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Abstract: It is necessary to determine the optimal temperature for Percocypris pingi growth in re-
circulating aquaculture systems. To describe the effects of temperature, we evaluated the growth,
antioxidant enzyme activity, and gut microbiota structure of P. pingi at different temperatures, in-
cluding 14, 18, 22, and 26 ◦C. Results showed that increases in body weight of individuals of the
groups subjected to 18 and 22 ◦C temperatures were considerably higher than those in the groups
subjected to temperatures of 14 and 26 ◦C between 20 and 60 d after the experiment started. Acid
phosphatase activity in the liver and kidneys of P. pingi did not differ significantly among the various
temperature groups (p > 0.05). A gradual restoration of the alkaline phosphatase and superoxide
dismutase activities to variations in the surrounding temperature was observed in the liver and
kidney of P. pingi. Interestingly, the water temperature did not affect the α-diversity or composition
of the gut microbiota of P. pingi. In conclusion, water temperatures between 14 and 26 ◦C significantly
impacted the growth of P. pingi (p < 0.05) but not the liver and kidney antioxidant capacity or the gut
microbiota within 60 d.
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1. Introduction

As an endemic species in the upstream regions of the Yangtze River, Percocypris pingi
is an economically important freshwater fish in southeast China because of its high pro-
tein level, reduced fat content, and high nutritional value [1–3]. However, owing to the
destruction of its natural habitat caused by environmental degradation, dam construction,
and overfishing, its population has sharply declined in recent years. These issues have led
the fish species to be included in the list of key protected wild animals in China (2021) [4].
Artificial reproduction and breeding are crucial for meeting consumer demand and pre-
venting the depletion of natural P. pingi resources [5]. Currently, regarding reproduction
and breeding, research has been conducted on the embryonic development of P. pingi [2],
the impact of temperature, pH, and salinity on the survival of juvenile stages [6], and the
allometric growth of P. pingi larvae [3].

As ectotherms, fish physiology is strongly affected by temperature [7,8]. The tem-
perature usually affects: basal metabolism; fish energy storage by influencing nutrient
digestion and assimilation; surplus energy investment in reproduction and growth; and
energy intake via feeding [8,9]. The thermal safety margin and resilience have become
important indicators for assessing fish adaptation to the surrounding aquatic environment
owing to climate change, specifically global warming [10,11]. Although previous studies
have shown that the tolerance range of larval P. pingi retrodorslis to temperature is 0–32 ◦C,
the optimal growth temperature is 8–27 ◦C [6], and the tolerance range of adult P. pingi to
temperature is 2–28 ◦C, and the optimal growth temperature is 20–25 ◦C [12]. The effect
of temperature on the physiological processes and metabolism of P. pingi has not yet been
explained thoroughly.
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The gut microbiota plays a crucial role in various physiological processes in the
host [13–17]. These elements are also integral to the health of host fish [18]. Understanding
the effects of temperature on host–microbiota interactions would improve predictions of
biodiversity responses to climate warming [19]. Recently, Ghosh et al. [18] reported that
temperature changes to 18 and 8 ◦C from the control level of 13 ◦C triggered marked
dysbiosis in the fecal microbiota of chum salmon, Oncorhynchus keta, and the opportunistic
pathogenic Vibrio and Tenacibaculum sequence variants were highly abundant at high and
low temperatures, respectively, and may impede host immunity. However, the influence of
temperature change on the gut microbiota of P. pingi remains unclear.

To describe the effects of temperature on the physiology and gut microbiota of P. pingi,
we compared the growth, antioxidant enzyme activity, and gut microbiota structure of
P. pingi under different water temperatures. These results provide essential data for the
breeding and ecological management of the fish species.

