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Abstract: In this study, chestnut (Castanea sativa) shell was extracted with different solvents, and
immunomodulatory activity was investigated in an in vitro model system using blood and intestinal
leukocytes of Oncorhynchus mykiss. Gallic acid (GA) was used as a standard. Chestnut shell extract
(CSE) and GA readily entered both blood and intestinal leukocytes. Superoxide anion production
and phagocytosis were decreased by low doses of CSE and increased with high doses. CSE and
GA differently regulated cytokine expression in blood and intestinal leukocytes. High doses of CSE
upregulated IL-1β, TNF-α, and IL-10 in intestinal leukocytes and IL-10 in blood leukocytes. Low doses
of CSE upregulated IL-1β and TNF-α in blood leukocytes. GA appeared to be effective only in blood
leukocytes. The effects of CSE on pro- and anti-inflammatory cytokines seemed to suggest an alert
effect of the immune defense system against a possible infectious agent. The less evident effect of
GA in comparison to CSE could have been attributable to the synergistic and/or additive effects of
polyphenols in the latter. The immune-stimulating activity of CSE reported here could be useful for
future practical applications in fish health.

Keywords: Oncorhynchus mykiss; chestnut shell extract; intestinal leukocytes; blood leukocytes;
immunomodulatory activity

1. Introduction

Nowadays there is a growing interest in the use of plant extracts due to the limitation of chemical
products in aquaculture [1]. The European Commission, at the beginning of 2006, regulated the use of
antibiotics in feed for farmed animals by prohibiting their use or limiting their quantities [2]. This has
stimulated the interest of research toward alternative solutions, such as bioactive molecules of plant
origin, to be used as feed additives. Feed additives as health promoters are an important component
of any strategy to prevent diseases in aquaculture. Although aquaculture is a highly productive
sector, with an average annual growth of 6.2% [3], it presents a high business risk, which puts global
production at risk. Among the obvious causes are numerous infectious diseases due to the intensive
practices necessary to meet increasing market demand. The high density of fish required by these
intensive practices negatively affects the state of health of the species, and the control of potentially
lethal diseases can be difficult [4]. An effective way to avoid such drawbacks is to resort to vaccination,
although vaccines are expensive and effective only against specific pathogens [5]. The development of
fish vaccines has been strongly limited by poor knowledge of fish immunology, unlicensed vaccines,
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and stressful and not cost-effective administration: In fact, fish need a larger antigen dose compared
to terrestrial animals [6]. Thus, strengthening the defense mechanism of fish through the preventive
administration of immunostimulants is considered a promising alternative to chemotherapy and
vaccines due to the broad spectrum activity, cost-effectiveness, and eco-friendliness of such disease
preventive measures [7]. The use of natural plant compounds, such as polyphenols, as potential
alternatives to improve the health state of farmed animals is certainly an idea of great public and
private interest, but it is limited by a high variability in composition due to the difficulty of obtaining a
standardized final product and the cost of raw materials and/or processes of production. A financially
convenient and ecologically interesting solution is represented by the byproducts of the agro-food
chain. Italy produces, on average, 50,000 tons/year of chestnuts (Castanea sativa), which makes it the
leading producer country in Europe [8]. Chestnut processing produces a quite abundant amount of
waste, mainly represented by hedgehogs and shells. Chestnut shells are lignocellulosic biomasses
mainly composed of cellulose, hemicelluloses, and lignin, along with a certain amount of phenolic
compounds with antioxidant properties [9,10]. The extraction of phenolic antioxidant compounds
from plant materials is habitually carried out with organic solvents, among which water has been
lately largely employed due to its ecofriendly nature and low cost [11]. The extractable material is
composed of tannins and phenolic compounds, with small amount of sugars [9]. Among simple
phenolics, gallic and ellagic acid are the most represented and are reported at high concentrations [12].
Several studies have shown that, thanks to antioxidant action, phenolic compounds in the chestnut act
positively on health, leading to a decrease in the risk of cardiovascular diseases and cancer and showing
anti-inflammatory properties and immune stimulation activity [13]. Moreover, tissues of the chestnut
have been found to contain compounds with inhibitory effects on bacteria [14,15]. In recent decades,
interest in the evaluation of the therapeutic effects of natural extracts has increased significantly due to
the antimicrobial, antiviral, antifungal, and antioxidant properties that make them a good alternative to
conventional antimicrobial agents not only for the treatment of major human diseases, but also for the
prevention and treatment of diseases affecting aquatic species that represent a serious scourge between
animals and invertebrates [16–18]. The health-promoting effects of natural extracts seem to be related
to complementary and overlapping effects of the mixture of bioactive molecules, more efficacious
than single components [19]. The extraction and exploitation of bioactive molecules would reduce the
environmental impact of byproducts generated along the production chain, with consequent economic
benefits. Among the possible uses of extracts obtained from the byproducts of chestnut processing, it is
worth mentioning supplements in animal nutrition [20]. The use of plant extracts, however, has some
limitations related to their different chemical nature and consequent different cell uptake capability
and intracellular effects [21]. Moreover, the vast array of bioactive molecules present in nature that
can find a useful application in aquaculture makes testing trials uneconomical due to the necessity of
employing a large number of animals. Thus, the use of in vitro tests may overcome these drawbacks,
keeping the number of animals employed low.

In this study, chestnut shell was extracted with different solvents and characterized by
high-performance liquid chromatography (HPLC) and attenuated total reflectance-Fourier transform
infrared spectroscopy (ATR-FTIR). An in vitro system using non-adherent leukocytes of the rainbow
trout Oncorhynchus mykiss was employed. The polyphenol content of non-adherent leukocytes was
evaluated, and the possible effects on free radical production, phagocytosis, and cytokine IL-1β and
TNF-α (proinflammatory) and IL-10 (anti-inflammatory) expression were evaluated.

2. Results

2.1. Antioxidant Activity, Total Polyphenol Content, and Composition of Chestnut Shell Extracts

Both composition and concentration of phenolic compounds, determined by HPLC in the chestnut
shell extracts, are reported in Table 1. The highest concentration of phenolic compounds was attributed
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to gallic and ellagic acids. Low concentrations of syringic acid, rutin, and quercetin were detected.
A typical HPLC profile of chestnut shell polyphenols has already been reported in Sorice et al. [22].

Table 1. Polyphenols in the chestnut shell extracts analyzed by HPLC/photodiode array detector
(DAD) expressed as g/kg ± SD (n = 6) of extract. RT: room temperature.

