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Abstract: In this study, the changes in centrifugal loss, TVB-N, K-value, whiteness and sensory
evaluation of glazed large yellow croaker were analyzed at −10, −20, −30 and −40 ◦C storage. The
Arrhenius prediction model and long-short-term memory neural networks (LSTM-NN) prediction
model were developed to predict the shelf-life of the glazed large yellow croaker. The results showed
that the quality of glazed large yellow croaker gradually decreased with the extension of frozen
storage time, and the decrease in quality slowed down at lower temperatures. Both the Arrhenius
model and the LSTM-NN prediction model were good tools for predicting the shelf-life of glazed
large yellow croaker. However, for the relative error, the prediction accuracy of LSTM-NN (with
a mean value of 7.78%) was higher than that of Arrhenius model (with a mean value of 11.90%).
Moreover, the LSTM-NN model had a more intelligent, convenient and fast data processing capability,
so the new LSTM-NN model provided a better choice for predicting the shelf-life of glazed large
yellow croaker.

Keywords: large yellow croaker; frozen storage; Arrhenius model; long-short-term memory neural
networks model; quality

1. Introduction

As a nutritious and delicious seawater product, large yellow croaker (Pseudosciaena crocea)
is widely loved by consumers. The production of farmed large yellow croaker was
225,549 tons in 2019 [1], which is the largest producer of marine farmed fish in China.
However, it is also highly susceptible to spoilage [2]. Freezing and frozen storage are
usually used to extend preservation time of large yellow croaker [3] because the low tem-
perature can inhibit the growth of microorganisms and certain enzymatic reactions [4,5].
Therefore, freezing is considered one of the most effective methods of fish preservation,
which is widely used both onshore and on fishing vessels.

Although freezing can significantly extend the shelf-life of fish, inevitably, cryop-
reservation can also lead to several undesirable effects, including moisture loss, protein
degradation, loss of freshness, and microstructural disorders [6]. To minimize these un-
desirable effects, one promising method is achieved by the ice glazing [7,8]. Pre-frozen
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large yellow croaker is immersed in an ice-cold solution for some time, and the solution
forms a thin layer of ice on the surface of the fish, which is considered as a protective layer
that serves to avoid contact between the fish and air, reduce dry consumption, and reduce
temperature fluctuations [9].

Water is usually used as a raw material for ice glazing. In some recent reports, some
natural food additives have been shown to be good alternatives. In a study by Tan et al. [8],
an ice glaze containing 0.1% sodium polyacrylate (SP) and 0.3% D-sodium erythorbate
(DSE) was effective in extending the duration of squid in frozen storage. Shi et al. [10]
found that ice glazes made with rosemary extract were more effective in controlling TVB-N
and drip loss.

Shelf-life is a very important quality characteristic of a food product and is of great
interest [11], defined as the length of time it can be stored without being unacceptable to the
consumer. Similar to other general foods, consumers purchase fish foods determined by
physical-chemical attributes such as appearance (color, texture) and odor [12]. In addition
to this, total volatile base nitrogen (TVB-N) is often used as a marker of protein and amine
degradation, is widely used to interpret the freshness of meat [13] and has corresponding
national standards to define its limit values. It is well known that changes in fat can also
be a good indicator of changes in fish quality [14], TBARS is one of the most important
indicators to assess lipid oxidation, which is used to quantify the secondary by-products of
polyunsaturated fatty acid degradation. However, there is no relevant standard to define
their limiting values. Therefore, fish spoilage cannot be directly determined by reaching a
certain threshold through indicators such as FFA and TBARS.

Multiple accelerated shelf-life testing (MASLT) can monitor different characteristics
of food, and it is an acceptable method for shelf-life prediction. In recent years, shelf-
life prediction of squids [15], gilthead sea bream [6], and dried shrimp [16] have been
mostly predicted using MASLT. Therefore, the MASLT methods were chosen to predict the
shelf-life of glazed large yellow croaker in our research.

Kinetic models are now being widely used to predict food quality changes, and there
are many reports using the Arrhenius model to simulate the prediction of quality changes
in fish. Examples include sardine fillets [17], rainbow trout [18], and tuna [6]. The use of
the Arrhenius model provides a good prediction of the quality changes of fish products
during storage.

