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Abstract: In cryptography, elliptic curve cryptography (ECC) is considered an efficient and secure
method to implement digital signature algorithms (DSAs). ECC plays an essential role in many
security applications, such as transport layer security (TLS), internet protocol security (IPsec), and
wireless sensor networks (WSNs). The proposed designs of ECC hardware implementation only
focus on a single ECC variant and use many resources. These proposals cannot be used for resource-
constrained applications or for the devices that need to provide multiple levels of security. This
work provides a multi-functional elliptic curve digital signature algorithm (ECDSA) and Edwards-
curve digital signature algorithm (EdDSA) hardware implementation. The core can run multiple
ECDSA/EdDSA algorithms in a single design. The design consumes fewer resources than the other
single-functional design, and is not based on digital signal processors (DSP). The experiments show
that the proposed core could run up to 112.2 megahertz with Virtex-7 devices while consuming only
10,259 slices in total.

Keywords: security; cryptography; elliptic curve cryptography; field programmable gate arrays;
digital signatures; message authentication; public key cryptography; area efficient; ECDSA; EdDSA

1. Introduction

The urgent request for information security has led to the evolution of cryptography.
Elliptic curve cryptography (ECC) is more and more preferred, as it provides an impressive
security level. ECC is a brand of public-key cryptography based on the structure of elliptic
curves over finite fields. Compared to other public-key cryptography algorithms, ECC
offers a higher level of security. The elliptic curve digital signature algorithm (ECDSA)
and Edwards-curve digital signature algorithm (EdDSA) are the two well-known ECC that
are used in many security protocols such as transport layer security (TLS) [1] and internet
protocol security (IPsec) [2].

ECDSA was published in 1992 by Scoot Vanstone. Until now, ECDSA has been ac-
cepted and recommended by many standards, such as the International Organization for
Standardization (ISO) [3], Federal Information Processing Standards (FIPS) [4], and Amer-
ican National Standards Institute (ANSI) [5]. EdDSA [6] is a digital signature algorithm
that was developed by Bernstein [7]. EdDSA is very effective, thanks to its fast operations
while keeping a high level of security. The EdDSA algorithm includes Ed25519 and Ed448;
Ed25519 is preferred when compared with Ed448 because it requires fewer resources while
still providing perfectly adequate safety [6].

Many publications of EdDSA and ECDSA have been published over the last years.
In 2017, Sghaier et al. proposed an ECDSA system over the field GF(2163) [8,9]. Their
implementation consumes 18,504 slices and can run up to 107.4 MHz on Virtex-5 devices.
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Montgomery ladder algorithm is used for elliptic curve point multiplication (ECPM). In this
design, two separate cores are deployed for point adding and point doubling to increase
the throughput. Although the authors try to implement the whole system of ECDSA, a
clear structure of scalar multiplication or the number of digital signal processors (DSPs)
usage are not reported. In 2015, Panjwani et al. suggested a hardware–software co-design
approach for ECDSA with the National Institute of Standards and Technology (NIST)
P-163 curve [10]. Their improvement version that was published in 2017 can run all NIST
recommended field sizes from 192 to 521 bits [11]. Their ECDSA design relies on a general
purpose processor (GPP), which is Microblaze in their work, and a hardware accelerator for
some functions of ECDSA. Such an approach could take advantage of GPP, which can run
at high frequency, and heterogeneous hardware, which provides a high level of parallelism.
Their design provides a high performance, but it encounters some drawbacks. Firstly, the
GPP cannot perform another task while the ECDSA core is working, and the design suffers
too much overhead because many data exchanges between GPP and FPGA are performed
through the communication bus. Secondly, the design consumes too many resources, with
24,135 slices and 234 DSP for NIST p-521. Although the design can be reconfigurable,
another synthesis is required for a different configuration. The design in [12–14] targets a
high-performance design with Curve25519. While the authors of [14] proposed a multicore
design, the authors in [12,13] optimized the scalar multiplication by using the Karatsuba
multiplication algorithm. In 2019, Turan and Verbauwhede provided a compact and flexible
FPGA implementation of Ed25519 [15]. Although their work targets embedded and IoT
devices, the resource consumption is still high. All the mentioned designs rely on the DSP
of the FPGA. Although the DSP-based architectures provide high performance, they can be
adjusted in the low-profile hardware platforms, where the number of DSPs is limited or not
supported. On the contrary, the non-DSP architectures could be deployed on all devices.
In [16], Islam et al. reports a high-performance design of ECPM for Curve25519. The core
consumes 8900 slices on Virtex-7 without using any DSP. Asif et al. in [17] provided a
novel method to apply the residue number system (RNS) to implement ECPM. The RNS
significantly improves the parallelism of scalar multiplication. Therefore, the throughput is
very high. However, the core consumes up to 24,200 slices and 276 block RAMs (BRAMs).
These designs cannot be deployed on resource-constrained applications, such as wireless-
sensor network (WSN) [18], and software-defined networking (SDN) applications [19].
In [19], the authors reported a platform for SDN, which has a wide range of applications in
today’s world. In this work, Cheng et al. integrated a variety of ECC algorithms. However,
to date, there are not any designs that can combine multiple ECC algorithms in a single
optimized architecture.