Extracts Gallic Acid Syringic Acid Ellagic Acid Rutin Quercetin Catechin

Ethanol 100% (90 ◦C) 3.39 ± 0.25 0.79 ± 0.05 1.91 ± 0.20 0.099 ± 0.005 0.200 ± 0.015 0.61 ± 0.05
Ethanol 100% RT 1.82 ± 0.09 0.52 ± 0.09 0.75 ± 0.12 0.049 ± 0.003 0.089 ± 0.008 0.34 ± 0.08
Ethanol 70%/water 30% RT 2.12 ± 0.15 0.50 ± 0.10 1.05 ± 0.18 0.059 ± 0.007 0.081 ± 0.010 0.40 ± 0.09
Water 100% (75 ◦C) 3.74 ± 0.21 0.20 ± 0.08 1.65 ± 0.08 0.024 ± 0.009 0.033 ± 0.005 0.25 ± 0.05

The antioxidant activity of the chestnut shell extracts (CSEs) was determined by the
2,2-diphenyl-1-picrylhydrazyl (DPPH) spectrophotometric method and then compared to gallic acid
(GA). The total contents of polyphenols expressed in g/kg of the extract and the antioxidant activity
(% inhibition of DPPH) of the four extracts obtained with different extraction procedures, with GA
used as a reference, are reported in Table 2.

Table 2. Antioxidant activity, expressed as % ± SD (n = 6) of 2,2-diphenyl-1-picrylhydrazyl (DDPH)
inhibition, and the total content of polyphenols, expressed as g/Kg ± SD of chestnut shell extracts.
The values are the mean of extractions carried out over a period of three years.

Extract % Inhibition Total Polyphenols

Ethanol 100% (90 ◦C) 78.9 ± 0.8 610.7 ± 2.3
Ethanol 100% RT 79.8 ± 1.2 635.3 ± 1.5
Ethanol 70%/water 30% RT 78.5 ± 1.1 590.2 ± 1.7
Water 100% (75 ◦C) 74.3 ± 1.0 487.9 ± 1.4
Gallic acid 82.6 ± 0.9 -

A possible correlation between antioxidant activity and total polyphenol content was investigated.
A linear regression (data not shown) with a correlation coefficient of R2 = 0.9629 showed good
proportionality between total polyphenol content and antioxidant activity. The most similar extracts
were ethanol 100% at 90 ◦C, ethanol 100% at room temperature (RT), and ethanol 70% - water 30% at
RT. The extract with the lowest total polyphenols and antioxidant activity was water 100% at 75 ◦C.

2.2. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Characterization of
Chestnut Extracts

Figure 1 shows the ATR-FTIR spectra obtained from CSEs and two commercial samples of chestnut
wood (Silvafeed® TSP and ATX). Table 3 shows the frequency assignments of the functional groups.
Peaks identification and their assignment were based on literature data [23–25]. The broad spectrum of
absorption at 3300–2500 cm−1 was due to the OH groups of the carboxylic acids. The peaks at 2918 and
2850 cm−1 were due to CH2 stretching of the aliphatic hydrocarbons. In the region between 1727 and
1700 cm−1, the C–O stretching of esters of hydrolyzable tannins, especially derivatives of gallic acid,
can be seen. The intense band at 1604–1607 cm−1, and the less intense bands at 1550–1520 and
1443–1447 cm−1, were due to the stretching of the bond of C=C of the aromatic rings. The stretching
of the C–O bond is visible at 1342–1308 cm−1. Aliphatic C=O stretching can be seen in the regions
1174–1198 cm−1 and 1029–1035 cm−1. From 913 to 666 cm−1, there is a region of C–H deformation out
of the plane, predominantly with signals of low intensities.



Fishes 2019, 4, 18 4 of 23Fishes 2019, 4, 18 4 of 24 

 

 

Figure 1. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 
absorption spectra of chestnut shell extracts and chestnut wood in the wavelength 4000–650 cm−1. The 
spectra were baseline-corrected and normalized. 

Table 3. Functional groups and frequency assignments for polyphenolic extracts from ATR-FTIR. 
Assignments were according to the literature data [23–25]. 
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2.3. Isolation of Non-Adherent Leukocytes from Blood and Intestine  

Leukocytes isolated from blood were cultured in vitro overnight in order to separate non-
adherent leukocytes consisting of small and large lymphocytes, thrombocytes, granulocytes, and 
monocytes. The non-adherent fraction of leukocytes was employed for the following experiments. 
Intestinal intraepithelial non-adherent leukocytes consisted of small-sized lymphocyte populations.  

2.4. Cytotoxicity  

The MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) method was used to 
quantify the effects of different concentrations of CSE and GA on trout non-adherent leukocyte 
viability. CSE was found to be nontoxic at all tested concentrations, showing a cellular survival of 
88%–95%: GA was nontoxic at 1,10,100 µg/mL, while it was toxic at a concentration of 1000 µg/mL 
(Figure 2). 

Figure 1. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) absorption
spectra of chestnut shell extracts and chestnut wood in the wavelength 4000–650 cm−1. The spectra
were baseline-corrected and normalized.

Table 3. Functional groups and frequency assignments for polyphenolic extracts from ATR-FTIR.
Assignments were according to the literature data [23–25].

Main Vibrational Bands of Chestnut Shell Extracts (Wavenumbers, cm−1, Intensity)

Ethanol 100%
at 90 ◦C

Ethanol 100%
at RT

Ethanol/Water
70%/30% at RT

Water 100% at
75 ◦C

Silvafeed®

TSP and ATX
Peak Number and Assignment

2918 2918 (1) CH2 symmetric stretch

2850 2850 (2) CH2 asymmetric stretch

1711 1708 1705 1700 1727 (3) Carbonyl C=O stretching

1607 1606 1604 1605 1605

(4) Aromatic ring C=C stretching1536
1519 1516 1519 1520 1515
1445 1444 1443 1444 1447

1342 1323 1319 1334 1308 (5) C–O stretching
1283 1284 1285

1198 1198 1195 1197
(6) Aliphatic C=O stretching1174

1145 1146 1144 1144

1101 1101 1100 1112 (7) Aromatic C–H in plane bend

1034 1030 1029 1032 1035 (8) Aliphatic C=O stretching

911

(9) Aromatic C–H out-of-plane bend

892
869 861

834
819 830 820 822 820
766 763 765 765 773

749
719 729 728 729 719

703
666 666 666 666 676

654

2.3. Isolation of Non-Adherent Leukocytes from Blood and Intestine

Leukocytes isolated from blood were cultured in vitro overnight in order to separate non-adherent
leukocytes consisting of small and large lymphocytes, thrombocytes, granulocytes, and monocytes.



Fishes 2019, 4, 18 5 of 23

The non-adherent fraction of leukocytes was employed for the following experiments. Intestinal
intraepithelial non-adherent leukocytes consisted of small-sized lymphocyte populations.

