed to overcome PUF vulnerabilities by
communicating more with the server and/or using a proposed extra cryptographic func-
tion [17]. The number of communications between the server and the PUF together with
the additional cryptographic function affects and impacts the overall power consumption
of the IoT system, not only for the IoT devices but also the required power consumption to
perform the protocol. Furthermore, the communication channel size required to complete
the protocol between the server and IoT device with PUF provides a precise indication of
the bit volume of the exchanged data. Table 4 shows a variety of communication complexi-
ties of several PUF-based identification protocols proposed for IoT system, where n is the
bit length of PUF-CR. To simplify the calculation, n is also used to indicate the size of any
transmitted value via the protocol such as a nonce and digest.

Cryptography 2021, 5, 32 18 of 29

Table 4. Communication complexity of a sample of PUF-based identification protocols.

Proposed PUF-Class Target of Protocol Additional
Cryptographic Function

of Server-Device
Communications

Max. Required
Channel Size

Two Strong PUFs [41] Authentication No 3 n-bit
Strong PUF [42] Identification and Authentication XoR 4 2n-bit
Strong PUF [43] Identification and Authentication Hash 5 2n-bit
Weak PUF [44] Authentication Hash 3 3n-bit
Strong PUF [45] Authentication Cipher 6 n-bit
Strong PUF [46] Authentication XoR 5 n-bit
Strong PUF [47] Identification and Authentication HashMAC 4 3n-bit
Strong PUF [48] Authentication Hash and XoR 3 4n-bit
Strong PUF [49] Authentication Hash and XoR 3 3n-bit
Strong PUF [50] Identification and Authentication HashMAC and XoR 4 n-bit

According to Table 4, a minimum number of communications between the server
and the IoT device to perform the identification protocol is three, each with n-bit as a
communication channel size. As a result, a PUF-based identification and authentication
protocol requires multiple communications between the server and IoT device via a channel
of at least size n bits.

5.1.6. PUF-Based IoT Identification Protocols: Hardware Complexity

Since a low area is desirable for IoT systems, the proposed PUFs should consume a
small portion of hardware resources and have low implementation cost/complexity. Here,
the hardware cost indicates the required area that the proposed PUF occupies. Apparently,
a PUF requiring less complexity is more desirable for IoT systems. Table 5 shows several
PUF-proposals with implementation costs in Field Programmable Gate Array (FPGA).
In [51], compact FPGA-implementations of RO-PUF, Arbiter PUF, and RS Latch-PUF
(RS-LPUF) were presented. The PUF-implementations were optimized to achieve very
competitive area trade-offs. Note that the results presented in Table 5 do not show the
required extra-overhead for the fuzzy extractor and/or the error correction code technique.

Table 5. A sample of implemented PUFs on different FPGAs.

Type of PUF Targeted FPGA
Hardware Resources

LUTs # DFFs

PolyPUF [52] - 213 450
Slender PUF [53] - 652 1400

OB-PUF [54] - 680 360
RSO-based PUF [55] Xilinx Artix-7 405 1500

RPUF [56] - 350 389
Enhanced Arbiter PUF [57] Xilinx Artix-7 419 264

PUF-FSM [58] - 960 1500
RO PUF [51], Optimized Xilinx Spartan-6 82 Slices ≈ 328 * 82 Slices ≈ 656 *
RS-PUF [51], Optimized Xilinx Spartan-6 54 Slices ≈ 216 * 54 Slices ≈ 432 *

Arbiter PUF [51], Optimized Xilinx Spartan-6 234 Slices ≈ 936 * 234 Slices ≈ 1872 *

*: The approximation number of LUTs and DFFs are computed based on the technology used in the reference [51].

According to Table 5, a/the PUF circuit without any additional stabilizer circuit
consumes an enormous amount of the hardware resources. For instance, an/the optimized
Arbiter PUF itself requires almost 936 LUTs and 1872 DFFs [51].

Cryptography 2021, 5, 32 19 of 29

5.1.7. PUF-Based Identification Discussion

PUFs display inconsistent behavior because of their sensibility to environmental and
operational conditions and variations such as temperature, voltage, radiation, and aging
factors. Additionally, many attacks on PUFs have been recently proposed. These target
both weak PUFs and strong PUFs [59]; weak PUFs have fewer challenges, commonly
only one challenge per PUF instance. Hence, it is assumed that access to the weak PUF
response is restricted. In contrast, a strong PUF produces a high number of CRPs which
are unpredictable. The process of cloning a PUF consists of two steps [60]:

Characterization: a process in which the attacker gains knowledge of the chal-
lenge/response behavior of a PUF.

Emulation: the process of recreating or modelling the unique response of a PUF, i.e.,
creating a PUF with identical challenge/response pairs.

Two decades since their introduction, we summarize those PUFs that still have draw-
backs and shortcomings: their inconsistency and vulnerability to diverse cloning attacks.
Table 6 shows the results for PUF-based identification mechanisms using selected compari-
son criteria.

Table 6. Selected comparison criteria of PUF-based security schemes.

Features Result

Suitable for IoT constrained devices Fulfilled
Perfect forward secrecy Fulfilled

Resilience to physical attack Not fulfilled [61]
Resilience to modeling attack Not fulfilled [39]
Resilience to cloning attack Not fulfilled

High performance/response time Fulfilled [11]
Extra NVM usage YES

Cryptographic primitive usage YES
Key space Unscalable

Key entropy MEDIUM
Key update needed? NO

Identification/authentication Fulfilled
Mutual authentication Fulfilled

5.2. Clone-Resistant IoT Identity Based on Digital Secret Unknown Cipher

Since PUFs have very concerning and severe drawbacks due to their sensitivity to
operating conditions such as voltage, temperature, radiation, race (metastability), and other
effects [62]. PUFs have therefore become unattractive for many IoT applications. Indeed,
most of the problems result from aging effects that cause the material properties to change
over time, making reidentification unstable. To counteract all these effects, expensive
fuzzy extractors or helper data algorithms [63] have been proposed, resulting in highly
complex systems that are also more susceptible to side-channel attacks, even on the fuzzy
extractors [64]. In [5], Adi first proposed the SUC concept as a digital alternative to PUF;
SUC is a self-created (digitally mutated) internal permanent digital structure that can
encrypt and decrypt deploying functions that nobody knows. Since aging effects in digital
structures are negligible, such ciphers remain consistent throughout the whole lifetime of
digital products. To make the paper self-contained, the concept of creating secret unknown
ciphers is reproduced with further details summarizing early publications [65].

Definition 4. A physical secret unknown cipher (SUC) is a randomly and internally self-created
unknown and unpredictable cipher module inside a chip, where both user and manufacturer have
no influence on the created ciphering functions/modules. The resulting cipher is permanent, non-
removable and tamper-proof. Even the device manufacturer should not be able to backtrace the
creation process, nor predict or reveal the resulting cipher.

Cryptography 2021, 5, 32 20 of 29

SUC as a designed pseudorandom (PR) bijective function exhibits higher entropy than
a conventional PUF, which is equivalent to a collision-prone hash function. The SUC’s
invertibility property as a cipher tends to be much more efficient in its generic identification
and authentication protocols compared with PUFs [65].

