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Abstract: The movement of fish can be regulated by behavioural manipulation through non-physical
barrier systems. Aquatic invasive species are becoming one of the major management issues in North
America, and threaten native aquatic ecosystems, including freshwater fish. Placements of non-physical
barriers in waterways can help disrupt the movement of invasive fish. This study examined the
effect of a strobe-light stimulus on the avoidance behaviour of two proxy species, juvenile common
carp (Cyprinus carpio) and juvenile channel catfish (Ictalurus punctatus), in a controlled laboratory
environment. For each species, three sequential treatments of pre-stimulus, strobe-light stimulus, and
post-stimulus for 30 min periods were recorded on acclimated groups of 5 juvenile common carp and
5 juvenile channel catfish using 15 and 13 replicates, respectively. The distribution of juvenile common
carp individuals throughout the tank did not change significantly with treatment, nor did cohesive
grouping behaviour. Similarly, there were no significant differences across experimental treatments in
average location/distance of juvenile channel catfish relative to the strobe light or degree of cohesion
in response to the strobe light. Non-physical barriers have been widely reported to vary between
species and environmental conditions. These results suggest that strobe lights evoke no avoidance or
attractive responses in juvenile common carp and juvenile channel catfish, and will likely not be an
effective barrier to inhibit movements of juvenile invasive fishes.

Keywords: fish barrier; deterrence; invasive species; juvenile life stages; fisheries management;
conservation

1. Introduction

In recent years, aquatic invasive species has become one of the major management concerns,
given their negative impact on our ecosystems, and increasing population size and habitat ranges [1–3].
Physical barriers in aquatic environments are common, effective management techniques that can
physically obstruct fish movement [4]. Physical barrier technologies may be useful in managing fishes
in reservoir environments, however, areas with high debris loads increase maintenance requirements,
rendering the application of such barriers impractical [5]. By contrast, non-physical deterrence systems
do not constrain flow or restrict navigation and, in some cases, allow the movement of non-target
organisms [6]. Non-physical deterrence systems can be defined as any stimuli that discourages or
prevents a species from moving into specified areas [6]. Non-physical deterrence systems rely on the
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manipulation of sensory systems that drive species behaviour. Various external stimuli have been used
to manipulate fish behaviour, such as stroboscopic lights [7,8], broadband sound [9,10], and chemical
cues (e.g., alarm cue) [11–13]. The effectiveness of various non-physical deterrence systems is variable
across species, and success is dependent on the nature of the behavioural response [5–7,14–17]. Such
variation suggests that no single deterrence method will be a ‘one-size fits all’ solution, and that the
installation of non-physical deterrence systems must be tailored towards specific project goals [6].
While barrier success varies with objective, species, device, and location, strobe lights have been
effective for the greatest number of species perhaps due to their relatively easier deployment [4,7,8,17].

Fish use several sources to gather information from their external environment [18]. The cues most
often used for daily activity (feeding, mating, avoiding predators) are light, sound, temperature, vibration,
and chemicals [18]. Therefore, the sensory systems to detect these cues can be well-developed [18].
The aquatic environment is full of visual indicators, and teleost fishes are highly adapted to detect
changes in the visual environment [7,13]. Strobe lights are a form of non-physical deterrence system
and can be defined as intermittent high-intensity light for short durations [14,19]. The use of strobe
lights as a deterrence system for common carp (Cyprinus carpio) aims to manipulate this anatomical
characteristic [7]. The strobe light provides sufficient light for orientation, however, the abnormal
pulsating changes in brightness stimulate avoidance reactions [6,16].

Strobe lights have received greater attention as a behavioural stimulus, predominantly in
guiding migrating salmonids [14,20]. Strobe lights have been shown to deter a variety of species
(e.g., chinook salmon (Oncorhynchus tshawytscha), common carp, gizzard shad (Dorosoma cepedianum),
largemouth bass (Micropterus salmoides), rainbow smelt (Osmerus mordax), and yellow perch
(Perca flavescens)) [7,14,15,17,18,21]. For example, adult common carp stayed away from strobe lights [7].
In general, most studies to date have evaluated sensitivity of fishes to strobe lights in adults or sub-adults,
but not juvenile stages. Moreover, most studies tend to focus only on target species, hence limited
information is available for potential impacts on non-target or native species including channel
catfish [6].