2.4. Cytotoxicity

The MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) method was used to
quantify the effects of different concentrations of CSE and GA on trout non-adherent leukocyte viability.
CSE was found to be nontoxic at all tested concentrations, showing a cellular survival of 88%–95%:
GA was nontoxic at 1,10,100 µg/mL, while it was toxic at a concentration of 1000 µg/mL (Figure 2).Fishes 2019, 4, 18 5 of 24 

 

 
Figure 2. Percentage of cell viability. The data represent the mean ± SD of triplicate cultures (n = 3). 
Different letters on the columns indicate statistically significant differences (cntr = control). The 
concentration reported on the x axis refers to the total phenolic compounds contained in the chestnut 
shell extract (CSE). The graph is representative of both blood and intestinal cell cultures. 
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Standard chromatograms showing the resolution of the methanol extract of non-adherent 
leukocytes incubated with CSE and GA are presented in Figure 3.  
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Figure 2. Percentage of cell viability. The data represent the mean ± SD of triplicate cultures
(n = 3). Different letters on the columns indicate statistically significant differences (cntr = control).
The concentration reported on the x axis refers to the total phenolic compounds contained in the
chestnut shell extract (CSE). The graph is representative of both blood and intestinal cell cultures.

2.5. Polyphenol Cellular Content

Standard chromatograms showing the resolution of the methanol extract of non-adherent
leukocytes incubated with CSE and GA are presented in Figure 3.

A peak at 3.59 min of elution corresponding to GA was present in both blood non-adherent
leukocytes and intestinal intraepithelial non-adherent leukocytes incubated with CSE and GA.
The concentration of such a peak in the non-adherent leukocytes was calculated using a standard
curve with known concentrations of GA. The area of the peaks was compared to the area of the GA in
the standard curve using the ChromNAV software program.

Figure 4A shows the evaluation of CSE content in intestinal non-adherent leukocytes after 15,
60, and 180 min of incubation and the CSE profile in the medium at the corresponding times. A CSE
content evaluation in blood non-adherent leukocytes gave similar results (Figure 4C). Figure 4B shows
a GA content evaluation in intestinal intraepithelial non-adherent leukocytes after 15, 60, and 180 min
of incubation and a GA profile in the medium at the corresponding times. A GA content evaluation in
blood non-adherent leukocytes gave similar results (Figure 4D). The GA concentration in the medium
kept being stable for up to three hours (data not shown).
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Figure 3. Representative chromatograms showing the resolution of the methanol extract of intestinal 
intraepithelial non-adherent leukocytes (A) incubated with chestnut shell extract (CSE) and blood 
non-adherent leukocytes (B) incubated with gallic acid (GA) for 15, 60, and 180 min. The control was 
the cellular sample incubated in the absence of CSE. Asterisks represent the GA peak (retention time 
= 3.59 min). 

A peak at 3.59 min of elution corresponding to GA was present in both blood non-adherent 
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concentration of such a peak in the non-adherent leukocytes was calculated using a standard curve 
with known concentrations of GA. The area of the peaks was compared to the area of the GA in the 
standard curve using the ChromNAV software program.  

Figure 4A shows the evaluation of CSE content in intestinal non-adherent leukocytes after 15, 
60, and 180 min of incubation and the CSE profile in the medium at the corresponding times. A CSE 
content evaluation in blood non-adherent leukocytes gave similar results (Figure 4C). Figure 4B 
shows a GA content evaluation in intestinal intraepithelial non-adherent leukocytes after 15, 60, and 
180 min of incubation and a GA profile in the medium at the corresponding times. A GA content 
evaluation in blood non-adherent leukocytes gave similar results (Figure 4D). The GA concentration 
in the medium kept being stable for up to three hours (data not shown). 

Figure 3. Representative chromatograms showing the resolution of the methanol extract of intestinal
intraepithelial non-adherent leukocytes (A) incubated with chestnut shell extract (CSE) and blood
non-adherent leukocytes (B) incubated with gallic acid (GA) for 15, 60, and 180 min. The control
was the cellular sample incubated in the absence of CSE. Asterisks represent the GA peak (retention
time = 3.59 min).
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Figure 4. Cellular content of chestnut shell extract (CSE) (10 µg/mL) and GA (10 µg/mL) in blood 
non-adherent leukocytes and intestinal intraepithelial non-adherent leukocytes after 15, 60, and 180 
min of incubation (black columns) and CSE and GA concentration in the medium after different 
incubation times (white columns). (A) and (B) CSE and GA content in intestinal intraepithelial non-
adherent leukocytes, respectively; (C) and (D) CSE and GA content in blood non-adherent leukocytes, 
respectively. CSE concentration is expressed as ng/106 cells. The data represent mean ± SD. Different 
letters on the columns indicate statistically significant differences. 

2.6. Effect of CSE on Superoxide Anion Production 

In both blood and intestinal non-adherent leukocytes, low doses of CSE (1 and 10 µg/mL) and 
GA (1 and 10 µg/mL) decreased the production of superoxide anion compared to the control. At high 
doses of CSE (100 and 1000 µg/mL) and GA (100 µg/mL), the production of superoxide anion 
increased (Figure 5). 
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Figure 4. Cellular content of chestnut shell extract (CSE) (10 µg/mL) and GA (10 µg/mL) in blood
non-adherent leukocytes and intestinal intraepithelial non-adherent leukocytes after 15, 60, and
180 min of incubation (black columns) and CSE and GA concentration in the medium after different
incubation times (white columns). (A) and (B) CSE and GA content in intestinal intraepithelial
non-adherent leukocytes, respectively; (C) and (D) CSE and GA content in blood non-adherent
leukocytes, respectively. CSE concentration is expressed as ng/106 cells. The data represent mean ±
SD. Different letters on the columns indicate statistically significant differences.

2.6. Effect of CSE on Superoxide Anion Production

In both blood and intestinal non-adherent leukocytes, low doses of CSE (1 and 10 µg/mL) and GA
(1 and 10 µg/mL) decreased the production of superoxide anion compared to the control. At high doses
of CSE (100 and 1000 µg/mL) and GA (100 µg/mL), the production of superoxide anion increased
(Figure 5).
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Figure 5. Superoxide anion production in response to different doses of CSE and GA in in vitro 
incubations of intestinal intraepithelial non-adherent leukocytes (A) and blood non-adherent 
leukocytes (B) of rainbow trout. The data represent the mean ± SD of different fish samples (n = 9). 
Different letters on the columns indicate statistically significant differences (cntr = control). The 
concentration reported on the x axis refers to the total phenolic compounds contained in the chestnut 
shell extract (CSE). 
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leukocytes, low doses of CSE (1 and 10 µg/mL) and GA (1 and 10 µg/mL) decreased phagocytic 
activity compared to the control. High doses of CSE (100 and 1000 µg/mL) and GA (100 µg/mL) 
increased phagocytic activity with respect to the control. The increase of phagocytosis induced by 
CSE at 100 µg/mL was three times higher with respect to GA at the same concentration.  
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Figure 5. Superoxide anion production in response to different doses of CSE and GA in in vitro
incubations of intestinal intraepithelial non-adherent leukocytes (A) and blood non-adherent leukocytes
(B) of rainbow trout. The data represent the mean± SD of different fish samples (n = 9). Different letters
on the columns indicate statistically significant differences (cntr = control). The concentration reported
on the x axis refers to the total phenolic compounds contained in the chestnut shell extract (CSE).