2. Materials and Methods
2.1. Experimental Design and Sample Collection

P. pingi juveniles with an initial body weight of 34.02 ± 1.20 g and body length of
12.83 ± 0.53 cm were collected from the Yangtze River Fisheries Research Institute and
stocked in a recirculating aquaculture system at 18 ◦C before the experiment. In April
2018, 840 fish were selected and distributed evenly across four independent recirculating
aquaculture systems at a starting temperature of 18 ◦C. Three conical polypropylene tanks
(diameter = 80 cm, water volume = 300 L, and water flow rate = 0.286 L/s) were included
in each recirculating aquaculture system, with a fish density of 70 individuals per tank.
The water temperature was adjusted at four temperatures of 14, 18, 22, and 26 ◦C (named
T1, T2, T3, and T4) at a rate of 1 ◦C/4 h using a 1.47 KW aquarium refrigerating and
heating machine (temperature control accuracy 0.1 ◦C) in four independent recirculat-
ing aquaculture systems. After the target temperature was stable within a deviation of
<0.5 ◦C for one week, fish were subjected to the acclimation procedure for 60 d. Fish were
fed the formulated feed twice (09:00 and 17:00) per day. The remaining feed was drained
after 2 h of feeding. The biochemical composition of the formulated feed comprised of
crude protein, crude lipid, crude ash, crude fiber, lysine, total phosphorus, and moisture
at ≥42.0, ≥5.0, ≥16.0, ≥1.0, ≥2.4, and ≤12.0%, respectively. During the experiment, the
one-third volume of water was replaced with aerated tap water of the same volume and
temperature in each tank daily. The photoperiod was 12L:12D. All fish were individually
weighed 0, 20, 40, and 60 d after the start of the experiment to calculate the weight gain
rate (WGR) and specific growth rate (SGR). WGR and SGR were calculated according to
the method described by Zeng et al. [20].

When the target temperature was stable (deviation < 0.5 ◦C) for one week and before
feeding, three random fish (named S1, S2, and S3) were collected from each tank and
anesthetized with an overdose (70 mg/L) MS 222 (Syndel, Ferndale, WA, USA) [21,22],
and the time was labeled as D0. Body weight was measured before tissue sampling. The
exterior surfaces of the fish were swabbed using 75% ethanol before dissecting the ventral
midline. Liver, kidney, and fecal contents in the intestine were collected using a sterile
scalpel and forceps and then stored at −80 ◦C until further analysis. After feeding, three
fish samples were collected at 20 (D20), 40 (D40), and 60 (D60) days, when the experiment
was completed, using the same process as D0.

2.2. Determination of Antioxidant Enzyme Activities in the Liver and Kidney

The levels of superoxide dismutase (SOD), alkaline phosphatase (AKP), and acid
phosphatase (ACP) in the liver and kidney of P. pingi samples were measured using the cor-
responding kits (A060-2 for ACP, A059-2 for AKP, and A001-1 for SOD; Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) on a Chemray 240 automatic biochemical analyzer
(Rayto, Shenzhen, China) according to the manufacturer’s instructions.
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2.3. Gut Microbiota Structure Analyses

Total microbiota genomic DNA was extracted from approximately 0.3 g of the freshly
dissected gut of each fish using the FastDNA spin kit for soil (MP, Solon, OH, USA).
DNA quality was evaluated using a Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA), and DNA integrity was evaluated using 1.2% agarose gels. According
to the concentration, the DNA was diluted to 10 ng/µL using sterile water for further
amplification. The V4-V5 hypervariable region of 16S rDNA was amplified using the
universal primer pair 515F and 909R, with a 12-nucleotide sample-specific barcode included
at the 5′-end of the 515F sequence to distinguish samples, as previously described [23,24].
The amplicons were purified and sequenced using the HiSeq platform at Guangdong
Meilikang Bio-Science Ltd. (Foshan, China).

Raw reads were merged using FLASH 1.2.8 and subsequently processed using QIIME
1.9.0 [25], as previously described [26]. Briefly, all the merged sequences were assigned to
each sample based on their barcode sequences, and trimmed barcodes and primer sequences
were removed using QIIME 1.9.0 software. Low-quality and chimeric sequences were
removed using QIIME 1.9.0 and UCHIME, respectively. Subsequently, the remaining high-
quality sequences were clustered into operational taxonomic units (OTUs) with 97% identity
using UPARSE [27]. The taxonomy of each OTU was assigned using the RDP classifier [28]
in the gg_13_8 database. Alpha-diversity indices and weighted and unweighted UniFrac
distances were calculated using the QIIME version 1.9.0.

2.4. Data Analyses

The results are presented as the mean ± standard error. Nonparametric multivariate
analysis of variance was used to test for differences between microbial communities using
the R vegan package [29]. RDA with the Monte Carlo method was conducted using the R
vegan package. Pearson’s correlation analysis was conducted using R psych, reshape2, and
corrplot packages. Heatmap plots and boxplots were drawn using the R pheatmap and
ggpubr packages, respectively. Statistical significance was set at p < 0.05.