In addition, as artificial intelligence has become more modern, artificial neural net-
works (ANNs) have been used by researchers to explore the prediction of certain properties
of the food industry [19]. ANNs are nonlinear mathematical models consisting of a large
number of interconnected neurons that identify complex relationships between input
and output data through their strong learning capabilities [20]. ANNs can include back
propagation neural networks (BP-NN) and long-short-term memory neural networks
(LSTM-NN) [21]. However, according to Wang et al. [22], BP-NN has the weak multi-
output ability and self-learning ability. LSTM-NN, as a new neural network model, is used
in lithium battery lifetime prediction [23], complex chemical process yield prediction [24],
protein structure prediction [25], but applying LSTM-NN to aquatic product shelf-life
prediction is almost not reported.

To achieve the goal of predicting the shelf-life of glazed large yellow croaker, we
compared TVB-N, K values, water retention, color difference, and sensory analysis of ice-
glazed large yellow croaker containing 0.1% SP and 0.3% DSE at different storage conditions
(−10 ◦C, −20 ◦C, −30 ◦C, and −40 ◦C) with reference to the solution formulation of Tan
et al. [8]. These data were used to fit the Arrhenius model and LSTM-NN model for
shelf-life prediction.

2. Materials and Methods
2.1. Sample Preparation

The large yellow croaker with an average weight of 650 g ± 100 g was purchased from
the Luchao Port seafood market and kept fresh for rapid transport back to the laboratory.
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After sudden death with ice, the fish was transferred to a spiral freezer (Yantai Moon Co.,
Ltd., Yantai, Shandong, China) for freezing at −35 ◦C with a wind speed of 10 m/s. The
temperature of the center of the large yellow croaker was monitored using a temperature
collector (2640A, Fluke, Everett, WA, USA), and the freezing end point of the fish body
center was selected as −18 ◦C. A solution containing 0.1% SP and 0.3% DSE was prepared
and used as an ice glaze, stored at 4 ◦C. The pre-frozen large yellow croaker was immersed
in the glazing solution for 25 s, maintaining a glazing ratio of approximately 10%. After
glazing, samples were packaged in polyethylene bags and randomly divided into four
groups (12 strips per group) and stored at −10, −20, −30, and −40 ◦C, respectively, and
experiments were performed every 30 days. An additional batch of samples (12 strips)
was prepared, treated in the same way, and preserved at −5 ◦C for model validation,
with experiments performed every 7 days from day 77 onwards. In addition, large yellow
croaker samples were thawed in flowing water (20 ± 5 ◦C) before testing, and the thawing
end point was considered when the fish temperature reached 4 ◦C.

2.2. Centrifugal Loss

Referring to the method of Tan et al. [26], about 2 g of thawed large yellow croaker
back muscle was weighed, wrapped in filter paper and loaded into polyethylene centrifuge
tubes (50 mL), centrifuged at 5000 r/min for 10 min. Centrifugal loss rate was calculated
from the weight before centrifugation (W1) and the weight after centrifugation (W2), and
each measurement was made in triplicate with the following equation.

Centri f ugal loss/% = (W1 −W2)W1 × 100

2.3. Total Volatile Base Nitrogen (TVB-N)

Referring to the method of Li et al. [27], five g of chopped large yellow croaker meat
was weighed and mixed with 1.5 g of magnesium oxide in a digestion tube. Analyzed
using a Kjeldahl nitrogen analyzer (Kjeltec 8400, Foss, Copenhagen, Denmark). The results
were expressed as mg N/100 g, and each test was performed in triplicate.

2.4. K Value

ATP-related compounds were improved on the basis of the method of Yang et al. [28].
A 5 g sample was weighed, homogenized by adding 10% v/v perchloric acid solution,
centrifuged at 8000 r/min for 15 min at 4 ◦C, and the supernatant was removed. The
supernatant was removed. The precipitate was homogenized again by adding 5% v/v
perchloric acid and centrifuged under the same conditions, and this operation was repeated
twice. The supernatant was combined and the pH was adjusted to 6.5 with potassium
hydroxide solution and placed at 4 ◦C for 30 min. The supernatant was fixed to 50 mL with
ultrapure water and filtered through a 0.22-µm membrane.

