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Abstract: Estuaries provide nursery habitats for a variety of fish species of different ecological
guilds and have complicated environmental conditions. In this study, we applied ensemble species
distribution models (SDMs) to four abundant and different ecological guild larval fish species
(Hemiculter bleekeri (freshwater guild), Pseudolaubuca sinensis (freshwater guild), Coilia mystus (brackish
water guild), and Engraulis japonicus (marine guild)) to explore their suitable habitats and the fish–
habitat relationships in the Yangtze Estuary. The results showed that random forest (RF) demonstrated
the best performance in all single algorithms and the surface range envelop (SRE) model was scarcely
accurate. The ensemble SDMs demonstrated a superior predictive ability compared with any single
algorithm, with the true skill statistic (TSS) and the area under the receiver operating characteristic
curve (AUC) scores being above 0.899 and 0.641, respectively. Binary presence–absence maps showed
the different spatial distribution patterns of the four species. We primarily found the freshwater
species (P. sinensis and H. bleekeri) present in the South Branch (west of 122◦ E), whereas we found the
marine species (E. japonicus) anywhere except inside the South Branch (west of 121.8◦ E). The area for
P. sinensis (1615.93 km2) was relatively larger than that for H. bleekeri (1136.87 km2). We predicted
that the brackish water species (C. mystus) would most likely be present inside the North Branch
(west of 122◦ E), Eastern Chongming, and outside the South Branch (east of 121.8◦ E). Salinity, as a
key environmental variable, contributed to the spatial variability. A low salinity (sea surface salinity
(SSS) < 3) was beneficial for P. sinensis and H. bleekeri but was not suitable for E. japonicus. The SSS
suitable range for C. mystus was 5–10 and 12–20. Multiple ecological guild species dwelled in the
confluence of salt and fresh water. Our results will play an important role in the design of specific
conservation strategies for fishery resources in this area.

Keywords: larval fish; ecological guild; ensemble model; habitat suitability; the Yangtze Estuary

Key Contribution: Suitable habitats of different ecological guild larval fishes are considered on the
nursery grounds of larval fish in Yangtze Estuary. SSS is a key variable that contributes to spatial
variability of different ecological guild species, and the confluence of salt and fresh waters is a place
where multiple ecological guild species coexist.

1. Introduction

Compared with adults, larval fish are characterized by their weak swimming ability,
and they display a high inherent vulnerability to environmental variation [1]. Estuaries
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are one of the most biologically productive and valuable ecosystems on Earth, yet they are
regarded as the most threatened and degraded ecosystem, with numerous stressors such as
pollution, hydro-morphological changes, and invasive species present [2–4]. For estuarine
larval fish, they can either originate from within the estuary or from marine and freshwater,
which is directly related to the recruitment of estuarine fishery resources [5]. Considering
the ecological importance of larval fish in estuarine ecosystems, an understanding of the
suitable habitats of different ecological guild species (DES) is urgently needed for the
purpose of more effectively protecting estuarine fishery resources [6–8]. Therefore, to
understand the structure and function of estuaries, we must better understand the early
life-cycle stages of DES in the estuary area [9].

The spatio–temporal variability of larval fish distribution is mainly related to oceano-
graphic features, especially in the temperate region [10–12]. Oceanographic features
(e.g., salinity and temperature) can affect both the metabolism and growth at the indi-
vidual level and the spatio–temporal distribution at the population level for the larval
fish in the estuarine area [13–15]. The distribution of larval fish is deeply influenced by
environmental variables, including depth, temperature, and salinity [16,17]. The estuarine
DES are distributed in different areas according to the change of salinity and temperature
affected by the runoff, wind, and tide [18,19]. For example, DES estuarine fishes have
different temperature habitat preferences, thus reducing competition between the species
feeding on similar types of prey [19]. Therefore, understanding of fish–habitat relationships
for DES larval fishes is very important for their future resource prediction related to climate
change [20–22].