The development of non-physical barrier technologies aims to deter invasive species by disrupting
potential dispersal routes. Prevention of aquatic invasive species entering new regions provides a higher
probability of conservation success, as removing established populations is nearly impossible [3,22].
For our research, juvenile (i.e., age-0) common carp were used as a model organism for target species,
and juvenile (i.e., age-0) channel catfish (Ictalurus punctatus) as non-target species. Common carp is an
introduced species in Canada, United States, Australia, Kenya, and elsewhere in the world [23–25].
They are considered harmful to native fishes and plants as they destroy submerged aquatic plants
and increase the turbidity of surrounding water [24–26]. Channel catfish are native to North America,
including the Great Lakes [26]. This study used juvenile common carp and juvenile channel catfish to
determine the effectiveness of a strobe-light system on avoidance behaviour in juvenile fishes.

2. Results

The mean number of fishes differed significantly between grid sections (A, B, and C) but not
between treatments (pre-stimulus, stimulus, and post-stimulus) for both juvenile channel catfish and
juvenile common carp. There was no significant difference on the mean score of cohesive groupings
between treatments.

2.1. Juvenile Channel Catfish

There was no significant interaction between grid sections (A, B, and C) and treatments (pre-stimulus,
stimulus, and post-stimulus) on the mean number of fish (ANOVA: F4, 126 = 0.83, p = 0.51, Figure 1).
The mean number of fish did differ significantly between sections (ANOVA: F2, 126 = 78.60, p < 0.001).
Fish spent more time in section A and C compared to B (Figure 1). However, the mean number of fish
did not differ significantly between treatments (ANOVA: F2, 126 = 0.17, p = 0.85; Figure 1). Moreover, a
two-factor repeated-measures ANOVA yielded no significant difference in the mean score of cohesive
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groupings between treatments (p > 0.05). In general, juvenile channel catfish stayed in a group of three
or more most of the time.
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There was no significant interaction between sections and treatments on the mean number of fish
(ANOVA: F4, 108 = 0.66, p = 0.62; Figure 2). The mean number of fish significantly differed between
sections (ANOVA: F2, 108 = 21.3, p < 0.001), where fish spent more time in location A and C, compared
to B (Figure 2). However, the mean number of fish did not differ significantly between treatments
(ANOVA: F2, 108 = 0.30, p = 0.74; Figure 2). In addition, the mean score of cohesive groupings did not
differ significantly between treatments (ANOVA: F2, 21 = 0.93, p = 0.41). Much like juvenile channel
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3. Discussion

Although juvenile channel catfish and common carp did not exhibit significant responses to
the three treatments (pre-stimulus, stimulus, post-stimulus), they did exhibit a preference to certain
sections within the experimental tank. All grid sections were assumed to be equal, however, the results
suggest that the average distributions per grid section were different during the pre-stimulus treatment.
This may be an inevitable result of protective cover [27,28] as sections A & C both included corners
of the tank that offered more security than the center grid section. Furthermore, the tank drainpipe
was also located in grid section A, which could have caused an attractive effect. This may be a more
appropriate test of avoidance behaviour, as the test groups demonstrated preference within the tank.
Conclusions about the ability of the stimulus to remove fish from previous areas of preference can
clearly demonstrate stimulus aversion [29].

The avoidance of the strobe-light stimulus was quantified by the spatial distribution of individuals
during the 30 min stimulus treatment. The lack of significance between average frequencies of fish
distribution within the tank demonstrates that the strobe light had no effect on the test individuals.
While Figures 2 and 3 suggest that there was a decline in the distribution of both species in section
A, and an increase in section C, marginal overlap demonstrates no significant change (i.e., p > 0.05).
Königson et al. [18] suggested that it is not necessary to startle fish, but to provide a component of the
response that controls movement in a specific direction. The flash duration of the strobe light is a more
important factor rather than the spectral composition of the light source, potential changes to flash
duration in the present study could have yielded dramatically different results [17,19].
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Cohesive behaviour among animals is an attempt to dilute predation risk [30]. A higher number
of individuals in a group decreases the probability that an individual will be harmed [30]. This research
showed that the frequency of cohesive grouping between test individuals did not vary with treatment.
Fish in dense aggregations often produce different responses in comparison to individuals and may
respond to light stimuli differently [14]. Cohesive behaviour is used for various activities among
species, the formation of temporary or permanent groups allows for potential fitness advantages as a
result of higher quality reproduction, foraging or defense [31]. For example, sticklebacks often inspect
a predator in pair groupings, as the probability of predation during inspection is reduced by 50% when
a partner is present [30]. As the strobe-light barrier provides no harm to individuals, it is possible that
experimental individuals evaluated their interactions with the barrier. In escape studies, fish often
swim parallel to the barrier, turn away and retreat, and then approach the barrier again [32]. These
behaviours were thought to be testing the barrier and when no harm was encountered individuals
escaped confinement [32].