The analysis was performed by HPLC (Waters 2695, Milford, CT, USA) using a
phosphate buffer at pH 6.5 and methanol in the ratio of 95:5 for 20 min with detection at
254 nm. Each measurement was performed in triplicate.

2.5. Color Measurement

The color of the dorsal muscles of large yellow croaker was measured using a benchtop
spectrophotometer (YS6010, Shenzhen Sanenshi Technology Co., Ltd., Shenzhen, China)
with a measurement diameter of 8 mm, L*, a*, and b* were used to indicate the brightness,
red-green, and yellow-blue color of the muscles, respectively, and each set of samples
was repeated five times. The calculation of whiteness was performed according to the
following equation.

Whiteness = 100−
√
(100− L∗)2 + a∗2 + b∗2
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2.6. Sensory Analysis

The sensory attributes of large yellow croaker were assessed on fish samples by a
sensory panel of eight trained evaluators. Based on the method protocol developed by
Ozogul et al. [29] with some modifications. The samples were evaluated for the quality of
the ice glaze before thawing, and color, odor, tissue morphology, muscle elasticity of the
large yellow croaker flesh after thawing. For each parameter, a scale of 1–10 was evaluated
(10 being the best quality and 1 being the worst quality).

2.7. Shelf-Life Prediction

To evaluate the shelf-life of ice-glazed large yellow croaker, the Arrhenius model and
the LSTM-NN model were used.

2.7.1. Arrhenius Model

Based on the method of Chaudhry et al. [30]. The shelf-life was assessed by the
MASLT method. Firstly, the characteristics that changed significantly with preservation
time were selected as indicators of principal component analysis (PCA). Secondly, the
time-dependent principal component (PC) was selected as a multivariate kinetic parameter
for large yellow croaker shelf-life prediction. The kinetic order, rate constant, activation
energy and acceleration factor of the multivariate kinetic parameters were calculated by
combining the kinetic equation and Arrhenius equation to predict the shelf-life.

Most foods conform to the zero- or first-order chemical kinetic model, and the reaction
rate at a constant temperature according to the mass-action law of the primitive reaction
can be expressed in the following metric:

V = −dM
dt

= kMn

where V is the reaction rate; t is the storage time; M is the quality factor; k is the reaction
rate constant; and n is the number of reaction stages.

Integrating both sides of the above equation simultaneously yields:∫ M

M0

−dM
dt

dt =
∫ t

0
kMndt

If n = 0, the zero-level dynamics model can be obtained from the above equation:

M0 −M = kt

If n = 1, the first-level dynamics model can be obtained from the above equation:

lnM0 − lnM = kt

The deformation of the first-order dynamic model can be obtained as follows:

M = M0e−kt

where M0 is the initial quality factor.
The reaction rate is significantly dependent on temperature, and if the storage tem-

perature is lower, the quality deterioration of large yellow croaker is slow. Therefore,
to correlate or describe the temperature dependence of the quality change, we used the
Arrhenius equation, which is a more precise equation describing the relationship between
the temperature (T) and the reaction rate constant (k), expressed as follows:

k = k0 exp
(
− Ea

RT

)
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where k0 is the pre-exponential factor; Ea is the activation energy, J/mol; R is the molar gas
constant, 8.314 J/(K·mol); T is the absolute temperature, K.

Combining the kinetic model and the Arrhenius equation, a shelf-life model for ice-
glazed large yellow croaker can be developed.

A shelf-life model consistent with zero-level dynamics:

SL =
|M0 −M|

k0 exp
(
− Ea

RT

)
A shelf-life model consistent with first-level dynamics:

SL =
|lnM0 − lnM|
k0 exp

(
− Ea

RT

)
where SL is the shelf-life.