3. Results
3.1. Effects of Water Temperature on the Growth of P. pingi

During the experiment, the dissolved oxygen was 7.1–8.6 mg/L, ammonia nitrogen
was 0.3–0.7 mg/L, nitrite nitrogen was 0.02–0.08 mg/L, and pH was in the range of
7.5–8.1. None of the fish died during the experiment. The body weight of P. pingi in
each temperature group increased with culture time. The body weights of the individuals
in the groups subjected to 18 and 22 ◦C increased significantly between D20 and D60
compared to those in the groups subjected to 14 and 26 ◦C (p < 0.05). However, there was
no significant difference between the 18 and 22 ◦C groups and between the 14 and 26 ◦C
groups (p > 0.05; Table 1).

The weight gain rates of the 14, 18, and 22 ◦C groups reached a maximum at D40 and
decreased at D60. The weight gain rate of the group subjected to 26 ◦C was the highest at
D20, the lowest at D40, and increased at D60. The weight gain rates of the 18 and 22 ◦C
groups were significantly higher than those of the 14 and 26 ◦C groups between D0 and
D40 (p < 0.05). There was no significant difference in the weight gain rate between the
18 and 22 ◦C groups and between the 14 and 26 ◦C groups (p > 0.05). The weight gain rate
of the group subjected to 22 ◦C was significantly higher than that of the groups subjected
to 14 and 26 ◦C between D40 and D60, and there was no significant difference between the
other groups (Table 1).
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Table 1. Body weight and weight gain rate of juvenile Percocypris pingi at different temperatures.
Significant differences in means between the four culture temperature groups are indicated using
distinct shoulder letters in the same row (p < 0.05).

Item
Culture
Time (d)

Culture Temperature (◦C)

14 18 22 26

Body
weight
(g/ind.)

0 33.61 ± 0.77 34.65 ± 0.45 34.43 ± 0.97 33.39 ± 0.93
20 35.95 ± 0.64 a 40.84 ± 0.97 b 40.34 ± 0.68 b 36.11 ± 1.00 a

40 39.94 ± 1.21 a 48.33 ± 1.17 b 46.84 ± 1.12 b 37.42 ± 1.16 a

60 42.58 ± 0.48 a 53.25 ± 1.41 b 52.79 ± 1.09 b 40.02 ± 1.36 a

Weight gain
rate (%)

20 6.97 ± 0.55 a 17.87 ± 3.02 b 17.22 ± 2.26 b 8.19 ± 4.05 a

40 11.08 ± 1.39 a 18.34 ± 0.74 b 16.13 ± 1.40 b 3.62 ± 0.35 c

60 6.66 ± 2.24 a 10.17 ± 0.76 ab 12.7 ± 2.79 b 6.96 ± 1.96 a

Specific
growth rate

(%)

20 0.34 ± 0.03 a 0.82 ± 0.13 b 0.79 ± 0.10 b 0.39 ± 0.19 a

40 0.53 ± 0.07 a 0.84 ± 0.03 b 0.75 ± 0.06 b 0.18 ± 0.02 c

60 0.32 ± 0.11 a 0.48 ± 0.03 a,b 0.60 ± 0.13 b 0.33 ± 0.09 a

3.2. Effects of Water Temperature on the Activities of Three Antioxidant Enzymes in the Liver and
Kidney of P. pingi

There was no significant difference in ACP activity in the liver and kidney of P. pingi
among the different temperature groups. At D40 of culture, the AKP activities of the liver
and kidney in the 22 ◦C group were significantly higher than those of the other groups.
Moreover, the SOD activity in the kidneys of P. pingi individuals in the group subjected to
22 ◦C was also significantly higher than that in other groups (p < 0.05; Figure 1). At D60 of
culture, the SOD activity in the livers of P. pingi individuals in the group subjected to 22 ◦C
was significantly higher than that in the group subjected to 26 ◦C, and the SOD activity
in the kidneys of the individuals in the group subjected to 22 ◦C was significantly higher
than that in the group subjected to 18 ◦C (p < 0.05; Figure 1). These results implied that
AKP and SOD activities in the liver and kidney of P. pingi gradually adapted to changes in
ambient temperature.