Figure 13 describes the concept of embedding SUC in system-on-chip (SoC) units
within self-reconfiguring, non-volatile SoC FPGAs. The SoC FPGA should be a core part in
the hardware unit of each IoT device. As the IoT device provisioning process is conducted
in a post-fabrication process by the trusted authority (TA), the creation of the SUCs happens
without involving the device manufacturers; this is the most important security measure
that can be carried out by the trusted authority or even by the application users.

Cryptography 2021, 5, x FOR PEER REVIEW 20 of 29

Figure 13. Key idea for embedding SUCs in VLSI devices.

In the following, the steps needed to personalize each SoC FPGA by TA are de-

scribed:

Step 1: TA uploads a cipher designer called “GENIE” into the SOC FPGA. The cipher

designer contains an algorithm for creating internally unpredictable and unknown ran-

dom secure ciphers. The cipher creation process runs just one time during the device

lifecycle on the SoC FPGA.

Step 2: The cipher designer creates a permanent (non-volatile) and unpredictable

random cipher by consulting and using an unknown random bit string from an internal

and unpredictable true random number generator (TRNG).

Step 3: After the SUC creation is finished, the cipher designer is completely removed

and the SoC FPGA gets its unique and unpredictable SUC.

Step 4: The TA challenges the SUCA using a set of random cleartext challenges

 ,0 ,1 , 1, ,...,A A A A tX X X X −= and receives the corresponding ciphertext responses

 ,0 ,1 , 1, ,...,A A A A tY Y Y Y −= . The TA securely stores the challenge–response (CR) pairs in a se-

cure “unit individual records” (UIR) database for later usage; each pair is associated with

the serial number of the IoT device (SNA).

The IoT device with the embedded SUC is now ready to be commissioned in a net-

work. The device can be securely identified and authenticated using the secret CR pairs.

Note: the device manufacturer cannot influence the device personalization process and

has no information about the cipher designer. This step can always be performed by a

trusted network administrator of the IoT system. The devices can be irreversibly locked

after Step 4. The cipher created in the device cannot be changed, reversed, or removed.

Note that the trusted authority cannot create two SUCs with the same identity. In other

words, the TA cannot clone devices without being traced.

5.2.1. SUC Identification Protocol

As shown in the personalization process, TA stores in the UIR all secure X/Y pairs

identified by a/the serial number for each personalized IoT device. In Figure 14, a generic

protocol to identify an IoT device AD , with ASUC proceeds as follows:

Trusted Authority

Created Secret

Cipher known

only to the chip

1
2

3

GENIE

TRNG

XA0 YA0

… …

XAi YAi

… …

XA(t-1) YA(t-1)

XAi

YAi

4

SoC FPGA SNA Could be

embedded in any IoT device.

SNn

Xn0 Yn0

… …

Xni Yni

… …

Xn(t-1) Yn(t-1)

SUCA

SUCA

Load a Smart Cipher Creator

“GENIE” (Software package)
GENIE

TRNG

Encrypted Device Pairs

“Units Individual Records” UIR

SNA

Figure 13. Key idea for embedding SUCs in VLSI devices.

In the following, the steps needed to personalize each SoC FPGA by TA are described:
Step 1: TA uploads a cipher designer called “GENIE” into the SOC FPGA. The cipher

designer contains an algorithm for creating internally unpredictable and unknown random
secure ciphers. The cipher creation process runs just one time during the device lifecycle
on the SoC FPGA.

Step 2: The cipher designer creates a permanent (non-volatile) and unpredictable
random cipher by consulting and using an unknown random bit string from an internal
and unpredictable true random number generator (TRNG).

Step 3: After the SUC creation is finished, the cipher designer is completely removed
and the SoC FPGA gets its unique and unpredictable SUC.

Step 4: The TA challenges the SUCA using a set of random cleartext challenges
XA = {XA,0, XA,1, . . . , XA,t−1} and receives the corresponding ciphertext responses
YA = {YA,0, YA,1, . . . , YA,t−1}. The TA securely stores the challenge–response (CR) pairs in
a secure “unit individual records” (UIR) database for later usage; each pair is associated
with the serial number of the IoT device (SNA).

Cryptography 2021, 5, 32 21 of 29

The IoT device with the embedded SUC is now ready to be commissioned in a network.
The device can be securely identified and authenticated using the secret CR pairs. Note:
the device manufacturer cannot influence the device personalization process and has no
information about the cipher designer. This step can always be performed by a trusted
network administrator of the IoT system. The devices can be irreversibly locked after
Step 4. The cipher created in the device cannot be changed, reversed, or removed. Note
that the trusted authority cannot create two SUCs with the same identity. In other words,
the TA cannot clone devices without being traced.

5.2.1. SUC Identification Protocol

As shown in the personalization process, TA stores in the UIR all secure X/Y pairs
identified by a/the serial number for each personalized IoT device. In Figure 14, a generic
protocol to identify an IoT device DA, with SUCA proceeds as follows:

Cryptography 2021, 5, x FOR PEER REVIEW 21 of 29

Step 1: IoT ADevice with embedded ASUC sends to TA an identification request with

its device serial number.

Step 2: TA selects randomly one of the
, ,/A i A iX Y pairs of the given serial number

from the UIR and sends ,A iY to ADevice . If the serial number does not exist in the UIR, TA

aborts the communication.

Step 3: ADevice computes ,A iY by using 1

ASUC− and sends ' 1

, ,()A i A A iX SUC Y−= to TA.

If '

, ,A i A iX X= , then the device is deemed to be authentic and can be accepted. Otherwise,

ADevice is not authentic and should be rejected. The pair
, ,/A i A iX Y is marked as con-

sumed and for highest security performance should not be used later.

Figure 14. Generic identification protocol for a SUC.

Compared to PUFs, SUC has the advantage of being capable of recovering X from Y

by using the inverse function 1SUC− . This property allows low-complexity and very effi-

cient management of the consumed X/Y-pairs. The property was also used in [66] to build

a physical chain of trust for secured authentication in a medical device environment.

5.2.2. SUC Mutual Authentication Protocol

Figure 15 shows a possible protocol to let the IoT device ASUC and another IoT de-

vice with BSUC communicate securely with the help of TA, which acts as a one-time me-

diator to allow mutual authentication between the two devices. Both IoT devices are al-

ready identified by TA. For encryption, a standard cipher E such as AES is used, the pro-

tocol proceeds as follows:

1. BDevice with embedded BSUC sends TA a request for a ticket token asking to com-

municate with ADevice .

2. TA selects randomly one of the pairs of ADevice (, ,
/

A i A i
X Y) and sends the pair en-

crypted by E keyed with ,B iX and ,B iY to BDevice .

3. BDevice computes ,B iX using
,

1

B iYSUC−
, then decrypts the incoming message to ob-

tain the access token for ADevice .

4. BDevice sends ADevice an authentication request, BDevice encrypts BSN using

,A iX and sends a random AR and ,A iY to ADevice .

5. ADevice with embedded ASUC sends TA a request for a ticket as access token to com-

municate with device BDevice .

Figure 14. Generic identification protocol for a SUC.

Step 1: IoT DeviceA with embedded SUCA sends to TA an identification request with
its device serial number.