In this work, we target an ECC processor that integrates multiple ECC algorithms in
a single low-cost, area-efficient architecture. The proposed core could perform multiple
algorithms without re-synthesizing. The selected algorithms are Ed25519, ECDSA with
NIST P-256, NIST P-384, and the NIST P-521 curve. The experimental results show that the
design consumes significantly low resources and provides a working frequency comparable
with other proposals. In the experiments, we deploy two different configurations of the
core. The first one is integrated with two lightweight algorithms, which are Ed25519 and
ECDSA with NIST P-256. The second one can operate Ed25519, ECDSA with NIST P-256,
NIST P-384, and NIST P-521. The resource usage for the later configuration is 10,259 slices
on Virtex-7 devices, and the working frequency achieves 112.2 megahertz (MHz), which
can be compared with other EdDSA or ECDSA single-functional architectures.

The rest of the paper is organized as follows. Section 2 introduces the ECDSA and
EdDSA algorithms and reveals the essential similarities between them. Section 3 explains
the optimized architecture of the multi-functional design. Section 4 gives the experimental
results under various aspects. Finally, Section 5 concludes the paper.
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2. Background Knowledge
2.1. Digital Signature Algorithm

Digital signatures are effective in providing the authentication, integrity, and non-
repudiation of messages. The digital signature algorithm (DSA) was adopted as a digital
signature standard (DSS) by NIST from 1994. The DSA algorithms include three main
stages. The first one is the key-generation stage, where the sender generates a public key
from a random number. The generated key is then sent with the message and used to
verify the signature. The second one is the signature-generation stage, where the sender
generates the signature for the message based on a secret key and the hash of the message.
The message is then digitally signed with this signature. The last one is the verification
stage. In this stage, the receiver verifies the validity of the message by using the public key
and the signature. The message is considered valid if the recovered signature matches the
received signature. Figure 1 illustrates the three stages of DSA.

Key 
generation

Signature 
generation

Verification

Hash

Public key

Signed
message

Secret key

Plain text

Hash

Sender Receiver

Figure 1. Digital signature algorithm.

2.2. Elliptic Curve Digital Signature Algorithm—ECDSA

The high level of security of ECC relies on the difficulty level of the elliptic curve
discrete logarithm problem (ECDLP). ECDSA depends on the elliptic curve cryptosystem.
Like the other DSA, ECDSA has three stages. In the key-generation stage, a random
number is multiplied by the base point of the selected curve to compute the public key.
In the signature-generation stage, based on a secret key, a point multiplication and a hash
function, additions are performed to find the signature. In the verification stage, the receiver
recovers the signature from the received message and the public key, then compares it with
the received signature. If the two signatures are identical, the received message is valid.
Algorithm 1 explains ECDSA in detail.
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Algorithm 1 Elliptic curve digital signature algorithm (ECDSA).
Key-generation
Input: Prime p, base point G
Output: Public key Q