2.7. Effect of CSE on Phagocytosis

The phagocytosis assay (Figure 6) showed that, in both blood and intestinal non-adherent
leukocytes, low doses of CSE (1 and 10 µg/mL) and GA (1 and 10 µg/mL) decreased phagocytic
activity compared to the control. High doses of CSE (100 and 1000 µg/mL) and GA (100 µg/mL)
increased phagocytic activity with respect to the control. The increase of phagocytosis induced by CSE
at 100 µg/mL was three times higher with respect to GA at the same concentration.
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differences (cntr = control). The concentration reported on the x axis refers to the total phenolic 
compounds contained in the chestnut shell extract (CSE). 

  

Figure 6. Percentage of the phagocytosis of zymosan A fluorescein conjugate by intestinal intraepithelial
non-adherent leukocytes (A) and blood non-adherent leukocytes (B) of rainbow trout in response to
different doses of CSE and GA in in vitro incubations. The data represent the mean ± SD of different
fish samples (n = 9). Different letters on the columns indicate statistically significant differences (cntr =
control). The concentration reported on the x axis refers to the total phenolic compounds contained in
the chestnut shell extract (CSE).

2.8. Effect of CSE on Cytokine Expression

High doses of CSE (100 and 1000 µg/mL) upregulated IL-1β and TNF-α expression in the
intestinal intraepithelial non-adherent leukocytes, but not in the blood non-adherent leukocytes.
On the contrary, low doses of CSE (1 and 10 µg/mL) upregulated IL-1β and TNF-α expression in
blood non-adherent leukocytes, but not in the intestinal intraepithelial non-adherent leukocytes
(Figures 7 and 8). GA was ineffective on IL-1β and TNF-α expression in intestinal intraepithelial
non-adherent leukocytes, but upregulated IL-1β and TNF-α expression in blood non-adherent
leukocytes at all doses (Figures 7 and 8).
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High doses of CSE (100 and 1000 µg/mL) upregulated IL-10 expression in both intestinal and
blood non-adherent leukocytes. GA was ineffective on IL-10 expression in intestinal intraepithelial
non-adherent leukocytes, but upregulated IL-10 expression in blood non-adherent leukocytes at all
doses (Figure 9).
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3. Discussion

In this study, chestnut shell was extracted by different methods and tested for potential immune
activity in the rainbow trout leukocytes. Several studies have highlighted the presence of bioactive
molecules with antioxidant properties in chestnut byproducts that can be used in the manufacturing of
health boosting-related products [26]. Thus, the recovery of bioactive molecules, mainly polyphenols,
is an object of interest of the industries in the food, cosmetics, and energy sectors and more recently
in the feed industry [20]. Under our extraction conditions, the recovery of the polyphenols ranged
between 487.9 and 635.3 g/kg, a value comparable to Vázquez et al. [10] but higher than the one
reported by Noh et al. [27]. One of the main drawbacks in the employment of polyphenols from
sustainable sources, such as agro-food byproducts, is their variable concentration in extracts due to the
variability in the raw material [28]. Moreover, the nature of the extraction solvent may significantly
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affect the amount of polyphenols extracted from a matrix, giving rise to different antioxidant
activities [29]. Indeed, the polarity of the solvent used affects the solubility of polyphenols, with
water and ethanol, among others, being suitable agents for the extraction of polyphenols from chestnut
byproducts [30]. In this study, the choice fell to water and ethanol, since water is a biorenewable
nontoxic solvent and ethanol is safe for human consumption [31]. The highest polyphenol content
of the CSE was obtained with ethanol at room temperature for 3 h, in agreement with the literature
reporting that many phenolic compounds are subjected to degradation or oxidation when exposed to
high temperatures and long extraction periods [32].

As we reported in a previous study, high-performance liquid chromatography (HPLC)
and gas chromatography-mass spectrometry (GC-MS) showed that in CSE the most abundant
phenolic compounds were gallic and ellagic acids, as well as condensed oligomers containing
catechin/epicatechin, epigallocatechin, and epicatechin gallate as monomeric units [22]. Since
phenolic compounds are not the only components of the extracts, we employed attenuated total
reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), a classic and consolidated technique,
to determine the matter composition of the CSEs. ATR-FTIR is a rapid, easy-to-use, and economical
instrument. It provides information on the main vibrational bands, which are related to chemical
composition and structure, and the samples do not require reagents and laborious pretreatments.
ATR-FTIR spectra showed a substantial homogeneity of composition among CSEs, indicating that
the extracts had equivalent chemical compositions and therefore similar properties. CSE is mainly
composed of hydrolysable tannins, especially derivatives of gallic acid, as could be seen by the C-O
stretching in the region between 1727 and 1700 cm−1 [23,24] and the absorption in other typical regions
of the chestnut wood tannins (present data) [25]. Furthermore, the CSEs, but not the chestnut wood
tannins, absorbed in a region (1283–1285 cm−1) in which the hydrolysable tannins do not absorb [33].
The stretching was due to the C–O of pyran, typical of flavonoid C-rings [25], and could be explained
by the presence of the flavonoids in CSEs. CSEs also absorbed in the region 1144–1146 cm−1, typical
of catechins present in chestnut shell extracts as monomers [34]. The peaks at 2918 and 2850 cm−1,
typical of aliphatic hydrocarbons, were present in CSEs extracted with organic solvents, but not with
water, and were probably due to residues of the organic solvent employed for the extraction. Similarly,
the peaks were not present in the commercial samples of chestnut wood that were extracted with a
patent-covered, water-based technology.

In this study, we first detected the content of CSE and GA in the rainbow trout non-adherent
leukocytes, since this is an important starting point not only for carrying out in vitro experiments
at appropriate conditions, but also when attempting to extrapolate from the in vitro to the in vivo
situation. Both blood non-adherent leukocytes and intestinal intraepithelial non-adherent leukocytes
were used. Blood leukocytes were purified and cultured in order to obtain non-adherent leukocytes.
According to the morphological characteristics, the non-adherent leukocytes showed the general form
of lymphocytes reported in the literature [35,36]. Intestinal intraepithelial leukocytes purified from
rainbow trout intestinal epithelium constituted a rather homogeneous population of small round cells
with typical lymphocyte morphology, in agreement with Bernard et al. [37].

Both CSE and GA were detectable in blood and intestinal non-adherent leukocytes after 15 min of
incubation. A similar behavior has been shown by normal hepatic cells incubated with resveratrol,
a natural polyphenol with potent protective properties [38].