Finally, the feasibility of the shelf-life model was verified using large yellow croaker
stored at −5 ◦C to obtain the predicted value X1 and the measured value X0, respectively.
The following method was used for evaluation:

Relative Error:
RT =

X1 − X0

X0
× 100%

2.7.2. LSTM-NN Model

The LSTM-NN consists of an input layer, one or more implicit layers and an output
layer, and uses memory cells to store knowledge, the LSTM-NN model structure is shown
by Figure 1. An LSTM block mainly contains memory cell states, forgetting gates, input
gates and output gates, where memory cell states are the key elements throughout the
LSTM block. Also, with the help of these three gates, certain information can be added and
removed selectively [31]. In the figure, x is the input, h is the hidden state that can be given
the ability to remember, and t is the storage time. W is the input weights, U is the recurrent
weights, and the activation functions σ and tanh are the sigmoid function between 0 and 1
and hyperbolic tangent function, respectively, both of which have the effect of enhancing
the nonlinearity of the artificial neural network.
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Figure 1. Schematic diagram of LSTM-NN model structure.

After building the LSTM-NN model, its performance needs to be examined. The
prediction correlation coefficient R2, root mean square error (RMSE), relative error (RE)
and mean absolute percentage error (MAPE) between the predicted and measured values
were compared. The formulas are as follows:

R2 = 1− ∑n
i=1(Mi − Pi)

2

∑n
i=1
(

Mi −M
)2
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RMSE =

√
1
n

n

∑
i=1

(Mi − Pi)
2

MAPE =

(
∑n

i=1|Mi − Pi|
nMi

)
3. Results

The quality changes under different frozen storage temperatures are shown in Figure 2.
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Figure 2. Centrifugal loss (a), TVB-N (b), K value (c), whiteness (d) and sensory scoring (e) of
large yellow croaker at different storage temperatures. The means between different frozen storage
temperatures on the same days with different lowercase letters (a–d) differ significantly.

Water holding capacity (WHC) is one of the important characteristics reflecting the
quality of fish, which can be reflected by centrifugal loss. The changes of centrifugal loss
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with storage time at different temperatures is shown in Figure 2a. The initial centrifugal loss
was 16.13% and increased significantly with storage time. After 90 days, the centrifugal loss
of large yellow croaker stored at −10 ◦C had reached 21.93% which was 5.80% higher than
the initial level, and after 180 days of storage, the centrifugal loss of large yellow croaker
stored at −20 ◦C, −30 ◦C and −40 ◦C increased by 5.95%, 3.38%, and 2.65%, respectively.
This may be that the higher the storage temperature of the large yellow croaker, the more
likely oxidation reaction of fat and protein occur, which results in higher centrifugal loss as
they are unable to hydrate with the back-percolating water [32].

The freshness of fish is critical to its consumer acceptance and total volatile base
nitrogen (TVB-N) is widely used in determining the freshness of fish products [33]. TVB-N
is commonly used as a biomarker for protein and amine degradation and increases with
storage time. The National Standard of the People’s Republic of China (PRC) (SC/T 3101-
2010) always stipulates that the acceptable range of TVB-N value for large yellow croaker is
below 30 mg N/100 g, and its value below 13 mg N/100 g is considered as first grade. The
variation of TVB-N value with time at different storage temperatures is shown in Figure 2b.
The initial TVB-N value was 8.39 mg N/100 g, which increased during storage. After
120 days of storage at −10 ◦C, large yellow croaker had a TVB-N value of 28.72, which
was close to spoilage. While at the other three storage temperatures (−20 ◦C, −30 ◦C, and
−40 ◦C), large yellow croaker remained in the first grade. The possible reason is that the
enzymatic activity of protein-degrading enzymes decreases under low temperature and
the protein degradation reaction is slow, thus maintaining a lower TVB-N value.

K value is closely related to the degradation of adenosine triphosphate (ATP) and has
been widely used for the evaluation of fish freshness [27]. K value below 20% is considered
as fresh state and the variation of K value with time is shown in Figure 2c. The initial K
value was 12.56%, and there was an increasing trend of K value at all temperatures during
the storage period. Among the large yellow croaker stored at−10 ◦C, the K value increased
at the fastest rate, reaching 20.34% after 60 d of storage, which was not a very fresh state.
After 180 d of storage at the other three temperatures (−20 ◦C, −30 ◦C, and −40 ◦C), it
was still in a very fresh state with K values of 22.92%, 18.99%, and 18.33%, respectively.
This is due to the fact that degradation of ATP can be slowed down more effectively under
low temperature [34].