1: Select a random number d where 1 ≤ d ≤ n− 1
2: Compute Q = d ∗ G over the prime field Fp

Signature generation
Input: Prime p, base point G, and the private key d
Output: Signature (r, s) for the message m

1: Select a random number k where 1 ≤ k ≤ p− 1
2: Compute (x1, y1) = k ∗ G over the prime field Fp
3: Assign r = x1
4: Compute e = Hash(m)
5: Compute s = k−1 ∗ (e + d ∗ r) over the prime field Fp

Verification
Input: Prime p, base point G, signature (r, s) of the input message m, public key Q
Output: The input message m is valid or invalid

1: Compute e = Hash(m)
2: Compute w = s−1 over the prime field Fp
3: Compute v1 = e ∗ w over the prime field Fp
4: Compute v2 = r ∗ w over the prime field Fp
5: Compute (x1, y1) = v1 ∗ G + v2 ∗Q over the prime field Fp
6: if (x1, y1) = O where O is the point at infinity then
7: State message m is invalid
8: else
9: Assign v = x1

10: end if
11: if v = r then
12: State message m is valid
13: else
14: State message m is invalid
15: end if

2.3. Edwards-Curve Digital Signature Algorithm—EdDSA

The EdDSA is based on the Edwards curves developed by Bernstein et al. The security
of Ed25519 and Curve25519 are based on ECDLP. Ed25519 has three stages. In the key-
generation stage, a public key is generated from a secret key and the based point of
Curve25519. In the signature-generation stage, a pair of signatures is produced from the
private key and the hash of the input message. The signature is then attached with the
message and sent to the receiver. Finally, the received signature and the public key by
the receiver are used to verify the message in the verification stage. Algorithm 2 reviews
EdDSA in detail.
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Algorithm 2 Edwards-curve digital signature algorithm (EdDSA).
Key-generation
Input: Prime p, base point G, private key k
Output: Public key Q

1: Compute (hk, lk) = Hash(k) where hk is 32 bytes MSB and lk is 32 bytes LSB.
2: Assign a = hk as little-endian notation
3: Compute Q = a ∗ G over the prime field Fp

Signature-generation
Input: Prime p and q, base point G, private key k, public key Q, and message m
Output: Signature (R, s) for the message m

1: Compute (hk, lk) = Hash(k) where hk is 32 bytes MSB and lk is 32 bytes LSB.
2: Compute r = Hash(lk, m) mod q
3: Compute R = r ∗ G over the prime field Fp
4: Compute h = Hash(R, Q, m) mod q
5: Compute s = (r + h ∗ a) mod q

Verification
Input: Prime p and q, base point G, signature (R, s) of the input message m, public key Q
Output: The input message m is valid or invalid

1: Compute h = Hash(R, Q, m) mod q
2: Compute hQ = R + h ∗Q over the prime field Fp
3: Compute sG = s ∗ G over the prime field Fp
4: if hQ = sG then
5: State message m is valid
6: else
7: State message m is invalid
8: end if

2.4. ECDSA/EdDSA Hierarchy

The hierarchy of the ECDSA/EdDSA combinational design can be illustrated as
Figure 2. In this illustration, the operations in the higher position are performed based on
the operations in the lower position. Figure 2 also reveals that there are three different
layers of abstraction. The first layer is the DSA algorithm, where the processes of key-
generation, signature-generation, and verification of a specific DSA are specified. The
control flow for a DSA, such as ECDSA or EdDSA, is implemented in this layer. The
second layer is the algorithms for the elliptic curve. Depending on the selected curve,
the additions and subtractions between two points in this curve are defined. The point
multiplication can be used for different curves. The third layer describes the methods of
modular operations, such as modular multiplication, inversion, addition, and subtraction.
An additional modular reduction may be required for this layer. Finally, the base of all layers
is binary addition, subtraction, and comparison. Among these layers, the implementation
for point multiplication, modular multiplication, modular inversion, modular addition,
modular subtraction, and binary operation can be reused. In Figure 2, the gray boxes
illustrate the functions that could be shared among different elliptic curves.
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Modular 
algorithms

DSA algorithms

Curve 
algorithms

Modular multiplication/inversion

ECDSA/EdDSA

Point addition/doubling

Modular addition/subtraction

Point multiplication

Binary addition/subtraction/comparison

The functions could be reused

Figure 2. ECDSA/EdDSA hierarchy.