This outcome is also in agreement with a study by Salucci et al. [39] showing that the time course
of GA uptake in caco-2 cells was very rapid, with a peak within 10 min from the start of incubation.
The same authors reported that GA was quickly metabolized in the cells, but did not exclude that
less GA may have entered the cells due to its degradation in the medium. In this study, to exclude
that the decrease of GA in the non-adherent leukocytes was not a consequence of GA degradation
in the medium, we monitored GA concentration in the medium and found it to be stable for up to
three hours of incubation, corroborating the hypothesis that GA could be readily metabolized. Thus,
the GA presence in the non-adherent leukocytes after three hours of incubation may have reflected an
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ongoing uptake compatible with a theory of carrier-mediated transport along with passive diffusion for
polyphenol uptake [38–40]. Thus, it is important to note that the mechanism of polyphenol transport
through the cell membrane is under study. Among polyphenols, flavonoids have been shown to move
across the cell membrane through multiple transporters, compatible with their hydrophilic nature,
which makes passage through the lipid bilayer of the cell by diffusion rather uncertain [41]. However,
the purpose of this study was not to investigate the mechanism of transport of CSE and GA, and thus
further experiments will be necessary to confirm this aspect.

In both blood and intestinal non-adherent leukocytes, CSE and GA displayed ROS (reactive
oxygen species) scavenger activities at low concentrations (1 and 10 µg/mL) and pro-oxidant effects at
high concentrations (100 and 1000 µg/mL for CSE; 100 µg/mL for GA). In a cell, ROS or free radicals
are natural byproducts of chemical processes, such as metabolism. The effective and efficient control
and elimination of ROS is essential to ensure the right functioning and survival of cells and organisms.
This task is performed by an antioxidant defense system represented by two components, both present
in the cell: antioxidant enzymes and low-molecular-weight molecules. Antioxidant enzymes include
catalase, superoxide dismutase, and glutathione reductase, among others, while the most common
low-molecular-weight antioxidants are vitamins C and E (ascorbic acid and tocopherol, respectively),
glutathione, carotenoids (Vitamin A or retinol), quinines, and some polyphenols [41,42]. However,
polyphenols can also exert pro-oxidant activities, depending on their concentration and the nature of
neighboring molecules [42,43]. Studies showing both beneficial and detrimental effects of antioxidants
have alimented a controversy far from being settled. The conflicting results have depended on
variability in the experimental conditions, such as in plant species, harvesting season, the type of
solvents used for the extraction, and processes. Some authors have postulated that pro-oxidant effects
have beneficial properties, since a mild degree of oxidative stress may bring about an increase in
antioxidant defenses and xenobiotic-metabolizing enzymes, leading to cytoprotection effects, including
the mitigation of certain types of cancer [43–47]. Therefore, it seems that it is not important for the
cell to remove all the ROS, but to keep their levels under control, so as to optimize useful functions
while reducing oxidative damage [45,46]. In this frame, the increase in ROS reported here should not
be seen as negative, but on the contrary, it could be linked to the increase in phagocytosis. Phagocytic
leukocytes, when appropriately stimulated, consume oxygen and produce toxic molecules, including
ROS such as superoxide anions, in a process referred to as the respiratory burst, with the aim of
killing the invading pathogens [47,48]. Respiratory burst and phagocytosis seem to be differently
modulated by polyphenols depending upon their structure, concentration, way of administration,
cellular localization, and concentration [48,49]. Phagocytosis in vertebrates has been recognized as a
critical component of innate and adaptive immune responses to pathogens. Specialized phagocytes
in teleosts are monocyte/macrophages and granulocytes, and recently phagocytic properties have
also been attributed to teleost dendritic cells, lymphocytes, and thrombocytes [49,50]. In peripheral
human blood lymphocytes, GA and ellagic acid have been found to have a strong antiradical activity,
probably due to the presence in their structure of adjacent hydroxyl groups, three in GA and five in
ellagic acid, thereby showing the structure –function correlation [50,51]. Chestnut shell extracts are
largely composed of gallic and ellagic acid and hydrolyzable tannins, which may explain the higher
activity shown in comparison to GA alone. Indeed, it has been demonstrated that extracts present
better properties than pure molecules due to the additive and/or synergistic effects possessed by the
components when they are present in a mixture [51–53].

The modulation of cytokines by polyphenols has been reported in the literature [53–55]. It has
been observed that polyphenols are able to modulate the expression of different cytokines/chemokines
in many cell types, such as mouse macrophages, human peripheral blood mononuclear cells [55–57],
human mast cell line HMC-1 [57,58], and human monocyte cell line THP-1 [58,59]. These studies
strongly support the idea that polyphenols have the capacity to modulate the immune response and
have potential anti-inflammatory activity [53,54]. In our investigation, we examined the expression of
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two pro-inflammatory (IL-1β and TNF-α) and one anti-inflammatory (IL-10) cytokine in non-adherent
leukocytes from blood and intestine.

We reported significant variations in the expression of these genes, although such changes were
small, suggesting a limited potential for either an anti-inflammatory or pro-inflammatory effect of
the biomolecules tested in this study. TNF-α is a proinflammatory cytokine expressed at an early
stage of infection in fish, playing a key role in the regulation of inflammation: The cytokine IL-1β

has functions that widely overlap with those of TNF-α [59,60]. TNF-α is also involved in many other
processes, including the defense against microbial infections [60,61]. TNF-α stimulation results in
the activation of NF-kB transcription factor, which in turn regulates a large number of immune,
growth, and inflammation genes [61,62]. IL-10 is considered to have regulatory roles in immune
responses. It is a cytokine with potent anti-inflammatory properties that play a central role in limiting
the damage to a host induced by an excessive response, inhibiting the effect of pro-inflammatory
cytokines, and inhibiting the activation of macrophages/monocytes, through which it controls cytokine
synthesis [62,63]. The increase in IL-1β and TNF-α, respiratory activity, and phagocytosis in intestinal
non-adherent leukocytes incubated with high concentrations of CSE was in agreement with the
reported effects of such cytokines in the rainbow trout, turbot (Scophthalmus maximus), sea bream
(Sparus aurata), goldfish (Carassius auratus), and catfish (Clarias gariepinus), where IL-1β and TNF-α
increase respiratory activity, phagocytosis, and nitric oxide production through the activation of
macrophages [63,64].