The Yangtze River is the world’s third longest river with a length of 6397 km, and its
estuary is the largest estuary in the western Pacific Ocean [23]. It serves as an important
nursing ground for varieties of fish species [14]. More than 100 larval fish species have
been found and identified, mainly belonging to freshwater, brackish water, and marine
ecological guilds [24,25]. The sea surface salinity (SSS), sea surface temperature (SST),
chlorophyll-a concentration, and total suspended particulate matter were the major affect-
ing environmental conditions [25,26]. The peak abundance of the larval fish in the Yangtze
Estuary appeared in the spring, and the high abundances were mainly due to the presence
of several dominant species, including Hemiculter bleekeri (freshwater guild), Pseudolaubuca
sinensis (freshwater guild), Coilia mystus (brackish water guild), and Engraulis japonicus
(marine guild) [27,28]. All four species are small pelagic fishes with a strong reproductive
and survival ability and are usually the prey of many other carnivorous fish, such as the
threatened Chinese sturgeon (Acipenser sinensis) [29]. The population abundances of these
small pelagic fishes were mainly dependent on their recruitment process as to affect the
balance of the ecosystem in the Yangtze Estuary [27]. Their habitats are at risk of decline.
In particular, the yield of C. mystus has sharply declined in the past 30 years [30]. Recently,
many studies have focused on the fish–habitat relationships of different life-cycle stages,
especially on the larval fish stage in the Yangtze Estuary [31–33]. Considering severe
habitat loss and degradation in estuaries (e.g., C. mystus) [30], managers need to identify,
prioritize, and protect essential habitats for estuarine fish species. Hence, a suitable method
to improve the accurate and reliable predictions of DES distributions in Yangtze Estuary
is needed.

Prediction models have been used to simulate fish–habitat relationships and potential
species distributions for estuarine species [20]. Among these models, species distribution
models (SDMs) have become an important tool to examine a multitude of ecological and
conservation-related questions [34–37]. Most previous studies conducting SDMs have only
used single algorithms for estuarine fish species [8,20,30]. The single algorithms range from
the most conventional and frequently used (e.g., generalized linear models (GLM) and
generalized additive models (GAM)) to new and sophisticated machine-learning methods
(e.g., random forests (RF)), with the latter often showing considerable increases in the model
predicting capacity [38,39]. However, estuaries’ persistent environmental fluctuations and
dynamic nature added difficulties in studying DES distributions, and thus, building their
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SDMs was challenging [40]. If the input data change, the performance of each single model
may become unstable [41,42]. Thus, to assess the predictive uncertainty and increase the
predictive accuracy of SDMs, a measure of the ensemble forecasting of species distributions
is useful [35]. Due to the particular and dynamic nature of estuarine ecosystems, it is
necessary to fully consider the suitability of DES and their habitat models [40]. Franca
and Cabral (2019) built SDMs for four adult fish species in nine estuaries from the Por-
tuguese coast and found that predictions obtained with the ensemble approach were more
accurate [40]. Recently, researchers have widely recognized and used a modeling platform
(biomod2) based on R software since its publication [22,43]. However, there are only a few
applications of the ensemble models in the estuary area, particularly for the larval fish
distributions (but see Zhang et al., 2020 [31]).

In this study, we constructed the ensemble SDMs for the four DES larval fish species
(i.e., H. bleekeri, P. sinensis, C. mystus, and E. japonicus) in the Yangtze Estuary. We compared
the performance of the ensemble SDMs to single models (i.e., random forest) to model the
larval fish habitats. We further explored the special distinction of larval fish habitats under
the complex hydrological environments of the Yangtze Estuary and explained the fish–
habitat relationships for these four species. We expect that the conclusions from this study
will provide insights into the spatial patterns of DES and will reveal the key environmental
variables causing these patterns. Predicting their suitable habitats will have important
implications for the conservation of the fishery resources in the Yangtze Estuary. These
predictions can also enhance our understanding of how larval fish use estuaries. The results
may also be applicable to other estuary ecosystems.

2. Materials and Methods
2.1. Study Area and Sampling

The Yangtze Estuary is the largest estuary in China, and it is located in the northwest
East China Sea and southwest Yellow Sea. Chongming Island divides the estuary into
the North and South Branches (Figure 1). The different areas of the Yangtze Estuary are
geographically similar, but their hydrological conditions are different [30]. For example,
the annual average salinity of the North Branch is about ten times greater than that of the
South Branch [14]. We conducted three surveys in the sampling region (30.8◦ N–31.7◦ N,
121.3◦ E–122.5◦ E) based on a stratified random design in spring (May) from 2019 to 2021
(Figure 1). In total, we collected 168 larval fish samples (57 samples in 2019, 56 samples in
2020, and 55 samples in 2021) during daytime using a plankton net (0.505 mm mesh size,
80 cm in diameter, and 145 cm in length). We towed horizontally under the sea surface for
10 min at a constant speed of 2–3 knots (Table 1). We measured the depth, temperature,
salinity, and chlorophyll-a concentration by using a Sea-bird 19 plus V2 CTD. We preserved
all the samples in 5% formaldehyde in seawater for further identification in the laboratory.
The larval fishes were identified by morphology observation under a microscope according
to the study by Zhang et al. (1985) and Qiao (2005) [44,45]. In each sample, we noted
whether each species was present or absent.