The surface color of the samples is a direct basis for consumers to determine whether
the fish is fresh or not [35]. All frozen large yellow croaker were measured for whiteness
and the results are displayed in Figure 2d. The initial whiteness value of large yellow
croaker was 55.97, and the whiteness decreased gradually with increasing storage time
during freezing, and the lower the storage temperature, the slower the whiteness value
decreased. This is because the low temperature has less effect on protein and fat, and fat
oxidation, protein denaturation and pigment degradation can be inhibited to a great extent.

Sensory scores were assessed by a sensory panel of eight evaluators, and sensory
scores decreased with frozen storage time and temperature, as illustrated in Figure 2e.
According to the panelists’ descriptions, the main influence on the overall acceptability of
the samples was the odor of the fish. The large yellow croaker stored at −10 ◦C for 120 d
clearly lost its inherent fresh flavor after thawing. Besides, the color of the fish gradually
darkened during storage, especially for samples stored at −10 ◦C, which was consistent
with the results of the analysis of whiteness values.

4. Discussion
4.1. Arrhenius Model
4.1.1. Dynamical Analysis

Based on the centrifugal losses at each storage time at different temperatures, zero-
level linear regression analysis and first-level linear regression analysis were performed and
fitted to calculate the reaction rate constant, linear regression coefficients of determination,
as shown in Table 1. From the table, it can be found that the sum of zero-level linear
regression coefficients of determination is greater than that of the first-level linear regression
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coefficients of determination, so it can be indicated that for the WHC of frozen large yellow
croaker, the zero-level kinetic linear regression fitting was more advantageous [36]. The
temperature dependence of the increased centrifugal losses is well illustrated by Arrhenius
kinetics. The Ea value of 23.094 kJ/mol (R2 = 0.9003) was also calculated for the 95%
confidence range based on the variation of centrifugal losses, combined with the Arrhenius
equation for lnk versus 1/T, and pre-exponential factor k0 is e7.69, as shown in Figure 3a.

Table 1. Kinetic parameters of various indicators of large yellow croaker at different storage temperatures.

Dynamics
Model

Storage
Temperature (◦C) Fitting Formula Reaction Rate

Constant
Determination
Coefficient R2 ∑R2 Ea

(kJ/mol) k0

Centrifugal
loss
(%)

Zero-level
dynamics

model

−10 y = 0.0629x + 16.13 0.0629 0.9863

3.8034 22.18 e7.23−20 y = 0.0325x + 16.13 0.0325 0.9316
−30 y = 0.0195x + 16.13 0.0195 0.9843
−40 y = 0.0172x + 16.13 0.0172 0.9012

First-level
dynamics

model

−10 y = 16.13 exp(3.3 × 10−3 x) 0.0033 0.9707

3.7822−20 y = 16.13 exp(1.8 × 10−3 x) 0.0018 0.9353
−30 y = 16.13 exp(1.1 × 10−3 x) 0.0011 0.9786
−40 y = 16.13 exp(10−3 x) 0.001 0.8976

TVB-N
(mg N/100 g)

Zero-level
dynamics

model

−10 y = 0.1451x + 8.39 0.1451 0.9404

3.8618
−20 y = 0.0258x + 8.39 0.0258 0.9677
−30 y = 0.0208x + 8.39 0.0208 0.9775
−40 y = 0.0165x + 8.39 0.0165 0.9762

First-level
dynamics

model

−10 y = 8.39 exp(9.8 × 10−3 x) 0.0098 0.9941

3.8885 27.38 e7.53−20 y = 8.39 exp(2.6 × 10−3 x) 0.0026 0.9462
−30 y = 8.39 exp(2.1 × 10−3 x) 0.0021 0.967
−40 y = 8.39 exp(1.7 × 10−3 x) 0.0017 0.9812

K value
(%)

Zero-level
dynamics

model

−10 y = 0.1604x + 12.56 0.1604 0.9706

3.5441
−20 y = 0.0479x + 12.56 0.0479 0.9127
−30 y = 0.0266x + 12.56 0.0266 0.8558
−40 y = 0.0244x + 12.56 0.0244 0.805

First-level
dynamics

model

−10 y = 12.56 exp(8.2 × 10−3 x) 0.0082 0.998

3.6562 27.19 e7.37−20 y = 12.56 exp(3 × 10−3 x) 0.003 0.942
−30 y = 12.56 exp(1.8 × 10−3 x) 0.0018 0.8829
−40 y = 12.56 exp(1.6 × 10−3 x) 0.0016 0.8333