Upregulation of both pro-inflammatory and anti-inflammatory cytokines have been reported in
a study carried out on the rainbow trout [64,65], where expression was related to the resolution of
inflammation. It has been suggested that the release of pro-inflammatory cytokines is necessary
to activate leukocytes to clear the phagocytized bacterial structures, while the production of
anti-inflammatory cytokines turns off the inflammation process [65–67]. The contemporary effect of
CSE on both pro-inflammatory and anti-inflammatory cytokines, although limited, seems to suggest an
alert effect of the immune defense system against a possible infectious agent. Furthermore, it is worth
noticing that the effect of CSE on the intestinal intraepithelial non-adherent leukocytes was evident
only at high concentrations (100 and 1000 µg/mL), with the 100 µg/mL concentration corresponding
to an in vivo dose of about 5–6 mg of polyphenols per day, compatible with dietary supplements
used in aquaculture. Finally, GA did not seem to exert any effect on cytokine regulation in the
intestinal non-adherent leukocytes, but only on blood non-adherent leukocytes, which also seemed to
be more sensitive to low concentrations of CSE. It is difficult to find an explanation for this behavior
that, although hypothetically, could have been related to the fact that the metabolites of polyphenols
absorbed by the intestine are found in the blood (especially GA), where they exert their action on
blood leukocytes coherently with an anti-inflammatory role for GA, as suggested by the increase in
IL-10 [67,68]. Again, the less evident effect of GA in comparison to CSE could have been attributable to
the additive and/or synergistic effects of polyphenols in the latter [51,52]. However, it is important
to note that the definition of pro- and anti-inflammatory cytokines is based on a dichotomy that has
been revealed to be too simplistic, in light of the numerous studies that have been conducted on man
and animal models. In fact, a certain cytokine can show both pro- and anti-inflammatory activities.
The variability in the properties of the cytokines produced may depend on numerous factors, such as
the quantity and nature of the cytokines produced and their reciprocal relationships, the sequence in
the synthesis, the type of target cell, the immunological situation, and the animal [68]. As an example,
pro-inflammatory cytokines seem to be the most necessary in inducing an anti-infective response,
even if their excessive production could be deleterious [69,70]. On the other hand, anti-inflammatory
cytokines are essential in controlling the cascade of pro-inflammatory mediators, but their excessive
production can be associated with severe immune depression [70,71]. Further studies will be necessary
to clarify these aspects in trout.
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4. Materials and Methods

4.1. Chemicals

Ethanol, methanol, water chromasolv® plus, histopaque, nitroblue tetrazolium (NBT), zymosan
A from Saccharomyces cerevisiae, zymosan A Saccharomyces cerevisiae BioParticles® fluorescein conjugate,
potassium hydroxide (KOH), dimethylsulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA),
1,4-dithiothreitol (DTT), methylthiazolyldiphenyl-tetrazolium (MTT), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), Folin & Ciocalteu’s phenol reagent, DNAse, penicillin, streptomycin, formic acid,
paraformaldehyde (PFA), and gallic acid (GA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Commercial tannins obtained by a natural extraction process from chestnut wood (Silvafeed®

TSP) were from SILVATEAM (Mondovì, CN, Italy). SuperScript® III Reverse Transcriptase, Express
SYBR®GreenERTMqPCRSuperMix with Premixed ROX, and phosphate buffered saline (PBS) without
calcium and magnesium were purchased from Thermo Fisher Scientific Inc. (Monza, Italy). Both RPMI
and PBS were purchased from Lonza, MS-222 was purchased from MP Biomedicals (Aurora, OH, USA).

4.2. Chestnut Shell Extract (CSE) Preparation

Chestnut shells were provided by a local company (Petretta Maria srl—Volturara Irpina, Avellino,
Italy), and 50 mL of solvent were added to 5 g of samples finely powdered. Preliminary experiments
using four different extraction methods with two extracting solvents (ethanol and water) were carried
out: (1) ethanol (100%) for 5 h at 90 ◦C (in a Soxhlet apparatus); (2) ethanol 100% for 3 h at room
temperature (RT); (3) ethanol 70%-water 30% for 3 h at RT; (4) water 100% for 3 h at 75 ◦C. The extracted
material was recovered by vacuum filtration, and the solvent was evaporated in a rotary evaporator
(Mod. Hei VAP Value; Heidolph, Schwabach, Germany). The residue was placed in a dryer and
weighed up to a constant value, and the extraction yield was calculated as the percentage weight loss
of the starting material. The possible presence of bacteria and fungi in the extracts was checked by
using agar media with negative results.

4.3. Total Polyphenol Content and Antioxidant Activity of CSE

Total polyphenol content was determined by the Folin–Ciocalteu method [72,73]. Folin–Ciocalteu
reagent (2.5 mL) previously diluted with water (1:10, v/v) and 2 mL of a 75-g/L aqueous solution of
sodium carbonate were added to 0.5 mL of an aqueous solution of the CSE. The mixture was kept for
5 min at 50 ◦C and, after cooling, the absorbance at 760 nm was measured. Total polyphenol content
was calculated as the GA equivalent (GAE) from the calibration curve of GA standard solutions
(2–40 g/mL) and was expressed as GAE/mg of extract (on a dry basis). The analyses were done in
triplicate, and the mean value was calculated.

The antioxidant activity of CSE was evaluated as antiradical activity by using the DPPH method,
as reported in Sorice et al. [22]: 100 mg of each extract was added to 2.4 mL of 0.0004% DPPH in
methanol, and the absorbance was measured at 517 nm until the reaction reached a plateau. Antiradical
activity was expressed as a percentage of inhibition (% I) of the sample (As) compared to the initial
concentration of DPPH (Ac) according to the equation % I = [(Ac − As)/Ac] × 100. The analyses were
done in triplicate, and the mean value was calculated. Total polyphenols and antioxidant activity are
reported in Table 1.

4.4. High-Performance Liquid Chromatography (HPLC) of CSE

A ThermoFisher mod. A surveyor HPLC system equipped with a pump, a degasser, a thermostatic
autosampler, and a photodiode array detector (DAD) was used for the qualitative and quantitative
analysis of CSE, as reported in Sorice et al. [22]. Briefly, the separation was carried out in an Ultra
Phenyl (150 × 4.6 mm, 5-µm pore size: 100 Å) Resteck column. The binary mobile phase consisted of
acetonitrile (solvent A) and water containing 2% acetic acid (solvent B). The system was run with a
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gradient program: 95% B for 10 min, 95% to 60% B in 35 min, 60% B to 45% B in 10 min, and 45% B to
95% B in 10 min. The flow rate was 1.0 mL/min, and the total run time was 65 min.

4.5. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Analysis of CSE

ATR-FTIR analysis was performed using a Spectrum 400 spectrophotometer (PerkinElmer,
Waltham, MA USA) equipped with a deuterated tri-glycine sulphate (DTGS) detector. Powdered dried
samples of CSE (ethanol 100% for 5 h at 90 ◦C; ethanol 100% for 3 h at RT; ethanol 70%-water 30% for
3 h at RT; water 100% for 3 h at 75 ◦C) and chestnut wood tannins (SILVATEAM) were analyzed without
any previous treatment and placed directly on the germanium piece of the infrared spectrometer,
with a constant pressure of 70 ± 2 psi applied. The FTIR spectra were recorded in the mid-IR region
(4000–650 cm−1) at resolutions of 4 cm−1 with 32 scans. The air background spectrum was recorded
before each sample, and all samples were analyzed at least three times. Prior to data analysis, each
spectrum was baseline-corrected, and the absorbance was normalized so that peak absorbance of the
most intense band was set to unity.