3.3. Effect of Water Temperature on the Gut Microbiota Structure of Percocypris pingi

After removing low-quality sequences, 1,527,925 high-quality sequences were obtained
from 48 gut microbiota samples of P. pingi cultured at different temperatures. To eliminate
the interference of various sample sequencing depths on the subsequent analysis results, we
randomly selected 22,306 sequences from each sample for subsequent analysis. Although
65 phyla were detected in these sequences, Crenarchaeota, Euryarchaeota, Parvarchaeota,
Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Fusobacteria,
Planctomycetes, Proteobacteria, SBR1093, Tenericutes, and Verrucomicrobia dominated the gut
microbiota, containing 97.33 ± 0.20% of the high-quality sequences analyzed in this study
(Figure 2A). Although their relative abundances varied between different temperature
groups at distinct time points during culture, only the relative abundances of Actinobacteria
and Verrucomicrobia in the group subjected to 18 ◦C decreased gradually with culture time,
whereas the relative abundance of Fusobacteria gradually increased (Figures 3 and 4).

A total of 12,090 OTUs were identified. However, an average of 1763.83 ± 55.67 OTUs
were detected in each sample (Figure 2B). At the beginning of the experiment, there was no
significant difference in the average weight and activities of ACP, AKP, and SOD in the liver
and kidney of P. pingi samples between different temperature groups (Table 1), and the
α-diversity indices of the gut microbiota were significantly different between the different
temperature groups (Figure 2B–E). Particularly, the richness, Shannon, and Simpson indices
of the gut microbiota in the groups subjected to 26 ◦C were significantly higher than those
in the groups subjected to 18 ◦C and 22 ◦C, and the ACE index was significantly higher
than that of the group subjected to 22 ◦C. Moreover, the richness, ACE, and Shannon
indices of the gut microbiota in the group subjected to 14 ◦C were significantly higher than
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those in the group subjected to 18 ◦C (p < 0.05; Figure 2B–E). Although these α-diversity
indices changed significantly during the experiment, they did not correlate with culture
temperature (Figure 2B–E). These results suggest that culture temperature did not affect
the α-diversity of the P. pingi gut microbiota.

At the genus level, 1212 genera were detected in the gut microbiota, of which 47 were
dominant (Figure 5). Although the relative abundances of the most dominant genera were
significantly different between the groups (p < 0.05; Figure 5), only Bacteroides, Cetobacterium,
Novosphingobium, Sediminibacterium, and Escherichia weakly correlated with temperature
(Figure 6). The ratio of the relative abundance of Bacteroides in the 22 ◦C and 26 ◦C groups
was reversed with the passage of culture time (Figures 6 and 7). The relative abundance of
Cetobacterium in the group subjected to 18 ◦C exhibited an upward trend with the increase
in culture time, whereas that of Novosphingobium and Sediminibacterium gradually declined
(Figures 6 and 7). Moreover, the relative abundance of Escherichia in the group subjected to
26 ◦C group exhibited an upward trend with the increase in culture time (Figures 6 and 7).

To analyze the correlation between the gut microbiota composition of P. pingi and
the culture conditions (temperature and sampling time) and the activities of ACP, AKP,
and SOD in the liver and kidney of P. pingi, RDA with the Monte Carlo method was used
to analyze the correlation between OTU and the dominant genus composition of P. pingi
gut microbiota and the indicators. The results showed that only sample time and kidney
ACP activity were significantly correlated with the composition of P. pingi gut microbiota
(Figure 8A,B). Pearson correlation analysis showed that the sample time was significantly
positively correlated with the relative abundances of Cetobacterium and Curvibacter but
significantly negatively correlated with the relative abundances of Mycoplasma, Streptococcus,
Corynebacterium, and Laceyella. Culture temperature was significantly positively correlated
with the relative abundance of Escherichia and Vitreoscilla and was significantly negatively
correlated with Bacteroides. ACP activity in the liver was significantly positively correlated
with the relative abundance of Exiguobacterium spp. Liver SOD activity was significantly
negatively correlated with the relative abundance of Aeromonas and Vitreoscilla. Kidney ACP
and AKP activities were significantly positively correlated with the relative abundances of
Aeromonas and Curvibacter, respectively (Figure 8C,D).
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Figure 8. Correlation between gut microbiota compositions and activities of ACP, AKP, and SOD in the
liver and kidney of Percocypris pingi: (A) RDA profile shows the correlation between operational taxo-
nomic unit (out) compositions of P. pingi gut microbiota and internal- and external-physicochemical
factors; (B) RDA profile shows the correlation between dominant genus compositions of P. pingi
gut microbiota and internal- and external-physicochemical factors; (C) the bubble chart shows the
correlation between the commonly dominant genera of P. pingi gut microbiota and internal- and
external-physicochemical factors; and (D) significant correlation between the commonly dominant
genera of P. pingi gut microbiota and internal- and external-physicochemical factors. * p < 0.05;
** p < 0.01; *** p < 0.001.