Whiteness

Zero-level
dynamics

model

−10 y = −0.0656x + 55.97 0.0656 0.9663

3.8751
−20 y = −0.0423x + 55.97 0.0423 0.939
−30 y = −0.0339x + 55.97 0.0339 0.9813
−40 y = −0.0284x + 55.97 0.0248 0.9885

First-level
dynamics

model

−10 y = 55.97 exp(−10−3 x) 0.001 0.9734

3.8859 12.03 e−1.42−20 y = 55.97 exp(−8 × 10−4 x) 0.0008 0.9446
−30 y = 55.97 exp(−6 × 10−4 x) 0.0006 0.9819
−40 y = 55.97 exp(−5 × 10−4 x) 0.0005 0.986

Sensory
analysis

Zero-level
dynamics

model

−10 y = −0.0558x + 10 0.0558 0.9278

3.799
−20 y = −0.0196x + 10 0.0196 0.9352
−30 y = −0.0147x + 10 0.0147 0.9714
−40 y = −0.0106x + 10 0.0106 0.9646

First-level
dynamics

model

−10 y = 10 exp(−8 × 10−3 x) 0.008 0.9765

3.8537 31.48 e9.26−20 y = 10 exp(−2 × 10−3 x) 0.002 0.9481
−30 y = 10 exp(−2 × 10−3 x) 0.002 0.9678
−40 y = 10 exp(−10−3 x) 0.001 0.9613

The TVB-N, K-value, whiteness, and sensory were more advantageously fitted by zero-
level linear regression analysis and first-level linear regression analysis using first-level
kinetic linear regression (Table 1). Arrhenius kinetics adequately described the temperature
dependence of TVB-N, K-value, whiteness, and sensory score changes in fish samples over
the temperature range studied, showing 95% confidence range activation energy Ea values
of 27.38 kJ/mol (R2 = 0.7736), 27.19 kJ/mol (R2 = 0.8569), 12.03 kJ/mol (R2 = 0.9892), and
31.48 kJ/mol (R2 = 0.8369).

The whiteness and sensory of large yellow croaker gradually decreased with the
extension of frozen storage, so k was negative, and it was automatically converted to ln
(−k) when lnk was taken. According to Figure 3b–e, the pre-exponential factors of TVB-N,
K value, whiteness and sensory evaluation in large yellow croaker samples were calculated
as e7.53, e7.37, e−1.42, e9.26 respectively.
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4.1.2. Shelf-Life Modeling and Shelf-Life Forecasting

Based on the pre-exponential factor (k0), the reaction activation energy (Ea) and the
number of reaction steps obtained from the kinetic analysis, the equations of the shelf-
life model conforming to the number of reaction steps were determined, respectively,
as follows:
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SLcentrifugal loss =

∣∣∣16.13−Mcentrifugal loss

∣∣∣
e7.69e−

23.09×103
8.314T

SLTVB−N =

∣∣ln8.39−lnMTVB−N

∣∣
e7.53e−

27.38×103
8.314T

SLK value =

∣∣ln12.56−lnMK value

∣∣
e7.37e−

27.19×103
8.314T

SLwhiteness =

∣∣ln55.97−lnMwhiteness

∣∣
e−1.42e−

12.03×103
8.314T

SLSensory =

∣∣∣ln10−lnMSensory

∣∣∣
e9.26e−

31.48×103
8.314T

where Mcentrifugal loss, MTVB-N, MK value, Mwhiteness, and Msensory are the endpoint critical values
of sample quality indicators.

Preservation of samples at −10 ◦C for 120 days is generally unacceptable to profes-
sional reviewers. So the shelf-life separately using the values of each index stored at−10 ◦C
for 90 days was determined as the threshold values. The estimation results are shown in
Table 2. Using the verified values at 5 ◦C as reference, the predicted shelf-life of centrifugal
loss, TVB-N, K value, and whiteness were 88, 101, 90, and 102 days respectively with the
actual values (98, 112, 105, and 112 days) within 15% error. In assessing and predicting the
freshness of catfish stored at different temperatures, Wang et al. found that the relative
error of TVB-N was within 10% for the Arrhenius model [22]. Therefore, it can be shown
that the prediction model of shelf-life of large yellow croaker established by Arrhenius
kinetic model can better reflect the changes of fish quality.