Step 2: TA selects randomly one of the XA,i/YA,i pairs of the given serial number from
the UIR and sends YA,i to DeviceA. If the serial number does not exist in the UIR, TA aborts
the communication.

Step 3: DeviceA computes YA,i by using SUC−1
A and sends X′A,i = SUC−1

A (YA,i) to TA.
If XA,i = X′A,i, then the device is deemed to be authentic and can be accepted. Otherwise,
DeviceA is not authentic and should be rejected. The pair XA,i/YA,i is marked as consumed
and for highest security performance should not be used later.

Compared to PUFs, SUC has the advantage of being capable of recovering X from
Y by using the inverse function SUC−1. This property allows low-complexity and very
efficient management of the consumed X/Y-pairs. The property was also used in [66] to
build a physical chain of trust for secured authentication in a medical device environment.

5.2.2. SUC Mutual Authentication Protocol

Figure 15 shows a possible protocol to let the IoT device SUCA and another IoT device
with SUCB communicate securely with the help of TA, which acts as a one-time mediator
to allow mutual authentication between the two devices. Both IoT devices are already
identified by TA. For encryption, a standard cipher E such as AES is used, the protocol
proceeds as follows:

Cryptography 2021, 5, 32 22 of 29

Cryptography 2021, 5, x FOR PEER REVIEW 22 of 29

6. TA selects randomly one of the
, ,/B j B jX Y pairs of BDevice and sends the pair

, ,/B j B jX Y encrypted by E and keyed with ,A jX and ,A jY to ADevice .

7. ADevice computes ,A jX using
,

1

A jYSUC−
, then decrypts the incoming message to ob-

tain the access token for BDevice .

8. ADevice sends BDevice encrypted parameters ,, , ,(,)A BB jA i R RX X using
B,jX as

key and random
A B,jR ,Y to build the session key.

9. BDevice computes ,B jX using
,

1

B jYSUC−
, then decrypts the incoming message to ob-

tain the session key parameters.

10. Both devices share the same secret parameters and can communicate securely later,

using ,, , ,(,)A BB jA i R RZ H X X= as a session key, where H is a public hash function.

Figure 15. Mutual authentication protocol for two SUCs.

5.2.3. Security Analysis of SUCs

Various attack scenarios are possible, such as replay and impersonation attacks.

However, in an open network an attacker can intercept the message between Device A

and Device B, but the attacker cannot decrypt the encrypted messages without having

SUC; therefore, the SUC cloning attack is discussed below.

Cloning Complexity of Embedded SUC in IoT Devices

To impersonate an IoT device, an adversary could try to reverse-engineer or clone

the targeted IoT device; an intruder aiming to impersonate an IoT device should clone its

SUC. SUC cloning attacks can be classified into two categories: mathematical/analytical

cloning in the form of cryptographic analysis attacks on the designed SUC cipher classes,

and physical cloning in the form of invasive side-channel attacks to extract the SoC bit-

stream.

• Mathematical/analytical cloning: SUCs are designed as state-of-the-art ciphers to be

resistant against known mathematical attacks. Such issues were studied in [67,68].

SUC is considered as practically unclonable by modeling if it is not feasible to store

all the challenge–response space as the cipher codebook size (CCBS). For an 80-bits

cipher n = 80 results in CCBS = 280. Resistance to attacks with complexity in the order

of 280 is considered the minimum adequate level for SUCs to meet today’s security

requirements. For post-quantum security, complexity in the order of at least 2160 is

required.

• Physical cloning: An adversary with physical access to IoT devices pins may try to

reverse-engineer the embedded SUCs through “bitstream attacks”. In [69], the

IoT SUCA Trusted Authority IoT SUCB

, B ,I am Device B are you owner of SN () | R ,
A iA X B A iE SN Y

Request ticket to securely communicate with device A

Request ticket to securely communicate with device B

−1

, ,

 X ?
B iY B i

Trigger

SUC to get
, , , , E (,) | to Device B

B iX A i A i B iTA sends X Y Y

, , , , E (,) | to Device A
A jX B j B j A jTA sends X Y Y

−1

, ,

 X ?
A iY A i

Trigger

SUC to get

−1

, ,

 X ?
A jY A j

Trigger

SUC to get

−1

, , ,

, ,

(,) and

build session key

Z=H(X ,X ,R ,R)

A jX B j B j

A i B j A B

E X Y
, , , ,, Device A : E (, , ,) | ,

B jX B j A i B A A B jYes I am X X R R R Y

−1

, , ,

, ,

(, , ,)

and build session key

Z=H(X ,X ,R ,R)

B jX B j A i B A

A i B j A B

E X X R R

Mutual Authentication completed

Figure 15. Mutual authentication protocol for two SUCs.

1. DeviceB with embedded SUCB sends TA a request for a ticket token asking to com-
municate with DeviceA.

2. TA selects randomly one of the pairs of DeviceA (XA,i/YA,i) and sends the pair en-
crypted by E keyed with XB,i and YB,i to DeviceB.

3. DeviceB computes XB,i using SUC−1
YB,i

, then decrypts the incoming message to obtain
the access token for DeviceA.

4. DeviceB sends DeviceA an authentication request, DeviceB encrypts SNB using XA,i
and sends a random RA and YA,i to DeviceA.

5. DeviceA with embedded SUCA sends TA a request for a ticket as access token to
communicate with device DeviceB.

6. TA selects randomly one of the XB,j/YB,j pairs of DeviceB and sends the pair XB,j/YB,j
encrypted by E and keyed with XA,j and YA,j to DeviceA.

7. DeviceA computes XA,j using SUC−1
YA,j

, then decrypts the incoming message to obtain
the access token for DeviceB.

8. DeviceA sends DeviceB encrypted parameters (XA,i, XB,j, RA, RB) using XB,j as key
and random RA, YB,j to build the session key.

9. DeviceB computes XB,j using SUC−1
YB,j

, then decrypts the incoming message to obtain
the session key parameters.

10. Both devices share the same secret parameters and can communicate securely later,
using Z = H(XA,i, XB,j, RA, RB) as a session key, where H is a public hash function.

5.2.3. Security Analysis of SUCs

Various attack scenarios are possible, such as replay and impersonation attacks. How-
ever, in an open network an attacker can intercept the message between Device A and
Device B, but the attacker cannot decrypt the encrypted messages without having SUC;
therefore, the SUC cloning attack is discussed below.

Cloning Complexity of Embedded SUC in IoT Devices

To impersonate an IoT device, an adversary could try to reverse-engineer or clone the
targeted IoT device; an intruder aiming to impersonate an IoT device should clone its SUC.
SUC cloning attacks can be classified into two categories: mathematical/analytical cloning
in the form of cryptographic analysis attacks on the designed SUC cipher classes, and
physical cloning in the form of invasive side-channel attacks to extract the SoC bitstream.