Table 1. Details of larval fish surveys and larval fish collection in the Yangtze Estuary.

Cruise
Timing Stations

Number of Stations with Larval Fish Present
(Number of Larval Fish)

C. mystus E. japonicus P. sinensis H. bleekeri

May 2019 57 11 (2627) 37 (25,406) 1 (21) 25 (734)
May 2020 56 43 (40,572) 30 (6399) 18 (5509) 17 (3106)
May 2021 55 48 (25,379) 42 (32,366) 12 (26,027) 13 (19,077)
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Figure 1. Study area and samples in the Yangtze Estuary (a) represents the study area; (b) represents
the samples. Black boxes represent study area in the present study; points represent sampling stations).

2.2. Environmental Variables

We selected four uncorrelated environmental variables for the subsequent modeling,
including depth (Depth, m), sea surface temperature (SST, ◦C), sea surface salinity (SSS),
and sea surface chlorophyll-a concentration (SSChl, mg/m3) (Table S1). To avoid over-
fitting and multi-collinearity problems, we calculated the variance inflation factor (VIF)
for each candidate predictor variable, and we removed the superfluous predictor variable
(whose VIF value is higher than 2) in the preliminary study [46,47]. The diagnosis results
showed that their collinearity was not significant (VIF < 2), so all four environmental factors
were used for the subsequent study.

2.3. Ensemble Model Construction

Ensemble models can reduce the uncertainty caused by various algorithms in SDMs [48].
We used the biomod2 package to build an ensemble model. The package gathered some
commonly used species distribution models, including classification methods (e.g., gener-
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alized boosting model and random forest) [39] and regression methods (e.g., generalized
linear model and generalized additive model) [33]. For this study, we selected ten modeling
algorithms, including artificial neural networks (ANN), classification tree analysis (CTA),
flexible discriminant analysis (FDA), generalized additive model (GAM), generalized boost-
ing model (GBM), generalized linear model (GLM), multiple adaptive regression splines
(MARS), maximum entropy (MaxEnt), random forest (RF), and surface range envelop (SRE),
to reveal the relationship between the four dominant species distribution data and the
four environmental variables. To evaluate the performance of the different algorithms, we
randomly divided the species distribution data into two parts, of which we used 70% of
the data for model training and 30% of the data to evaluate the model prediction results.
We repeated every modeling algorithm five times. We evaluated the performances of ten
algorithms using the true skill statistic (TSS) and the area under the receiver operating
characteristic curve (AUC) [49,50]. The AUC represents a model’s discriminative capacity
with regard to the data and is obtained by plotting the commission error (1-specificity;
false positives) on the horizontal axis versus the omission error (sensitivity; actual positives
which are correctly identified as such) on the vertical axis for numerous thresholds. The
AUC values range from 0 to 1 and the modeling algorithm shows a higher accuracy with
a higher value. As an evaluation metric, the AUC has the advantage of being prevalence-
and threshold independent [37]. The TSS is concerned with omission and commission
errors and is also prevalence independent. The TSS ranges from −1 to +1, where +1 means
perfect agreement and <0 means random performance [49]. We only selected algorithms
with TSS > 0.4 and AUC > 0.7 to build the ensemble model [31]. We determined the relative
importance of each environmental variable for the distributions of the four larval fishes
with a randomization procedure where the principal idea is to shuffle a single variable of
the given data [43]. The return score is 1−correlation between the reference’s predictions
and the ’shuffled’ one. The higher the value, the more influence the variable has on the
model. The projected habitat suitability values range from 0 to 1000, with 0 representing
the lowest occurrence probability (i.e., 0) and 1000 representing the highest occurrence
probability (i.e., 1). For each species, we converted the projected habitat suitability values
into binary presence–absence maps by selecting a probability threshold that maximized the
TSS value [37,43].

We conducted all analyses with R 64-bit (version 4.0.2, 64 bit) software (https://
www.r-project.org, accessed on 22 July 2020), using the package “biomod2” for ensem-
ble model construction [43], “raster” for data manipulation [51], “terra” for habitat area
calculation [52], and “maps” and “ggplot2” for maps and figures, respectively [53,54].