4.6. Experimental Fish

Adult rainbow trout weighing 500–600 g were used for this study. The fish were obtained
from a local dealer (Di Mella, Santacroce del Sannio, Benevento, Italy) and allowed to acclimate
in a recirculating water system tank at 12 ◦C for 24 h before sacrifice. Fish were euthanized by
immersion in MS-222 80 mg/L (LC50 > 200 mg/L). The fish used in this study were treated in
accordance with European Commission recommendations 2007/526/EC and 2010/63/UE on the
revised guidelines for the accommodation and care of animals used for experimentation and other
scientific purposes. This study was carried out in strict accordance with the recommendations in
the “Guide for the Care and Use of Laboratory Animals of the Biogem Consortium, Ariano Irpino,
Italy”. The protocol was approved by the Committee on the Ethics of Animal Experiments of the
same consortium. Water parameters and environmental conditions were as stated in the European
Commission recommendations 2007/526/EC and 2010/63/UE. All efforts were made to minimize
fish suffering.

4.7. Cell Culture

Leukocytes from blood were isolated according to Mariano et al. [73,74]. Briefly, blood was
withdrawn from the caudal vein using a syringe previously rinsed with heparin. Blood was diluted
1:5 with RPMI and centrifuged at 200 × g for 10 min at 4 ◦C. The pellet was diluted 1:50 with
RPMI and layered onto histopaque (1.077 g/L) and then centrifuged at 300 × g for 25 min at
4 ◦C. Leukocytes were harvested from the interface and washed with RPMI by centrifugation
at 300 × g for 10 min at 4 ◦C. Isolated leukocytes were cultured with L-15 (Liebovits Medium,
Sigma-Aldrich (St. Louis, MO, USA).) supplemented with 10% fetal bovine serum (FBS, Gibco,
Germany), 2 mM l-glutamine, 100 µU/mL penicillin, and 100 µg/mL streptomycin (Invitrogen,
Carlsband, CA, USA), and were incubated at 18–20 ◦C overnight. The following day, non-adherent
leukocytes (mainly lymphocytes) were collected and washed with PBS 1×, while adherent leukocytes
(mainly macrophages) were discarded. Only non-adherent leukocytes were used in the following
experiments. The extraction of intestinal intraepithelial leukocytes was carried out according to
McMillan and Secombes [74,75], with few modifications. Briefly, postcecal intestine was withdrawn,
cut longitudinally, and washed with PBS (without calcium and magnesium) containing 200 U/mL
penicillin and 200 µg/mL streptomycin. The intestine was scraped on the ice and cut into small pieces;
it was incubated with a modified Hank’s-balanced salt solution lacking Ca2+ and Mg2+ (at pH 7.2)
and containing 1 mM 1,4-dithiothreitol and 1 mM EDTA (at pH 7.4);.and finally placed onto a shaker
at 120 rpm for 1 h at 20 ◦C. The supernatant was collected and filtered with a 100-µm nylon filter
(millipore) and centrifuged at 400× g for 10 min at 4 ◦C. Leukocytes were purified by Nylon Wool
Fiber Columns (Polysciences Europe GmbH, Hirschberg an der Bergstrasse, Germany) according to
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Komatsu et al. [75,76]. Non-adherent leukocytes from both blood and intestine were suspended in PBS
and counted by cell counter (Casy® Cell Counter and Analyser System Model TT, Roche Innovatis AG,
Bielefeld, Germany). Leukocyte purity was checked after smearing and staining with MGG-Quick
(04—090805, Bio-Optica, Milan, Italy).

4.8. Cytotoxicity Assay

The effect of CSE on trout non-adherent leukocytes was determined by the MTT test, as described
in Reference [76]. In all experiments, GA was employed as a reference standard. After exposure
to 1, 10, 100, and 1000 µg/mL of CSE (the concentration refers to the total polyphenols contained
in the chestnut shell extract) (all CSE extracts were used in the in vitro experiments with consistent
results, and therefore we refer to them in this manuscript as CSE) and 1, 10, 100, and 1000 µg/mL of
GA for 24 h at 20 ◦C, non-adherent leukocytes were added with 5 mg/mL of MTT for 4 h at 27 ◦C.
Subsequently, the medium was removed, and dimethyl sulfoxide was used to dissolve the violet
crystals. A microplate reader (Model 680 Biorad) was used to measure the absorbance at a wavelength
of 570 nm. Since GA was found to be toxic at 1000 µg/mL, this concentration was omitted in the
following experiments.

4.9. Cellular Content of Polyphenols

To assess if polyphenols enter the cell, non-adherent leukocytes from blood and intestine
(106 cells/well) were incubated with 10 µg/mL of CSE and 10 µg/mL of GA dissolved in DMSO
for 15, 60, and 180 min. A negative control was carried out simultaneously with the DMSO. The
final concentration of DMSO in the incubation medium was 0.0001% v/v both for treated and control
samples. After treatment, non-adherent leukocytes were washed in PBS. The cell suspension was
washed three times with PBS or until the supernatant was devoid of GA (as verified by HPLC analysis),
and was subsequently lysed by sonication. Non-adherent leukocytes were then extracted twice with 1
mL of methanol and centrifugation at 14,000 x g for 2 min. The organic phase was evaporated under a
stream of nitrogen and suspended in HPLC mobile phase. The experiment was performed in triplicate
and repeated three times. Polyphenol analysis was performed by LC-4000 Series Integrated HPLC
Systems (JASCO Corporation 2967-5 Ishikawamachi Hachioji-shi Tokyo Japan) consisting of a column
oven (model CO-2060 plus) set at 30 ◦C, a UV/Vis Photodiode Array Detector (model MD-2018
plus), an Intelligent Fluorescence Detector (model PF-2020 plus), a liquid chromatography pump
(model PU-2089 plus), an Autosampler (AS-2059 plus), and the ChromNAV software program (JASCO
Corporation 2967-5 Ishikawamachi Hachioji-shi Tokyo Japan). A C18 Luna column with a 5-µm
particle size and a 25 cm × 3.00-mm I.D. (Phenomenex, Torrance, CA, USA) was used, with a guard
cartridge of the same material. All solvents were filtered through a 0.45-µm filter disk (Millipore Co.,
Bedford, MA, USA). The mobile phase was composed of water–formic acid (99.80:0.20, v/v) (solvent
A) and methanol (solvent B). The specific elution conditions were 0–6 min, 35% B; 6–9 min, 35%–60%
B; 9–14 min, 60%–80% B. Each run was followed by 5 min of washing with 100% B. The system was
equilibrated between runs for 10 min using the starting mobile phase composition. Each sample
was analyzed at least twice. The flow rate was 0.8 mL/min. The injection volumes were 20 µL. The
fluorescence detector was designed to provide high selectivity and sensitivity for GA. It was set at a
wavelength of 278 absorbance and 366 emission. GA concentration in the cells and in the medium was
extrapolated by constructing a standard curve of serial dilutions of GA.