3. Hardware Architecture
3.1. Modular Arithmetic-Logic Unit
3.1.1. Modular Addition/Subtraction

The base of ECC algorithms is modular operations. Figure 3 shows the combinational
architecture of modular addition/subtraction. This module could perform both addition
and subtraction with the modularity of a prime number p. The architecture is split into
two branches. The left branch performs the operation without p, and the right branch
performs the operation with p. When the sub signal is activated, the multiplexer at the
left-side selects −b, then < a− b > is performed, while the multiplexer at the right-side
selects p and then the addition circuit performs < a− b + p >. When the sub signal is
inactivated, < a + b > is calculated on the left circuit, and < a + b− p > is calculated on
the right circuit. The final value is selected depending on the carry out of the right branch.
In this architecture, the carry save adders (CSAs) are used to reduce the logic delay of the
three-operands additions.

CSA

+

CSA

+

a b -b a-p psub

1

s0 s1c0 c1

cout

sum/difference

bModular
Addition/ 

Subtraction SP
B
A

a

a_in
b_in

result

Controller
sub select

finish

enabledata

p init data

(a) (b)

Figure 3. (a) Modular addition/subtraction architecture. (b) Processing element architecture.

Figure 4 illustrates the architecture CSAs that are used in Figure 3. A three-operands
CSA includes two layers. In the first layer, the corresponding bits from each operand are
simultaneously added together using full adders (FAs). The results of the first layer is the
sum bits [s0...sn] and the carry bits [c0...cn]. In the second layer, a ripple–carry addition
is performed between the generated sum and carry from the first layer. The result of this
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layer is the final result of the three-operands addition. The delay of CSA is the total delay
of two layers. The delay of the first layer is equal to the delay of a 1-bit FA. The delay of the
second layer is the delay of the two-operands adder. Figure 5 illustrates the architecture of
a conventional three-operands adder. Two operands are added in the first layer, and then
the result is added with the third operands in the second layer. Figures 4 and 5 reveal that
the conventional three-operand adder suffers more ripple carry delay from two consecutive
adders while using the same resource as CSA.

FA FA FA FA

FA FA FA FA

x0y0z0 x1y1z1 x2y2z2 x3y3z3

sum0 sum1 sum2 sum3 sum4

c0 c1 c2 c3s0 s1 s2 s3

cout

Figure 4. Three-operands carry save adder.

FA FA FA FA

FA FA FA FA

x0   y0 x1   y1 x2     y2 x3   y3

sum1 sum2 sum3 sum4

c0

cout

c1 c2

s0 s1 s2 s3

c3

z0 z1 z2 z3

Figure 5. Three-operands conventional adder.

3.1.2. Processing Element

The processing element (PE) includes an addition/subtraction module and a controller.
The controller drives the addition/subtraction module to perform modular additions,
subtractions, or multiplications. In our design, the addition/subtraction module naturally
performs the modular reduction in each operation; there is no need for an additional
modular reduction module. Each PE contains three registers. In the case of addition
and subtraction, two registers are used to store the operands (registers A and B), and the
sum/product (SP) register stores the sum or difference. In the case of multiplication, the
multiplier and multiplicand are stored in registers A and B; the product is put into register
SP. During the multiplication, the multiplier is shifted for each cycle. Depending on the
width of the operands, the multiplication could be performed in multiple cycles. The final
result is valid when the finish signal is activated. Figure 3 illustrates the architecture of
the processing element. The register p is used to store the prime number for the modular
operations. It is shared among different PEs in the system.
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3.1.3. Modular Inversion