Table 2. Comparison of predicted shelf-life and measured shelf-life for each indicator at different
storage temperatures.

Storage Temperature (◦C) Predicted Shelf-Life (d) Measured Shelf-Life (d) Relative Error (%)

Centrifugal
loss
(%)

−5 88 98 −9.56
−10 107
−20 160
−30 246
−40 394

TVB-N
(mg

N/100 g)

−5 101 112 −9.61
−10 128
−20 210
−30 358
−40 641

K value
(%)

−5 90 105 −14.28
−10 114
−20 186
−30 316
−40 563

Whiteness

−5 102 112 −8.49
−10 114
−20 141
−30 179
−40 231

Sensory
analysis

−5 115 98 17.56
−10 151
−20 266
−30 493
−40 962

4.2. LSTM-NN Model

The effects of frozen storage and storage temperature on the quality of large yellow
croaker were modeled and calculated with MATLAB. To evaluate the effectiveness of our
developed LSTM-NN model based on the predicted storage time of glazed large yellow
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croaker at different temperatures, data from a total of 26 sample points measured at −10,
−20, −30, and −40 ◦C were disrupted and randomly ordered and used to train the model.
The thresholds and weights of the connection parameters between neurons were optimized
in order to minimize the RMSE of the predicted and measured values during training [18].
The changes of RMSE and loss are shown in Figure 4a. When training was performed, the
model performed 500 iterations in 16 s, the RMSE and loss kept decreasing rapidly and
basically stabilized after the 150th cycle, which indicated that the LSTM-NN model can
predict the shelf-life time well after several training sessions.
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LSTM-NN model.

The six sample points (day 77, 84, 91, 98, 105, and 112, respectively) measured at
−5 ◦C were used as a test of model validity, and the measured and predicted values are
shown in Figure 4b. To better reflect the error between the measured and predicted values,
the relative error was calculated, as shown in Figure 4c. From the figure, it can be found
that the relative errors were within 8% for all sample points except for the first sample point
which reached 19.05%, which indicated that the accuracy of the model was acceptable.
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In terms of relative errors, the predictions of the LSTM-NN model were more accurate
than those of the Arrhenius model. In addition, MAPE and RMSE values are often used to
reflect the difference between the predicted and measured values, and after calculation, the
MAPE value was 7.78% and the RSME value was 7.94, both of which could show the high
prediction accuracy of the LSTM-NN model.

Tan et al. [15] compared the prediction ability of Back propagation neural network (BP-
NN) model and LSTM-NN model, and found that the relative error values of LSTM-NN
were all within 7%, MAPE and RMSE were lower compared to BP-NN model; Qing et al.
demonstrated that LSTM-NN can effectively improve the prediction of solar irradiation by
42.9% and is more stable compared to BP-NN [37], indicating that LSTM-NN models had
higher prediction accuracy and were worth using as a shelf-life prediction tool.

5. Conclusions

In this study, we compared the centrifugal loss, TVB-N, K value, whiteness and sensory
evaluation of large yellow croaker during frozen storage at −10, −20, −30 and −40 ◦C.
The results showed that the quality decreased significantly with increasing storage time.
At lower storage temperatures of, for example, −30 and −40 ◦C, the quality of large yellow
croaker changed less. After 120 days of storage at −10 ◦C, large yellow croaker produced
unacceptable odor and unacceptable values of other indicators. Based on centrifugal loss,
TVB-N, K-value, whiteness and sensory evaluation, an Arrhenius prediction model and
LSTM-NN prediction model were designed to predict the shelf-life of ice-glazed large
yellow croaker during frozen storage. The modeling results showed that for both predicted
and measured values, both models had small relative errors and were reliable models
for predicting the shelf-life of frozen large yellow croaker. In terms of relative errors, the
predictions of the LSTM-NN model were more accurate than those of the Arrhenius model.
In addition, in terms of data processing, the LSTM-NN model is more intelligent and less
time-consuming compared with the Arrhenius model. In conclusion, the LSTM-NN model
is a good tool for predicting the storage time of large yellow croaker.
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