• Mathematical/analytical cloning: SUCs are designed as state-of-the-art ciphers to be
resistant against known mathematical attacks. Such issues were studied in [67,68].
SUC is considered as practically unclonable by modeling if it is not feasible to store

Cryptography 2021, 5, 32 23 of 29

all the challenge–response space as the cipher codebook size (CCBS). For an 80-bits
cipher n = 80 results in CCBS = 280. Resistance to attacks with complexity in the order
of 280 is considered the minimum adequate level for SUCs to meet today’s security
requirements. For post-quantum security, complexity in the order of at least 2160

is required.
• Physical cloning: An adversary with physical access to IoT devices pins may try to

reverse-engineer the embedded SUCs through “bitstream attacks”. In [69], the authors
show that a clone attack is highly infeasible as applying adequate side-channel attacks
requires knowledge of the SUC location, design structure, and related mappings,
which are mostly unknown and hard to predict.

We conclude that, practically, such attacks on SUC structures are highly infeasible
without very expensive physical invasive attacks on the IoT device. Furthermore, break-one
break-all does not work for SUCs as no unit is created with the same randomizing process.

5.2.4. SUC Hardware Complexity

Several SUC designs and architectures were investigated and implemented for the
SmartFusion®2SoC FPGA technology. SmartFusion®2SoC FPGA is the only non-volatile
FPGA technology with flash-based distributed switching fabrics and programmable cells.
SmartFusion®2SoC FPGA provides powerful arithmetic units, the so-called MACC, high-
performance communication interfaces, and flash-based FPGA fabric incorporating an
integrated ARM Cortex-M3 processor. SUC as a stream cipher was proposed in [68]; it was
optimized by deploying the arithmetic units MACC. In [70], SUC as a Feistel-like cipher
was proposed by replacing the XOR-operation in the Feistel network with a new involution
operation based on multipliers MACC in modern FPGA devices. In [71], a large class of
generalized Feistel network was presented. The proposed cipher is implemented based
on mini-blocks of 4-bit mappings and bundle permutations, using only 4-input LUT and
DFF. The KSG requires 37 LUTs and 223 DFFs in [69]; potentially, this can be considered as
zero cost in many real-world use cases. Mars et al. show in [67] that the I-SUC version is a
more efficient design (as an involutive cipher), consuming much fewer resources for both
encryption and decryption than the NI-SUC version. Table 7 summarizes the hardware
complexity of previous SUC proposals for SmartFusion®2 SoC FPGAs.

Table 7. Sample hardware complexities of selected SUC designs on SmartFusion®2 FPGA-Technology (Adapted from [66]).

SUC Proposals
Hardware Required Resources

LUTs DFFs MACC

SUC as a Stream Cipher SUC based on T-Function [68] 81 80 10
SUC based on combining NFSRs [69] 37 223 0

SUC as a Block Cipher

SUC as a Feistel-Like Cipher [70] 208 113 8
SUC as Generalized Feistel Network [71] 138 150 0

SUC as Non-Involutive Cipher [67] 212 72 0
SUC as Involutive Cipher [67] 226 72 0

5.2.5. SUC-Based IoT Device Identity Discussion

SUC is a clone-resistant digital PUF; in other words, it can be used as a digital replace-
ment for traditional analog PUFs. As digital modules, SUCs have no disadvantages in
terms of inconsistency in aging and sensitivity to operating conditions such as temperature
and supply voltage. SUCs can be used in various IoT applications that require secure clone-
resistant physical identity. In contrary to PUFs, SUCs cannot be seen as unclonable because
if it were possible for the device to be invasively attacked and the bitstream obtained, then
full consistent cloning would be possible for a single unit. In this sense, SUC has practical
security in that the attacker needs to physically invade the device to clone it. However,

Cryptography 2021, 5, 32 24 of 29

emerging 3-D VLSI technology is expected to make such attacks infeasible as the bitstream
(as the required secret) is destroyed when physically attacked.

Based on the protocol shown in Figure 14, Table 8 shows the result for SUC-based
identification mechanisms using the comparison criteria.

Table 8. Comparison criteria of SUC-based security schemes.

Features Result

Suitable for IoT constrained devices Fulfilled (SoC FPGA)
Perfect forward secrecy Fulfilled

Resilience to physical attack Partially Fulfilled
Resilience to modeling attack Fulfilled
Resilience to cloning attack Fulfilled

High performance/response time Fulfilled
Extra NVM Usage NO

Cryptographic primitive usage NO
Key space Scalable

Key Entropy HIGH (Maximum)
Key update needed? NO

Identification/authentication Fulfilled
Mutual authentication Fulfilled

5.3. PUF-Based Unclonability Versus Digital Clone-Resistant SUC Techniques

This section compares the advantages and disadvantages of analog-based PUFs as
unclonable identity and digital-based SUC as clone-resistant physical IoT identities. Table 9
summarizes the comparison criteria. The comparison covers the following criteria:

• Function inconsistency
• Resilience to physical attacks
• Resilience to modeling attacks
• Cryptographic primitive usage
• Key space/entropy
• CR pair management

Table 9. PUF Versus SUC.

Features PUF SUC

Suitable for IoT constrained devices Fulfilled Fulfilled
Resilience to physical attack Fulfilled Partially Fulfilled

Resilience to modeling attack Not Fulfilled Fulfilled
Resilience to cloning attack Not fulfilled partially fulfilled

High performance/response time Fulfilled Fulfilled
Extra NVM Usage YES NO

Cryptographic primitive usage YES NO
Key space Unscalable Scalable

Key entropy MEDIUM HIGH
Key update needed? NO NO

Identification/authentication Fulfilled Fulfilled
Mutual authentication Fulfilled Fulfilled

(A) The Impact of the Reliability Problem on Entropy

PUFs exhibit unreliable behavior due to the analog nature of PUF-Modules. Any
CMOS-based PUF is very sensitive to aging, temperature variation, etc. This means a
failure in the PUF-response can occur within the whole lifetime of an IoT unit with high
probability. For instance, the reliability of the RO PUF was investigated and analyzed in [72].
The experimental results show that the long RO PUFs (7-bits challenge size) are unreliable
compared to the short arbiter PUFs with a challenge of size three-bits. The unreliable
behavior of the PUFs indicates that a PUF responds with the same response to two different

Cryptography 2021, 5, 32 25 of 29

challenges. Therefore, there is always a compromise between PUF reliability and PUF
entropy. As a result, a PUF with high entropy does not exist due to the reliability problem
and due to the fact, that, in the best case, a PUF is equivalent to a collision-prone weak hash
function. Several approaches have been published to study and solve this problem [73,74].
It should be noted that the current efficient solutions require either extra hardware resources
(as shown in Section 5.1.6) or addition of some error correction algorithms at software
level. Both solutions are unsuitable for an IoT environment. Consuming more hardware
resources leads to high power consumption, whereas a software solution opens the door
to more security threats and bugs. On the other hand, deploying pure digital hardware
structures such as SUC is perfectly consistent in the whole lifetime of an IoT unit and the
reliability of SUC is equivalent to the reliability of the digital IoT unit itself.

(B) The Impact of SUC Invertibility on Key Space A pure PUF circuit without any addi-
tional circuit/component can be perceived as a many-to-one collision-prone function
such as a random weak hash/compression function. Therefore, the PUF -response
space cannot avoid the inherent collision of its outputs. Such a collision reduces the
PUF-key space from 2n to 2n/2 on average in the best-case scenario, where n is the bit
length of the PUF-response. On the other hand, SUC is a reversible designed one-way
pseudorandom function (PRF) which exhibits the following advantages compared to
a PUF mapping:

1. The whole input–output space of the cipher is usable as it is an on-to and a
one-to-one function. As a result, it is a fully collision-free mapping. The size of
SUC- input–output space is 2n, where n is the SUC-input–output bit length.