The relative indifference of juvenile channel catfish and juvenile common carp to strobe lights
suggests that strobe lights would not be an effective barrier. In contrast, adult common carp stayed away
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from strobe-lights [7]. Channel catfish also showed low sensitivity to strobe lights when compared to
largemouth bass, chinook salmon, and yellow perch [15]. Previous literature as suggested that foraging
schedules and activity rates may be linked to the efficacy of non-physical barriers [32]. For example,
largemouth bass had higher foraging success during daylight hours while also having greater escape
rates during that time [33]. Pelagic fishes, such as alewife (Alosa pseudoharengus), gizzard shad, and
rainbow smelt, were repelled by bubble barriers, while demersal fishes, such as the white sucker
(Catostomus commersonii), were attracted [16]. The flash rate of the strobe light was set to random flash
(manufacturer setting), which could have been too similar to natural conditions. Strobe-light efficacy
depends on a flash rate that is distinguishable from natural light fluctuations produced by waves
and clouds [34]. Many studies note lower strobe-light efficacy during daylight hours, suggesting that
ambient light dilutes the effect of the strobe light [4,14,19,29]. Furthermore, light as a deterrence system
varies with wavelength and turbidity [14,18,19].

The wide range of studies presenting variable degrees of barrier efficacy with environmental and
species traits suggests that there must be a case-by-case analysis to determine suitability. Strobe-light
barriers are well known in fish management for their low cost and simplicity, and have attracted much
attention in the application of invasive species management. This study suggests that strobe lights will
not be an effective barrier to the spread of invasive common carp juveniles, however, studies examining
the different frequencies of strobe light or using different tank size may provide more reliable results.

4. Materials and Methods

4.1. Experimental Subject and Set-Up

The study was conducted in the Aquatic Life Research Facility at the Canada Center for Inland
Waters in Burlington, Ontario, Canada. One experimental tank (3.04 m × 1.06 m × 0.42 m) was used
to conduct 1.5 h trials for either juvenile common carp (15 replicates) and juvenile channel catfish
(13 replicates). Only one-half of the experimental tank was used, to ensure that individuals could be
recorded by camera (Figure 3). Each trial consisted of three sequential 30 min treatment periods on
groups of 5 randomly selected juveniles (i.e., age-0) common carp (n = 75, length = 6.12 ± 0.67 cm)
or juvenile (i.e., age-0) channel catfish (n = 65, length = 7.60 ± 0.45 cm). For the experiment, each
individual fish was only used once. The three treatments included a pre-stimulus period (strobe light
off), a stimulus period (strobe light on), and a post-stimulus period (strobe light off).

Prior to the study in July 2015, juvenile common carp and juvenile channel catfish were purchased
from Osage Catfisheries (Osage Beach, MO, USA). Fishes were housed in a series of large recirculating
tanks (~689 L). Water temperatures were maintained at approximately 14 ◦C. Fishes were fed (1.0%–1.5%
of fish weight) daily with commercial fish food (Profishent Trout Chow, Martin Mills, Inc., Elmira, ON,
Canada) and maintained in a 12 h/12 h (dark/light) cycle.