4.10. Superoxide Anion Production Assay

Superoxide production was determined as the reduction of NBT according to Mariano et al. [73,74],
with some modifications. Briefly, non-adherent leukocytes from blood and intestine (at a density of
400,000 cells/well) were cultured with 1, 10, 100, and 1000 µg/mL of CSE and 1, 10, and 100 µg/mL of
GA incubated at 20 ◦C for 3 h. A negative control was carried out simultaneously with the DMSO.
Both the non-adherent leukocytes pretreated with the extracts and the control leukocytes were then
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incubated with PBS containing NBT (1 mg/mL) and zymosan A (2000 µg/mL) for 90 min. Following
incubation, non-adherent leukocytes were washed and centrifuged at 500 x g for 10 min at 4 ◦C in PBS
twice. The intracellular formazan was dissolved in 120 µl of 2-M KOH and 140 µl of DMSO, and the
resulting color reaction was measured with a microplate reader (Model 680 Microplate Reader, Biorad,
Segrate MI, Italy) at a wavelength of 620 nm.

4.11. Phagocytosis Assay

The phagocytosis of zymosan A fluorescein conjugate by rainbow trout non-adherent leukocytes
was measured by flow cytometry according to Reyes-Becerril et al. [77,78], with some modifications.
Briefly, cells (106 cells/well) were cultured in a 96-well microplate and treated with 1, 10, 100, and
1000 µg/mL of CSE and 1, 10, and 100 µg/mL of GA for 3 h. A negative control was carried out
simultaneously with the DMSO. To stimulate phagocytosis, cells were incubated for 30 min with
particles of zymosan A fluorescein conjugate at a cell/zymosan ratio of 1:10 at 20 ◦C. Thereafter, the
samples were placed on ice, and 400 µl of ice-cold PBS was added to each sample to stop phagocytosis.
The fluorescence of the extracellular zymosan particles was quenched by adding 40 µl of ice-cold
trypan blue (0.4% in PBS). All samples were mixed gently and studied in a flow cytometer to analyze
the phagocytic cells. All flow cytometry results were analyzed with FACSuite Software v.1.0.5.3841
(BD Biosciences). Four replicates were prepared and were each assayed in triplicate. The results were
expressed as phagocytic activity, considered to be the percentage of cells with internalized particles
of zymosan A fluorescein conjugate within the phagocytic cell population. The relative number of
ingested zymosan particles per cell (phagocytic capacity) was assessed in arbitrary units from the
mean fluorescence intensity of the phagocytic cells.

4.12. qPCR

Cells (106 cells/well) were cultured in a 96-well microplate and treated with 1, 10, 100, and
1000 µg/mL of CSE and 1, 10, and 100 µg/mL of GA for 3 h. A negative control was carried out
simultaneously with the DMSO. Afterwards, to stimulate inflammation, the cells were incubated with
PBS containing zymosan A (2000 µg/mL) for 30 min [78–80]. Non-adherent leukocytes were then
washed and centrifuged twice at 500 x g for 10 min at 4 ◦C in PBS. Total RNA from non-adherent
leukocytes of blood and intestine was isolated and quantified with a Nanodrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) using an SV Total RNA Isolation System
(Promega Corporation, Madison, WI, USA). Reverse transcription was performed using 1 µg of total
RNA (previously treated with DNAse), oligo dT primers, and SuperScript® III Reverse Transcriptase.
In addition, cDNA preparations of non-adherent leukocytes from blood and intestine were used in PCR
amplifications. Gene-specific primers for IL-1β (AJ223954.1), TNF-α (AJ278085.1), IL-10 (AB118099.1),
and EF1α (AF498320.1) were designed according to the data reported in the literature [80–82] as follows:
IL-1β F-5′ GCTGGAGAGTGCTGTGGAAGAACATATAG 3′ and R-5′ CCTGGAGCATCATGGCGTG
3′; TNF-α F-5′ CAAGAGTTTGAACCTCATTCAG 3′ and R-5′ GCTGCTGCCGCACATAAAG 3′; IL-10
F-5′ CGACTTTAAATCTCCCATCGAC 3′ and R-5′ GCATTGGACGATCTCTTTCTT 3′; EF1α F-5′

CATTGACAAGAGAACCATTGA 3′ and R-5′ CCTTCAGCTTGTCCAGCAC 3′. PCR amplification
was carried out in a Helix Thermal Cycler (Diatech Pharmacogenetics S.R.L., Jesi AN, Italy). PCR
conditions consisted of denaturation at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 95 ◦C
for 30 s; annealing at 60 ◦C for 30 s; and extension at 72 ◦C for 30 s. A final elongation step was
performed at 72 ◦C for 10 min. The PCR product was separated by 2% agarose gel electrophoresis with
ethidium bromide and visualized with a Chemidoc UV transilluminator. The quantification of PCR
products was performed by densitometric analysis using Quantity-One software (Biorad, Segrate MI,
Italy). All samples were normalized to the housekeeping gene, EF1α. Real-time reactions were carried
out on a 7900HT Real-Time PCR System (Applied Biosystem, Foster City, CA, USA) using Express
SYBR®GreenERTMqPCRSuperMix with Premixed ROX as a reference dye in a total volume of 20 µL
per reaction. The primers were the same as those used in the semiquantitative PCR. Each reaction
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contained 10 µL of SYBR Green mix, 0.4 µL each of forward and reverse primer (10 µM), and 4 µL of
10× diluted cDNA. The thermal program included 2 min at 95 ◦C and 40 cycles of 95 ◦C for 15 sec
and 60 ◦C for 1 min. Each reaction was run in duplicate. A no-template control and dissociation curve
were performed to confirm the specificity of the assays. A dilution series was prepared to ensure the
efficiency of the reactions. All samples were normalized to the housekeeping gene, EF1α. Data were
analyzed using the 2∆∆Ct method to calculate relative expression levels.

4.13. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) at a significance level of 0.05,
following confirmation of normality and homogeneity of variance. Where significant differences were
detected by ANOVA, data were subjected to Duncan’s multiple range test. All values were reported
as mean ± SD, and all analyses were carried out with the statistical software Statistica version 7.0
(Statsoft Inc., Tulsa, OK, USA).

5. Conclusions

In conclusion, the findings of this study demonstrate that CSE was able to modulate
immunological parameters in the blood and intestinal non-adherent leukocytes of rainbow trout and
sustain the anti-inflammatory role exercised by bioactive molecules, among which were polyphenols,
in fish [71,83]. Certainly, part of the biological activity could be ascribed to the presence in CSE of
GA and derivatives, whose anti-inflammatory, antioxidant, antiviral, and anticancer properties are
known [72,83,84]. Nevertheless, our results indicate that CSE brought about a more significant effect
with respect to GA alone on the immune parameters considered here. Such an outcome was probably
due to an additive and/or synergistic effect of the mixture of bioactive molecules, among which were
polyphenols. The evidence that polyphenols readily enter non-adherent leukocytes can also be of some
utility in designing functional diets and feeding schedules for farmed fish.
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