2. The entropy of identifiable objects includes the whole cipher space due to the
collision-free operation.

(C) CRP Management

As SUC deploys a reversible function, the clear-text space is fully usable in a structured
manner without loss of security. This results in a tremendous advantage in managing the
used pairs for identification on the side of a low-complexity device. To clarify this point,
assume that SUC and PUF have n-bit as output length, so the average number of usable
input–output pairs is 2n in the case of SUC and 2n/2 in the best-case scenario for the PUF.
For n = 128, an example for managing 1024 C-R pairs to check double-usage in a PUF
requires storage of 128 × 1024 = 128 Kbits of memory with an average search mechanism
of 1024/2 = 512 cycles [65], whereas memory storage of only 1024 bits with a single search
cycle is needed to check C-R double usage in the case of SUC [75].

6. Conclusions

In this comparison study, we defined the role of identity in the IoT device lifecycle
and introduced the identity-related security threats and challenges in IoT. Furthermore,
we updated the IoT security requirements of the device, network, and application layer,
emphasizing the secure device identity; therefore, the required basic definitions and a
framework to analyze and investigate the IoT device identities were presented. Finally,
we classified the current proposals of secure device identity into two categories: first,
inherently-cloneable identification mechanisms and second, inherently unclonable identifi-
cation mechanisms. The investigation of the first category indicates that all contemporary
cryptographic identification technologies are basically clonable as somebody knows the
embedded identity, because IoT units need to be unclonable even by the manufacturer,
user, and operator in such cases. The investigation of the second category shows that
the only perfect identity is one that has unpredictable behavior and can produce infinite
unknown C-R pairs. The second category includes PUF and SUC. On the one hand, we
presented a solid background on PUF. Each PUF type is usable in a specific hardware
environment; however, PUFs exhibit drawbacks and shortcomings generally in terms
of their inconsistency and vulnerability to diverse cloning attacks. Therefore, PUFs are
relatively very expensive and highly complex for IoT mass products. On the other hand, we

Cryptography 2021, 5, 32 26 of 29

introduced the SUC technology as a possible practical replacement for PUFs at low cost and
with excellent consistency over an IoT lifetime. However, SUCs are only clone-resistant as
digital modules and require self-reconfiguring non-volatile VLSI technology, which is not
yet commercially available as required. Figure 16 summarizes the presented identification
solutions in this work. Furthermore, a systematic comparison was introduced regarding
the following criteria: first, resilience to several classes of attacks; second, offering high
performance; third, requiring low hardware complexity, etc. The comparison shows that
SUCs and PUFs have a high level of security; however, SUC has lower hardware costs and
is highly consistent/reliable but clone-resistant only, while PUF has high hardware costs
and is less reliable in terms of consistency but is unclonable.

Cryptography 2021, 5, x FOR PEER REVIEW 26 of 29

not yet commercially available as required. Figure 16 summarizes the presented identifi-

cation solutions in this work. Furthermore, a systematic comparison was introduced re-

garding the following criteria: first, resilience to several classes of attacks; second, offering

high performance; third, requiring low hardware complexity, etc. The comparison shows

that SUCs and PUFs have a high level of security; however, SUC has lower hardware costs

and is highly consistent/reliable but clone-resistant only, while PUF has high hardware

costs and is less reliable in terms of consistency but is unclonable.

Finally, the authors expect the emerging non-volatile VLSI technology to provide the

necessary SUC-usable devices as soon as commercial products. Even the highly secure 3-

D technology is expected to fulfill SUC requirements. However, SUC research is still in its

infancy and looks very promising for future practical IoT applications. The authors hope

to draw attention to and encourage more discussions and research on digitally mutated

clone-resistant physical identity technologies.

Figure 16. IoT Identification Mechanisms.

Author Contributions: Conceptualization, E.H. and S.M.; methodology, E.H., S.M. and W.A.; vali-

dation, E.H., S.M. and W.A.; formal analysis, E.H. and S.M.; investigation, E.H. and S.M.; resources,

W.A.; writing—original draft preparation, E.H. and S.M.; writing—review and editing, E.H., S.M.

W.A., and M.B.; visualization, E.H. and S.M.; supervision, W.A. and M.B.; project administration,

W.A.; funding acquisition, W.A., and M.B. All authors have read and agreed to the published ver-

sion of the manuscript.

Funding: This research was supported by Volkswagen AG, Microsemi, a Microchip Company, San

Jose USA, and the German Federal Foreign Office funding by DAAD combined scholarship and

support program (STIBET), as well as by the German Federal Ministry of Education and Research

(BMBF) under the project KI-IoT (FKZ 16ME0091K).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. David, G. Strategic Principles for Securing the Internet of Things (Iot). Introduction and Overview, 2016. Available online:

https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-

FINAL....pdf (accessed on 23 September 2021).

2. IoT Growth Demands Rethink of Long-Term Storage Strategies, Says IDC. Available online:

https://www.idc.com/getdoc.jsp?containerId=prAP46737220 (accessed on 29 January 2021).

IoT Identification

Analog Unknown Mappings

Physical Unclonable Function

(PUF)

Public-Key Crypto

Based

Inherently Clonable

Identity based on a Secret

key known to somebody

Digital Unknown Mappings

Secret Unknown Cipher (SUC)

Non-Silicon

PUF

Non-electronic PUFs

• Acoustical PUF

• Optical PUF

• Paper PUF

• CD PUF

• RF PUF

• Magnetic PUF

• RSC-SUC

• NFSR-SUC

• Feistel-Like SUC

• SUC as Generalized

Feistel Network

• NI-SUC

• I-SUC

Random Block

Cipher

Certificate

based

Public

Key

Identity

based

Static Stored-

Key Random Stream

Cipher

Secret-Key Crypto

Based

Analog Electronic PUFs

• VT PUF

• Power Dissipation

PUF

• Coating PUF

• LC PUF

Memory based PUFs

• SRAM PUF

• Butterfly PUF

• Flip Flop PUF

• Memristor PUF

• Buskeeper PUF

Delay Based PUFs

• Arbiter PUF

• Ring Oscillator PUF

• Arbiter based PUF

• Synthesized Path

PUF

• Loop PUF

Inherently-Unclonable

Identity based on unknown

mappings

Silicon PUF

Figure 16. IoT Identification Mechanisms.

Finally, the authors expect the emerging non-volatile VLSI technology to provide the
necessary SUC-usable devices as soon as commercial products. Even the highly secure 3-D
technology is expected to fulfill SUC requirements. However, SUC research is still in its
infancy and looks very promising for future practical IoT applications. The authors hope
to draw attention to and encourage more discussions and research on digitally mutated
clone-resistant physical identity technologies.