3. Results
3.1. Model Accuracy Measures

The SDMs of E. japonicus performed worse than the other three species for every
algorithm (Figure 2). Among the ten algorithms, the RF algorithm showed the best pre-
dictive abilities for all four larval fish, and the SRE algorithms were scarcely accurate. The
algorithm performances of both GAM and GBM were also generally satisfactory with
regard to the statistics, except when used with E. japonicus. The TSS and AUC scores of the
ensemble models for the four species were above 0.899 and 0.641, respectively (Table 2).
Additionally, the ensemble model exhibited a high specificity and sensitivity, with values
above 78% (Table 2). Compared with any of the single modeling algorithms, the ensemble
model had a more accurate performance. These results show that the predictive abilities of
the ensemble model can reduce the uncertainty and increase the accuracy compared with
the single model.

https://www.r-project.org
https://www.r-project.org
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Figure 2. Predictive abilities of the ten modelling algorithms (artificial neural networks (ANN),
classification tree analysis (CTA), flexible discriminant analysis (FDA), generalized additive model
(GAM), generalized boosting model (GBM), generalized linear model (GLM), multiple adaptive
regression splines (MARS), maximum entropy (MaxEnt), random forest (RF), and surface range
envelop (SRE)) for the four larval fish. Dashed lines represent cutoff levels for the area under the
receiver operating characteristic curve (AUC = 0.7) and true skill statistic (TSS = 0.4) used to select
the algorithms to remain in the ensemble species distribution models (SDMs). Values are expressed
as mean ± standard error.

Table 2. Predictive abilities of ensemble species distribution models (SDMs) for each larval
fish species.

Species AUC TSS Cutoff Sensitivity (%) Specificity (%)

C. mystus 0.938 0.766 616.0 87.255 87.897
E. japonicus 0.945 0.740 677.0 80.734 93.220
P. sinensis 0.928 0.749 243.0 96.774 78.102
H. bleekeri 0.899 0.641 445.0 81.818 82.301

Note: the AUC represents the area under the receiver operating characteristic curve; TSS represents the true
skill statistic; Cutoff represents the projected habitat suitability values into present/absence (0/1) by selecting
a probability threshold that maximized the TSS value. The sensitivity represents the proportion of the positive
samples that were correctly classified. The specificity represents the proportion of the negative samples that were
correctly classified.

3.2. Importance of Environmental Variables and Response Curves

For all species except E. japonicus, the SSS was the most important variable in the
ensemble model (Figure 3). The SSS (0.45) and SST (0.34) were the key influential variables
to predict the occurrence probability of C. mystus. Depth (0.10) and SSChl (0.08) played a
less pivotal role. Depth was the most important variable with a 0.39 importance value for
E. japonicus. For P. sinensis, SST (0.29) also had a higher impact on the model performance.
Apart from the strong influence of the SSS (0.83), the occurrence probability of H. bleekeri
was scarcely influenced by the other three variables.
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Figure 3. Importance of the four environmental variables (depth (Depth, m), sea surface temperature
(SST, ◦C), sea surface salinity (SSS), and sea surface chlorophyll-a concentration (SSChl, mg/m3))
from the ensemble model for the four larval fish species.

The shapes of the response curves of the different species were quite different (Figure 4).
The SSS suitable ranges of C. mystus were 5–10 and 12–20. Low salinity (SSS < 3) was
unsuitable for E. japonicus, but it was suitable for P. sinensis and H. bleekeri. The SST suitable
ranges for C. mystus were 20.5–21.8 ◦C and higher than 22.5 ◦C. A high temperature range
(SST higher than 22.3 ◦C) was ideal for P. sinensis and H. bleekeri, but it was unsuitable for E.
japonicus. The most important variable that influenced the distribution of E. japonicus was
depth, whereby a depth of 4 to 8 m maximized the occurrence probability.

3.3. Spatial Patterns of Habitat Suitability

Our results showed that the brackish water guild species (C. mystus) and marine guild
species (E. japonicus) are expected to have high habitat suitability outside the mouth of
the Yangtze Estuary (east of 122◦ E), and that the freshwater guild species (P. sinensis and
H. bleekeri) are expected to be present inside the mouth of the estuary (west of 122◦ E)
(Figures 5 and S1). The ensemble SDM indicated that C. mystus will most likely be found
inside the North Branch (west of 122◦ E), Eastern Chongming, and outside the South Branch
(east of 121.8◦ E), with an area of 2910.55 km2. The predicted environmentally suitable
area (3460.68 km2) for E. japonicus was relatively larger than the area for C. mystus, which
extended to outside the North Branch. For the two freshwater guild species, the suitable
areas were generally similar and were mainly located inside the South Branch. The area for
P. sinensis (1615.93 km2) was relatively larger than that for H. bleekeri (1136.87 km2).
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Figure 4. Response curves of explanatory variables (depth (Depth, m), sea surface temperature (SST,
◦C), sea surface salinity (SSS), and sea surface chlorophyll-a concentration (SSChl, mg/m3)) for the
four larval fish species. ((a–d) C. mystus; (e–h) E. japonicus; (i–l) P. sinensis; (m–p) H. bleekeri). Dashed
lines represent cutoff levels by selecting a probability threshold that maximized the true skill statistic
(TSS) value.