4. Discussion

With the continuous increase in global temperatures, the impact of temperature rise
on aquatic ecosystems has attracted extensive attention [30–33]. The most noticeable
ecological impact of global warming is a shift in species’ range toward higher altitudes and
latitudes, in agreement with their thermal preferences at biogeographical scales [34–36].
Daufresne et al. [31] reported a significant increase in the proportion of small-sized species
and young age classes and a decrease in the size of fish in aquatic ecosystems, in agreement
with Bergmann’s, James’, and temperature-size rules [37,38]. Moreover, the temperature-
size rule predicts a higher growth rate but a lower final size at higher temperatures within
the appropriate temperature range [39]. However, when the temperature exceeds the
suitable growth temperature, the growth rates of ectotherms decrease with an increase
in temperature [39]. In this study, our results showed that the growth rates of P. pingi at
18 and 22 ◦C were significantly higher than those at 14 and 26 ◦C (Table 1), although the
optimum temperature of P. pingi was reported to range from 8–27 ◦C [6]. These results
imply that the temperatures ranging from 8–14 ◦C and from 26–27 ◦C probably were not
the optimum temperature for P. pingi, which were similar to results obtained in the report
by Chen et al. [12].

The effect of temperature on the gut microbiota of vertebrates has attracted exten-
sive attention because the gut microbiota plays multiple essential functions in hosts, in-
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cluding digestion, immunity, and life history [19,40]. Bestion et al. [19] reported that a
2–3 ◦C warmer climate caused a 34% loss of gut microbiota diversity in common lizard
(Zootoca vivipara) populations. Chen et al. [41] reported that the OTU number of the gut
microbiota of Rhinogobio cylindricus collected in autumn was significantly higher than that
collected in summer, but they could not exclude the influence of fish size on the results.
However, our results did not show a significant impact of temperature changes on the
composition and diversity of P. pingi gut microbiota when temperatures were within the
optimum range. This may be because of the short experimental period. Therefore, longer
experimental periods, including intergenerational experiments, are needed to study the
impact of long-term temperature changes on fish gut microbiota.

Adaptation to changing temperatures involves adjustments of both the density and
functional properties of fish mitochondria, thus affecting reactive oxygen species (ROS)
generation and antioxidant defenses [42]. Low temperatures increase unsaturated fatty
acids in membrane lipids, which increases the risk of lipid hydrogen peroxide formation
and oxidative injury [43]. Yang et al. [44] investigated the effects of temperature on the
activities of antioxidant enzymes in Schizothorax prenanti by raising the culture water
temperature from 11 ◦C to the critical thermal maximum within 1 ◦C/h and sampled and
analyzed the activities of antioxidant enzymes at 11, 16, 21, 26, and 31 ◦C. They found
that at 21 ◦C, catalase activity was significantly lower than that at 11, 16, and 26 ◦C in
the livers of S. prenanti, and SOD activities at 16 and 21 ◦C were significantly lower than
those at 11 and 26 ◦C [44]. However, our results showed that only SOD activity at 22 ◦C
was significantly higher than that at 26 ◦C in the livers of P. pingi collected on the 60th
day. No significant difference in ACP activity in the liver and kidney of P. pingi among
the different temperature groups was observed. Based on the existing data, the water
temperature range upstream of the Yangtze River is between 6 and 25 ◦C [45–47]. Therefore,
we speculate that climate warming over a short period does not threaten the survival of wild
P. pingi individuals.

Although our results did not show the significant impact of temperature changes on
the composition and diversity of P. pingi gut microbiota, it is still noteworthy that there
were significant positive correlations between Escherichia and Vitreoscilla and temperature,
and a significant negative correlation between Bacteroides and temperature. Escherichia is
a common pathogen [48,49], the bacterial hemoglobin from Vitreoscilla can support the
aerobic growth of Escherichia coli lacking terminal oxidases [50], and Bacteroides has potential
as a probiotic [51,52]. The impact of changes in the relative abundance of these bacteria in
the gut microbiota caused by temperature changes on P. pingi health requires further study.

5. Conclusions

In the experimental temperature range (14–26 ◦C), the environmental water tempera-
ture significantly affected the growth of P. pingi but did not affect the activities of the ACP,
AKP, and SOD in the liver and kidney or the composition of gut microbiota. P. pingi grew
fastest at 22 ◦C, and this information helps P. pingi culture. Moreover, our results imply
that climate warming over a short period does not threaten the survival of wild P. pingi.
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