In our design, the modular inversion is calculated by using the binary Euclidean algo-
rithm (BEA) [20]. BEA is the traditional method that can calculate the inversion of a number
over the prime field. It is independent of the usage of the ECC algorithm. Therefore, it is
the most suitable for a multi-functional design. Algorithm 3 reveals the binary Euclidean
algorithm. Figure 6 shows the optimized hardware implementation of BEA in our proposed
architecture. The BEA memory system includes four registers to store the temporal data
during calculation. The datapath contains a modular addition/subtraction and a right shift
circuit. The controller determines the updated register and the source of updated data.
The controller of the modular inversion module is based on a finite state machine (FSM).
Depending on Algorithm 3, the FSM includes the following states: calculate new value of u;
calculate new value of v; compare new value of u and v; update the value of u; update new
value of v; calculate new value of x; calculate new value of y; update x; update y; check
the condition; and assign the final result. BEA contains three kinds of operation, which are
right shift, modular addition, and modular subtraction. Based on our design of FSM, only
one modular addition/subtraction module and one shift right module are needed. Finally,
after the calculation process is completed, the final result is assigned for y, and the system
raises the finish signal to indicate that the process is finished.

Algorithm 3 Binary Euclidean algorithm (BEA).

Input: Prime p and a ∈ [1, p− 1]
Output: a−1 mod p

1: u← a, v← p, x ← 1, y← 0
2: while u 6= 1 and v 6= 1 do
3: while u mod 2 = 0 do
4: u← u� 1
5: if x mod 2 = 0 then
6: x ← x � 1
7: else
8: x ← (x + p)� 1
9: end if

10: end while
11: while v mod 2 = 0 do
12: v← v� 1
13: if y mod 2 = 0 then
14: y← y� 1
15: else
16: y← (y + p)� 1
17: end if
18: end while
19: if u ≥ v then
20: u← (u− v) mod p
21: x ← (x− y) mod p
22: else
23: v← (v− u) mod p
24: y← (y− x) mod p
25: end if
26: end while
27: if u = 1 then
28: return x
29: else
30: return y
31: end if
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Modular
Addition/ 

Subtraction
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y
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vShift right
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sub

result

finish
select
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Figure 6. Modular inversion architecture.

3.2. Elliptic Curve Cryptography Unit

The ECC unit is the top module of the system. It includes a controller, a random access
memory (RAM), a read-only memory (ROM), an inversion module (Inv.), and four PEs.
Figure 7 illustrates the architecture of the ECC unit. In our design, the point adding and
doubling for both ECDSA and EdDSA are performed under projective coordination. The
conversion from affine to projective coordination is performed without any additional fee.
In comparison with other types of coordination, projective coordination offers optimization
for parallelism processing by reducing data dependency. Four PEs and an inversion module
are integrated to achieve the highest performance in projective coordination.

Each processing element and inversion module has their register to store the temporal
data during their operation. The input data for each PE are selected from the RAM, the
initial data from ROM, the calculated data from the other PEs, and the generated data
by themselves. The controller controls the operations of the four PEs and the inversion
module to produce the appropriate results. The FSM of the ECC unit controller is designed
to promote the parallelism of the four PEs. The RAM is used for multiple purposes: to
store the data/result and exchange data among the PEs. The result is read from RAM in a
specific address. When the operation of the processing elements and the inversion module
is completed, the controller raises the finish signal to indicate that the result is valid and it
can be read.

PE[1]

PE[2]

PE[3]

PE[4]
Controller

write 
data

in/out
select

init data

enable,
address

RAM result

finish

Inv. ROM

address

read data

Figure 7. Elliptic curve cryptography unit.
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4. Results

We deploy our design on the field-programmable gate array (FPGA) Virtex-7 and
Virtex-6 devices. Two different designs are used in the experiments. We use Xilinx ISE 14.7
to implement our design on Virtex-6 device, and Vivado 2020.1 for Virtex-7 device. The
first one is integrated with Ed25519 and ECDSA with NIST P-256. The second one is the
combination of Ed25519 and ECDSA with NIST P-256, P-384, and P-521. The results and
comparison are shown in Table 1. The input message and parameters are taken from [2] for
the ECDSA mode and from [6] for the Ed25519 mode.

Table 1. ECDSA/EdDSA comparison,  /# represents for supported/not-supported.