Author Contributions: Conceptualization, E.H. and S.M.; methodology, E.H., S.M. and W.A.; valida-
tion, E.H., S.M. and W.A.; formal analysis, E.H. and S.M.; investigation, E.H. and S.M.; resources,
W.A.; writing—original draft preparation, E.H. and S.M.; writing—review and editing, E.H., S.M.,
W.A. and M.B.; visualization, E.H. and S.M.; supervision, W.A. and M.B.; project administration,
W.A.; funding acquisition, W.A. and M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by Volkswagen AG, Microsemi, a Microchip Company, San
Jose USA, and the German Federal Foreign Office funding by DAAD combined scholarship and
support program (STIBET), as well as by the German Federal Ministry of Education and Research
(BMBF) under the project KI-IoT (FKZ 16ME0091K).

Conflicts of Interest: The authors declare no conflict of interest.

Cryptography 2021, 5, 32 27 of 29

References
1. David, G. Strategic Principles for Securing the Internet of Things (Iot). Introduction and Overview. 2016. Available on-

line: https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016
-1115-FINAL....pdf (accessed on 23 September 2021).

2. IoT Growth Demands Rethink of Long-Term Storage Strategies, Says IDC. Available online: https://www.idc.com/getdoc.jsp?
containerId=prAP46737220 (accessed on 29 January 2021).

3. Sadique, K.M.; Rahmani, R.; Johannesson, P. Towards security on internet of things: Applications and challenges in technology.
Procedia Comput. Sci. 2018, 141, 199–206. [CrossRef]

4. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th ACM Conference on
Computer and Communications Security—CCS ’02; Association for Computing Machinery (ACM): New York, NY, USA, 2002; p. 148.

5. Adi, W. Autonomous physical secret functions and clone-resistant identification. In Proceedings of the 2009 International
Symposium on Bio-inspired, Learning, and Intelligent Systems for Security, Edinburgh, UK, 20–21 August 2009; pp. 83–88.

6. RFC 8576: Internet of Things (IoT) Security: State of the Art and Challenges. Available online: https://www.rfc-editor.org/rfc/
rfc8576.html (accessed on 23 September 2021).

7. Lampson, B.W. A note on the confinement problem. Commun. ACM 1973, 16, 613–615. [CrossRef]
8. Zander, S.; Armitage, G.; Branch, P. A survey of covert channels and countermeasures in computer network protocols. IEEE

Commun. Surv. Tutor. 2007, 9, 44–57. [CrossRef]
9. Skorobogatov, S.P. Number 630 Semi-Invasive Attacks-A New Approach to Hardware Security Analysis. 2005. Available online:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.2204&rep=rep1&type=pdf (accessed on 29 January 2021).
10. Jacob, N.; Wittmann, J.; Heyszl, J.; Hesselbarth, R.; Wilde, F.; Pehl, M.; Sigl, G.; Fischer, K. Securing FPGA SoC configurations

independent of their manufacturers. In Proceedings of the 30th International System on Chip Conference, Munich, Germany,
5–8 September 2017; pp. 114–119.

11. Muller, K.U.; Ulrich, R.; Stanitzki, A.; Kokozinski, R. Enabling Secure Boot Functionality by Using Physical Unclonable Func-
tions. In Proceedings of the PRIME 2018—14th Conference on Ph.D. Research in Microelectronics and Electronics, Prague,
Czech Republic, 2–5 July 2018; pp. 81–84.

12. Owen, D.; Heeger, D.; Chan, C.; Che, W.; Saqib, F.; Areno, M.; Plusquellic, J. An autonomous, self-authenticating, and self-
contained secure boot process for field-programmable gate arrays. Cryptography 2018, 2, 15. [CrossRef]

13. Haj-Yahya, J.; Wong, M.M.; Pudi, V.; Bhasin, S.; Chattopadhyay, A. Lightweight Secure-Boot Architecture for RISC-V System-
on-Chip. In Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA,
6–7 March 2019; pp. 216–223.

14. Zarrouk, R.; Mulhem, S.; Adi, W.; Berekovic, M. Clone-Resistant Secured Booting Based on Unknown Hashing Created in
Self-Reconfigurable Platform. In International Symposium on Applied Reconfigurable Computing; Springer: Cham, Swizerland, 2021.

15. Giuliano, R.; Mazzenga, F.; Neri, A.; Vegni, A.M. Security access protocols in IoT capillary networks. IEEE Internet Things J. 2017,
4, 645–657. [CrossRef]

16. Maes, R. Physically Unclonable Functions: Properties. In Physically Unclonable Functions; Springer: Berlin/Heidelberg, Germany,
2013; pp. 49–80.

17. Delvaux, J.; Peeters, R.; Gu, D.; Verbauwhede, I. A Survey on Lightweight Entity Authentication with Strong PUFs. ACM Comput.
Surv. 2015, 48, 1–42. [CrossRef]

18. Gordon, H.; Edmonds, J.; Ghandali, S.; Yan, W.; Karimian, N.; Tehranipoor, F. Flash-Based Security Primitives: Evolution,
Challenges and Future Directions. Cryptography 2021, 5, 7. [CrossRef]

19. Lara-Nino, C.A.; Diaz-Perez, A.; Morales-Sandoval, M. Elliptic Curve Lightweight Cryptography: A Survey. IEEE Access 2018, 6,
72514–72550. [CrossRef]

20. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. In Workshop on the Theory and Application of Cryptographic
Techniques; Springer: Berlin/Heidelberg, Germany, 1985; Volume 196, pp. 47–53.

21. Boneh, D.; Franklin, M. Identity-based encryption from the weil pairing. In Annual International Cryptology Conference; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2139, pp. 213–229.

22. IEEE 1363.3–2013–IEEE Standard for Identity–Based Cryptographic Techniques Using Pairings. Available online: https://
standards.ieee.org/standard/1363_3-2013.html (accessed on 23 September 2021).

23. Saeed, M.E.S.; Liu, Q.Y.; Tian, G.Y.; Gao, B.; Li, F. AKAIoTs: Authenticated key agreement for Internet of Things. Wirel. Netw.
2019, 25, 3081–3101. [CrossRef]

24. Gilmore, J.; Weiler, S.; Kivinen, T. Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS); Wouters, P., Tschofenig, H., Eds.; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2014.

25. Salman, O.; Abdallah, S.; Elhajj, I.H.; Chehab, A.; Kayssi, A. Identity-based authentication scheme for the Internet of Things.
In Proceedings of the IEEE Symposium on Computers and Communications, Messina, Italy, 27–30 June 2016; pp. 1109–1111.