The experimental tank was enclosed with blackout blinds to maintain controlled lighting conditions.
Above-tank lighting was automated on a daylight-hour schedule, dimming from 25% to zero by
21:00, and increasing from zero to 25% by 07:00. For each species, test groups of juvenile fishes were
transferred to the experimental tank using disinfected dip nets 17 h before the sequential treatments
were applied. Water temperature was maintained at 12–14 ◦C, and water flow was provided at all
times to keep consistent temperatures. An aeration bar was placed on the side of the tank where fish
were not present. The physical barrier placed to divide the tank prevented fish from moving out of the
filming area without disrupting water flow. The submerged strobe light (See Brite LED Underwater
light, IAS Products Ltd., North Vancouver, BC, Canada) with random flashes (0.05–1.0 s flash rate,
where each flash lasts 1.5 ms) was placed opposite the barrier and attached to the center of the wall of
the experimental tank (Figure 3). This strobe light (See Brite LED Underwater light, IAS Products Ltd.,
North Vancouver, BC, Canada) uses 110 volt AC ± 10% at 50/60 Hz and consists of 4 LED (light intensity
= 13,402 lumens) circuit board panels radiating light at 360◦ with a full spectrum (400–700 nm), and
had a 1.8 ampere demand. Strobe-light strength (LED light intensity = 13,402 lumens) was measured
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using a portable lux meter with a waterproof probe (Millwaukee Instruments, Inc.). In ambient light
conditions (i.e., with experimental room lights on but strobe light turned off), light levels within the
tank ranged from 0 to 66 lux in the experimental tank (mean light level = 15.58 lux, n = 12), whereas
with strobe lights including experimental room lights turned on, light levels ranged from 783 to 31,600
lux (mean light level = 6176.00 lux, n = 6) [7]. Due to strobing, precision of the portable light meter,
and a relatively small size of tank, we only reported the ranges of light levels measured within the
tank. Light levels were kept consistent and appropriate for this experimental design; light levels
were highest near the strobe light when flashing and decreased as the distance from the strobe light
increased, with the lowest light levels observed at the far end of the tank. At the end of each trial, the
experimental tank was drained and rinsed before the next test group was introduced to reduce the
potential effect of chemical cues that may have been produced during the previous trial.

4.2. Data Collection and Analysis

Each trial was recorded for the full duration using a submerged camcorder (GoPro Hero) and
overhead camcorder (Canon XA-25). Trial recordings were used to quantify juvenile common carp
and juvenile channel catfish behaviour during treatment sessions. Within the experimental tank, red
waterproof tape was applied to laterally divide the filming arena into three sections, labeled A to C,
starting closest to the camera’s field of view (Figure 3). The spatial distribution of fish during each
treatment session was analyzed using a time-sampling approach. At 1 min intervals, the number of
fish in each grid section of the tank was recorded manually, totaling 30 observations per treatment.
The total number of fish observed in each grid section over the 1 min interval was totaled and averaged
across all trials.

Group cohesion is also a measure of avoidance behaviour in animals [35,36]. Cohesive behaviour
was evaluated using JWatcher [37,38] scoring software for behavioural analyses. The ethogram for the
analysis aimed to identify a continuous tally of grouping interactions within each treatment session.
A grouping was defined as two or more individuals within one body length or less distance, for at
least five seconds. The five second duration of grouping ensured that positions were intentional by
the individuals in the group, and not a byproduct of passive movement within the tank [35,39,40].
Average total body length of test individuals was 6.12 ± 0.67 cm, representing 4% of the tank length.
It was assumed that individual position within less than one body length indicated intentional
positioning [7,35,40,41]. Cohesion groups were denoted as ‘2’ through ‘5’, corresponding directly to the
number of individuals in the group as events (Table 1). The cohesion group ‘1’ described states where all
fish in sight were greater than one body length away from all other individuals (no grouping behaviour
present). The ‘0’ cohesion group represented states where no individuals were in the camera’s field of
view and, thus, no observations of cohesive behaviour could be recorded. The proportion of time spent
out of sight was totaled, and treatment sessions that exceeded 15 min were excluded from the analysis.
The frequency of grouping type was determined by totaling the number of observations of a grouping
and dividing by the total number of observations made during the treatment session. The average
frequency was calculated across all trials for each treatment.

For statistical analyses, two-way ANOVAs were used to examine the differences between mean
number of fish per minute, per grid, between all treatments. The predictor variables were treatments
and grid sections, and the response variable was the total number of fish per grid section. The null
hypothesis was that there were no significant differences in the frequencies of fish per grid section
between treatments and grid sections. Moreover, single-factor repeated-measures ANOVA was used
to determine if there was a significant difference in the mean frequency of a grouping type between
treatments. The predictor variable was treatment type, and the response variable was the average
frequency of grouping type. The null hypothesis was that there were no significant differences between
treatments. All statistical tests used a significance level of 0.05 and were conducted using SPSS v23.0.
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Table 1. Rules and examples for cohesion scoring based on number and formation of fishes in the tank.

Cohesion Group and Points Number of Fish Example Configurations

0 1
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