This Work [11] [15] [21]

Support
Mode

EdDSA 25,519     # # #   

P-256      # # # #
ECDSA P-384 # #   #  # # #

P-521 # #   # #  # #

Support
Func.

Sign         #
Verify         #

Keygen     # # #   

FPGA Virtex-6 Virtex-7 Virtex-6 Virtex-7 Virtex-6 Virtex-6 Virtex-6 Artix-7 Artix-7

Slices 4327 4276 8610 10,259 10,625 16,747 23,633 4303 11,277

DSP 0 0 0 0 136 196 280 16 220

Slices equivalent 4327 4276 8610 10,259 24,225 36,347 51,633 5903 33,277

Frequency (MHz) 116.72 122.05 72 112.2 100 83.3 71.5 82 100

Slices2/MHz ×10−3 160 150 1030 938 5869 15,860 37,286 425 11,074

Opera-
tions
per
sec.

(Ops)

Ed25519
Sign 127 132 78 122 - - - 118 -

Verify 55 57 34 53 - - - 78 -
Keygen 125 131 77 120 - - - 90 21,686

ECDSA
P-256

Sign 108 113 67 104 787 - - - -
Verify 55 57 34 53 674 - - - -

Keygen 109 113 67 104 - - - - -

ECDSA
P-384

Sign - - 30 47 - 292 - - -
Verify - - 15 23 - 276 - - -

Keygen - - 30 47 - - - - -

ECDSA
P-521

Sign - - 16 25 - - 109 - -
Verify - - 8 13 - - 83 - -

Keygen - - 16 26 - - - - -

Slices2

/Ops
×10−3

Ed25519
Sign 148 138 950 865 - - - 295 -

Verify 341 318 2188 1994 - - - 447 -
Keygen 150 140 960 875 - - - 387 51

ECDSA
P-256

Sign 173 161 1109 1011 746 - - - -
Verify 342 320 2198 2003 871 - - - -

Keygen 173 161 1107 1009 - - - - -

ECDSA
P-384

Sign - - 2474 2254 - 4524 - - -
Verify - - 4936 4497 - 4790 - - -

Keygen - - 2471 2251 - - - - -

ECDSA
P-521

Sign - - 4532 4129 - - 24,458 - -
Verify - - 9067 8260 - - 32,120 - -

Keygen - - 4528 4125 - - - - -

It is clear that our design consumes significantly lower resources in comparison with
other proposals. The four-mode design also uses fewer resources than the ECDSA P-256,
ECDSA P-384, and ECDSA P-521 single-functional core of [11]. In addition, our design
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supports all functions of DSA, including sign, verify, and key generation (Keygen). The
authors of [21] proposed a multi-core architecture that can generate up to 21,686 keys per
second. Despite the throughput and the number of Slices2/Ops being impressive, their
design requires too many resources for only key generation, and its practical applications
are limited. In this experiment, we estimate a DSP as 100 slices [9] to calculate the slices
equivalently. The comparison is performed based on the number of slices, number of DSPs,
and the working frequency (Freq) in MHz. Other technical details, including Slices2/MHz,
Slices2/Ops, throughput in kilo-bits-per-second (Kbps), and Slices2/Kbps, are added to
evaluate the efficiency of the design. In this study, we target a low-resource, multi-functional
design. Therefore, the number of slices is emphasized rather than the other aspects.

The ECPM is the essential part of an elliptic curve cryptography design. We also
compare our processing core, with four PEs, with other proposals in Table 2. Table 2 reveals
that the processing core occupies nearly 70% of the total resource. In comparison with other
ECPM proposals, the resource consumption of our ECPM design is significantly lower,
even though the core supports multiple curves. Table 2 also reveals that the DSP-based
architectures [13,22] provides high throughput but consumes too many resources for a
single curve. Therefore, they cannot be deployed on resource-constrained applications.

Table 2. Elliptic curve point multiplication comparison, /# represents for supported/not-supported.