26. Vanstone, S. Explaining Implicit Certificates.
27. Campagna, M. Standards for Efficient Cryptography. 2013. Available online: https://www.secg.org/sec4-1.0.pdf (accessed on

29 January 2021).

https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf
https://www.idc.com/getdoc.jsp?containerId=prAP46737220
https://www.idc.com/getdoc.jsp?containerId=prAP46737220
http://doi.org/10.1016/j.procs.2018.10.168
https://www.rfc-editor.org/rfc/rfc8576.html
https://www.rfc-editor.org/rfc/rfc8576.html
http://doi.org/10.1145/362375.362389
http://doi.org/10.1109/COMST.2007.4317620
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.2204&rep=rep1&type=pdf
http://doi.org/10.3390/cryptography2030015
http://doi.org/10.1109/JIOT.2016.2624824
http://doi.org/10.1145/2818186
http://doi.org/10.3390/cryptography5010007
http://doi.org/10.1109/ACCESS.2018.2881444
https://standards.ieee.org/standard/1363_3-2013.html
https://standards.ieee.org/standard/1363_3-2013.html
http://doi.org/10.1007/s11276-018-1704-5
https://www.secg.org/sec4-1.0.pdf

Cryptography 2021, 5, 32 28 of 29

28. Sciancalepore, S.; Capossele, A.; Piro, G.; Boggia, G.; Bianchi, G. Key Management Protocol with Implicit Certificates for IoT
systems. In Proceedings of the 2015 Workshop on IoT challenges in Mobile and Industrial Systems, Florence, Italy, 18 May 2015.
[CrossRef]

29. Maes, R.; Verbauwhede, I. Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions.
In Towards Hardware-Intrinsic Security; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–37.

30. Lee, J.W.; Lim, D.; Gassend, B.; Suh, G.E.; Van Dijk, M.; Devadas, S. A technique to build a secret key in integrated circuits for
identification and authentication applications. In Proceedings of the IEEE Symposium on VLSI Circuits, Digest of Technical
Papers, Honolulu, HI, USA, 17–19 June 2004; pp. 176–179.

31. Suh, G.E. Srinivas Devadas Physical Unclonable Functions for Device Authentication and Secret Key Generation. In Proceedings
of the 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 25 June 2007; pp. 9–14.

32. Guajardo, J.; Kumar, S.S.; Schrijen, G.J.; Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In International Workshop on
Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4727, pp. 63–80.

33. Securing Billions of IoT Devices with Reliable HW-based Keys that are Never Stored. The Reliability of SRAM PUF. Available online:
https://www.intrinsic-id.com/wp-content/uploads/2017/08/White-Paper-The-reliability-of-SRAM-PUF.pdf (accessed on 23
September 2021).

34. Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data.
In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 523–540.

35. Nedospasov, D.; Seifert, J.P.; Helfmeier, C.; Boit, C. Invasive PUF analysis. In Proceedings of the 10th Workshop on Fault Diagnosis
and Tolerance in Cryptography, Los Alamitos, CA, USA, 20 August 2013; pp. 30–38.

36. Tajik, S.; Dietz, E.; Frohmann, S.; Seifert, J.P.; Nedospasov, D.; Helfmeier, C.; Boit, C.; Dittrich, H. Physical characterization of
arbiter pufs. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany,
2014; Volume 8731, pp. 493–509. [CrossRef]

37. Mahmoud, A.; Rührmair, U.; Majzoobi, M.; Koushanfar, F. Combined Modeling and Side Channel Attacks on Strong PUFs. IACR
Cryptol. ePrint Arch. 2013, 632.

38. Ruhrmair, U.; Holcomb, D.E. PUFs at a glance. In Proceedings of the Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6.

39. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling attacks on physical unclonable functions.
In Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8 October 2010;
pp. 237–249.

40. Babaei, A.; Schiele, G. Physical Unclonable Functions in the Internet of Things: State of the Art and Open Challenges. Sensors
2019, 19, 3208. [CrossRef]

41. Hammouri, G.; Öztürk, E.; Sunar, B. A tamper-proof and lightweight authentication scheme. Pervasive Mob. Comput. 2008, 4,
807–818. [CrossRef]

42. Kulseng, L.; Yu, Z.; Wei, Y.; Guan, Y. Lightweight mutual authentication and ownership transfer for RFID systems. In Proceedings
of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010.

43. Van Herrewege, A.; Katzenbeisser, S.; Maes, R.; Peeters, R.; Sadeghi, A.R.; Verbauwhede, I.; Wachsmann, C. Reverse fuzzy extrac-
tors: Enabling lightweight mutual authentication for PUF-enabled RFIDs. In International Conference on Financial Cryptography and
Data Security; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7397, pp. 374–389.

44. Maes, R. Physically Unclonable Functions: Constructions, Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2012.
45. Lee, Y.S.; Kim, T.Y.; Lee, H.J. Mutual authentication protocol for enhanced RFID security and anti-counterfeiting. In Proceedings

of the 26th IEEE International Conference on Advanced Information Networking and Applications Workshops, Fukuoka, Japan,
26–29 March 2012; pp. 558–563.

46. Xu, Y.; He, Z. Design of a security protocol for low–cost RFID. In Proceedings of the 2012 International Conference on Wireless
Communications, Networking and Mobile Computing, Shanghai, China, 21–23 September 2012.

47. Jung, S.W.; Jung, S. HRP: A HMAC-based RFID mutual authentication protocol using PUF. In Proceedings of the International
Conference on Information Networking, Bangkok, Thailand, 28–30 January 2013; pp. 578–582.

48. Mahalat, M.H.; Saha, S.; Mondal, A.; Sen, B. A PUF based Light Weight Protocol for Secure WiFi Authentication of IoT
devices. In Proceedings of the 2018 8th International Symposium on Embedded Computing and System Design, Cochin, India,
13–15 December 2018; pp. 183–187.

49. Melki, R.; Noura, H.N.; Chehab, A. Lightweight multi-factor mutual authentication protocol for IoT devices. Int. J. Inf. Secur.
2020, 19, 679–694. [CrossRef]

50. Yilmaz, Y.; Gunn, S.R.; Halak, B. Lightweight PUF-based authentication protocol for IoT devices. In Proceedings of the 2018 IEEE
3rd International Verification and Security Workshop, Costa Brava, Spain, 2–4 July 2018; pp. 38–43.

51. Anandakumar, N.N.; Hashmi, M.S.; Sanadhya, S.K. Compact Implementations of FPGA-based PUFs with Enhanced Performance.
In Proceedings of the 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded
Systems, Hyderabad, India, 7–11 January 2017; pp. 161–166.

52. Konigsmark, S.T.C.; Chen, D.; Wong, M.D.F. PolyPUF: Physically Secure Self-Divergence. IEEE Trans. Comput. Des. Integr. Circuits
Syst. 2016, 35, 1053–1066. [CrossRef]

http://doi.org/10.1145/2753476.2753477
https://www.intrinsic-id.com/wp-content/uploads/2017/08/White-Paper-The-reliability-of-SRAM-PUF.pdf
http://doi.org/10.1007/978-3-662-44709-3_27
http://doi.org/10.3390/s19143208
http://doi.org/10.1016/j.pmcj.2008.07.001
http://doi.org/10.1007/s10207-019-00484-5
http://doi.org/10.1109/TCAD.2015.2488493

Cryptography 2021, 5, 32 29 of 29

53. Rostami, M.; Majzoobi, M.; Koushanfar, F.; Wallach, D.S.; Devadas, S. Robust and reverse-engineering resilient PUF authentication
and key-exchange by substring matching. IEEE Trans. Emerg. Top. Comput. 2014, 2, 37–49. [CrossRef]

54. Gao, Y.; Li, G.; Ma, H.; Al-Sarawi, S.F.; Kavehei, O.; Abbott, D.; Ranasinghe, D.C. Obfuscated challenge-response: A secure
lightweight authentication mechanism for PUF-based pervasive devices. In Proceedings of the 2016 IEEE International Conference
on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, 14–18 March 2016.

55. Zhang, J.; Shen, C. Set-Based Obfuscation for Strong PUFs Against Machine Learning Attacks. IEEE Trans. Circuits Syst. I Regul.
Pap. 2020. [CrossRef]

56. Ye, J.; Hu, Y.; Li, X. RPUF: Physical unclonable function with randomized challenge to resist modeling attack. In Proceedings of
the 2016 IEEE Asian Hardware Oriented Security and Trust, Yilan, Taiwan, 19–20 December 2016.

57. Zalivaka, S.S.; Ivaniuk, A.A.; Chang, C.H. Reliable and modeling attack resistant authentication of arbiter PUF in FPGA
implementation with trinary quadruple response. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1109–1123. [CrossRef]

58. Gao, Y.; Ma, H.; Al-Sarawi, S.F.; Abbott, D.; Ranasinghe, D.C. PUF-FSM: A Controlled Strong PUF. IEEE Trans. Comput. Des. Integr.
Circuits Syst. 2018, 37, 1104–1108. [CrossRef]

59. Rührmair, U.; Devadas, S.; Koushanfar, F. Security based on physical unclonability and disorder. In Introduction to Hardware
Security and Trust; Springer: New York, NY, USA, 2012; pp. 65–102. ISBN 9781441980809. [CrossRef]

60. Helfmeier, C.; Boit, C.; Nedospasov, D.; Seifert, J.P. Cloning physically unclonable functions. In Proceedings of the 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust, Austin, TX, USA, 2–3 June 2013; pp. 1–6.

61. Helfmeier, C.; Boit, C.; Nedospasov, D.; Tajik, S.; Seifert, J.-P. Physical vulnerabilities of Physically Unclonable Functions.
In Proceedings of the 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28
March 2014; pp. 1–4.

62. Katzenbeisser, S.; Kocabaş, Ü.; Rožić, V.; Sadeghi, A.R.; Verbauwhede, I.; Wachsmann, C. PUFs: Myth, fact or busted? A security
evaluation of Physically Unclonable Functions (PUFs) cast in silicon. In Cryptographic Hardware and Embedded Systems—CHES
2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7428, pp. 283–301.

63. Bösch, C.; Guajardo, J.; Sadeghi, A.R.; Shokrollahi, J.; Tuyls, P. Efficient helper data key extractor on FPGAs. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5154,
pp. 181–197.

64. Merli, D.; Schuster, D.; Stumpf, F.; Sigl, G. Side-channel analysis of PUFs and fuzzy extractors. In International Conference on Trust
and Trustworthy Computing; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6740, pp. 33–47.

65. Adi, W.; Mars, A.; Mulhem, S. Generic identification protocols by deploying Secret Unknown Ciphers (SUCs). In Proceedings
of the 2017 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017;
pp. 255–256.

66. Hamadaqa, E.; Adi, W. Clone-resistant authentication for medical operating environment. In Proceedings of the World Conference
on Smart Trends in Systems, Security and Sustainability (WS4 2020), London, UK, 27–28 July 2020; pp. 757–762.

67. Mars, A.; Adi, W. Digitally Mutating NV-FPGAs into Physically Clone-Resistant Units. arXiv 2019, arXiv:1908.03898.
68. Mars, A.; Adi, W.; Mulhem, S.; Hamadaqa, E. Random stream cipher as a PUF-like identity in FPGA environment. In Proceedings

of the 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK, 6–8 September 2017;
pp. 209–214.

69. Mars, A.; Adi, W. New Family of Stream Ciphers as Physically Clone-Resistant VLSI-Structures. Cryptography 2019, 3, 11.
[CrossRef]

70. Mulhem, S.; Mohammad, M.; Adi, W. A New Low-Complexity Cipher Class for Clone–Resistant Identities. In Proceedings of the
2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 20–24 May 2019; pp. 971–976.

71. Mulhem, S.; Ayache, M.; Adi, W. Mini-Block-Based Cipher Class for Physical Clone—Resistant Devices. In Proceedings of the
EST—Eighth IEEE International Conference on Emerging Security Technologies, Colchester, UK, 22–24 July 2019.

72. Mustapa, M.; Security, M.N.-S. Undefined Temperature, Voltage, and Aging Effects in Ring Oscillator Physical Unclonable
Function. 2015. Available online: Ieeexplore.ieee.org (accessed on 23 September 2021).

73. Kaur, M.; Rashidzadeh, R.; Muscedere, R. Reliability of physical unclonable function under temperature and supply voltage
variations. In Proceedings of the Midwest Symposium on Circuits and Systems, Windsor, ON, Canada, 5–8 August 2018;
Volume 2018, pp. 1008–1011.

74. Deng, D.; Hou, S.; Wang, Z.; Guo, Y. Configurable Ring Oscillator PUF Using Hybrid Logic Gates. IEEE Access 2020, 8,
161427–161437. [CrossRef]

75. Mulhem, S.; Zarrouk, R.; Adi, W. Security and Complexity Bounds of SUC-Based Physical Identity. In Proceedings of the 2018
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, UK, 6–9 August 2018; pp. 317–322.

http://doi.org/10.1109/TETC.2014.2300635
http://doi.org/10.1109/TCSI.2020.3028508
http://doi.org/10.1109/TIFS.2018.2870835
http://doi.org/10.1109/TCAD.2017.2740297
http://doi.org/10.1007/978-1-4419-8080-9_4
http://doi.org/10.3390/cryptography3020011
Ieeexplore.ieee.org
http://doi.org/10.1109/ACCESS.2020.3021205

	Introduction
	IoT Security and Identity in Real Field Applications
	The Role of Identity in IoT Device Lifecycle
	Identity-Related Security Threats and Challenges in IoT
	IoT Security Requirements
	Device Physical-Layer Operational Security Requirements
	Security Requirements on Network Layer
	Security Requirements on the Application Layer

	Device Identification for IoT Environment: Classification and Definition
	Inherently-Clonable IoT Unit Identities
	Inherently-Unclonable Units and Physical Unclonability

	Inherently-Cloneable Identification Mechanisms
	Stored Key as Identity Embodiment
	Symmetric Key-Based Identity
	Asymmetric Key-Based Identity
	Asymmetric Key-Based Establishment and Verification Mechanism

	Discussing Inherently-Clonable Identification Mechanisms

	Inherently-Unclonable Identification Mechanisms
	Identification Based on Analog Physical Unclonable Functions
	PUF-Based Identification Protocol: Challenges and Drawbacks
	Primitive PUF-Based Identification Protocol
	Security Evaluation of PUF-Based Identification Protocol
	PUF for IoT Device Identification and Authentication
	PUF-Based IoT Identification Protocols: Communication Complexity
	PUF-Based IoT Identification Protocols: Hardware Complexity
	PUF-Based Identification Discussion

	Clone-Resistant IoT Identity Based on Digital Secret Unknown Cipher
	SUC Identification Protocol
	SUC Mutual Authentication Protocol
	Security Analysis of SUCs
	SUC Hardware Complexity
	SUC-Based IoT Device Identity Discussion

	PUF-Based Unclonability Versus Digital Clone-Resistant SUC Techniques

	Conclusions
	References