This Work [17] [16] [13] [22]

25519     # # #   
Support P-256        # #
Curve P-384 # #   # # # # #

P-521 # #   # # # # #

FPGA Virtex-6 Virtex-7 Virtex-6 Virtex-7 Virtex-6 Virtex-7 Virtex-7 Kintex-7 Kintex-7

Slices 3025 2932 5957 7172 9246 8873 24,200 3362 8639

DSP 0 0 0 0 0 0 0 182 260

Slices equivalent 3025 2932 5957 7172 9246 8873 24,200 21,562 34,639

Frequency (MHz) 116.72 149.23 88.82 138.58 161.1 177.7 72.9 87 115

Slices2/MHz ×10−3 78 58 400 371 531 443 8033 5344 10,434

Through- 25519 91 117 69 108 - - - 5773 2159

put P-256 114 146 87 135 157 173 1816 - -

(Kbps) P-384 - - 58 90 - - - - -
P-521 - - 43 66 - - - - -

Slices2 25519 100 74 511 475 - - - 81 556

/Kbps P-256 80 59 409 380 545 455 322 - -

×10−3 P-384 - - 614 570 - - - - -
P-521 - - 833 774 - - - - -

We also deploy our system on the Xilinx VC707 Evaluation Kit. Figure 8 illustrates the
experimental system, including a RISC-V softcore processor, a Secure Hash Algorithm 2
(SHA2) core, and the EdDSA/ECDSA core with Curve25519 and NIST P-256/384/521. The
RISC-V processor communicates with the SHA2 core and EdDSA/ECDSA core through
a communication bus. The implemented SHA2 core could perform three SHA2 variants,
which are SHA2-256, SHA2-384, and SHA2-512 in a single design. The RISC-V processor
configures the operating mode for the SHA2 core and EdDSA/ECDSA core, controls
the SHA2 core to perform the hash on the input message, and then transfers the hash
value to the EdDSA/ECDSA core. When the EdDSA/ECDSA process terminates, the
processor reads the results and then compares them with the correct results in [2,6]. A
computer connects with the RISC-V processor through UART to monitor the experimental
process. Such a design system allows the processor to perform the SHA2 hash process
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and EdDSA/ECDSA process at the same time. Furthermore, the SHA2 functions and
EdDSA/ECDSA functions can be used separately.

RISC-V 
Processor

SHA2-
256/384/512

EdDSA/
ECDSA

Communication bus

FinishUART

Xilinx VC707 Evaluation Kit

Figure 8. Experimental system.

5. Conclusions

In this study, a low-cost, area-efficient ECC processor is developed for multiple ECC
algorithms in a single design. Based on the proposed architecture, four well-known
algorithms, which are Ed25519, ECDSA with NIST P-256, NIST P-384, and NIST P-521,
are deployed. The novel hardware architecture satisfies multiple requirements that were
trade-offs from the previous designs. It consumes significantly few resources and does
not use any DSP. Therefore, it can be easily deployed on multiple hardware platforms
without re-design. Especially, this proposal provides an approach to deploy multiple ECC
algorithms in a single architecture without re-synthesis.

In the experiments, we suggest a system that can improve the flexibility of the de-
sign. By combining with a separate SHA2 processor, the system not only performs the
EdDSA/ECDSA, but also the SHA2 hash functions. The experimental results show that the
core consumes 10,259 slices, which is lower than other single-functional ECC designs and
can run up to 112.2 MHz on a Virtex-7 device. Another implementation that can perform
two lightweight ECC algorithms, which are Ed25519 and ECDSA with NIST-P256, is also
deployed. It consumes only 4276 slices and can run up to 122.05 MHz on the Virtex-7
device. Based on the features of the proposed EdDSA/ECDSA core and the experimental
results, it can be concluded that our design can serve a wide range of applications and be
able to deploy on multiple hardware platforms, especially for the resource-constrained
devices that need a high level of security.

For future works, we are working on higher performance for the processing elements.
Two targets can be achieved if the processing elements are able to operate with a lower
delay but keep the same resource usage. For the first target, our core can provide higher
overall performance while ensuring efficiency in the area. For the second target, the
resource consumption can be further reduced by removing some processing elements while
maintaining the current working performance.
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