We found that the area inside the South Branch and the other areas were divided into
two different habitat types with low and high salinity (Figures 5 and 6). A confluence
of salt and fresh waters (Figure 6a), with SSS in the range of 2–5, occurs between these
two areas [18]. In this mixing zone, we found an obvious overlapping distribution of the
three ecological guild species (Figures 6b and S2).
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area. ((a,b) C. mystus; (c,d) E. japonicus; (e,f) P. sinensis; (g,h) H. bleekeri).
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4. Discussion
4.1. Model Performances

Many studies have used the ensemble model to predict the habitats of marine species
of different forms, including fish and crabs [55,56]. We found that ensemble SDMs for the
four larval fish species exhibited predictive abilities superior to those of single algorithms,
and that they had markedly increased the model’s accuracy, regardless of the database
used. Especially for E. japonicus, only the RF algorithm in the single model was generally
satisfactory for the performance statistics, whereas the ensemble model had increased the
prediction ability of the model with values of 0.945 AUC and 0.740 TSS. The high phenotypic
plasticity of E. japonicus perhaps influenced the prediction performance of the other single
models [57]. Although higher AUC and TSS values were shown by the ensemble model,
the performance of the ensemble models for DES larval fishes was different, especially
for two freshwater species (Table 2). The model’s accuracy (0.928 AUC and 0.749 TSS) of
P. sinensis was higher than that of H. bleekeri (0.899 AUC and 0.641 TSS). The distribution
of freshwater species is concentrated in the freshwater region of the Southern Branch
and the different distribution area may be the reason that affected the performance of the
model. Although the accuracy of the models remarkably increased due to the application
of ensemble methods emphasizing the “signal” emerging from different model outputs,
this ensemble method will still depend on the accuracy of the single algorithms they are
based on [40]. Thus, researchers still need to focus on the critical underlying issues of
the single model to enhance the reliable prediction of species distributions. Moreover, in
order to reduce the complexity of processing, we validated the models by using only the
independent datasets (30% of our dataset). However, using cross-validation rather than
simply splitting the data when assessing model performance could avoid the possibility of
overestimating the predictive power of the models [58].

Ensemble models have been applied to avoid the necessity of selecting a single best
model among many that may be approximately equivalent and may have potential errors
due to overfitting [48]. In this study, we found that the RF algorithm showed stronger
predictive abilities for all four larval fish than any other single algorithm. Although
GLM and GAM may be the most traditional statistical models for predicting species
distributions, they showed inferior performance compared with the nonlinear statistical
models (especially the RF algorithm) [42]. The SRE algorithm was scarcely inaccurate in
comparison with other methods.; thus, its use in the modeling of species distribution was
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doubted [56]. MaxEnt showed a low predictive power and stability, despite being one of
the most widely used modeling techniques [22]. These results provide support for the
arguments of enhanced performance consistently obtained for machine-learning techniques
such as RF [42].

4.2. Environmental Variable Predictors

Salinity is a key environmental variable contributing to spatiotemporal variability
in the assemblage structure of fish in estuaries [25,26,59]. We found that all DES were
deeply influenced by salinity in the estuary. This is consistent with the results of previous
studies, which showed that salinity mainly influenced the composition and abundance of
most estuarine species [19]. Jiang et al. (2006) suggested that salinity changes influenced
the distribution of larval fish, and the oligohaline region in the offshore had a significant
impact on the hatching and development of larval fish in the Yangtze Estuary [60]. The
rhythm of the river flow and the physiography of the estuary are the major factors that lead
to the gradient variance and annual change in salinity [13,61]. We found obvious annual
differences in the SSS, and the SSS in 2021 was the lowest (Table S1 Additionally, Figure S2).
The Yangtze River flows in May in 2019, 2020, and 2021 were 92.4, 59.7, and 112.2 billon m3,
respectively. We acquired the Yangtze River flow data that were measured at Datong station
in May (117◦37′ E, 30◦46′ N) from the Changjiang Water Resources Commission of the
Ministry of Water Resources (http://www.cjw.gov.cn, accessed on 16 January 2022). The
evolution of saltwater intrusion can also influence the gradient variance of salinity due to
the special topography of the Yangtze Estuary [62]. In the Yangtze Estuary, lower values
of salinity are recorded in the South Branch, as opposed to high values of salinity in the
North Branch [30]. The higher SSS inside the North Branch indicated that a stronger saline
intrusion may have occurred in 2019 (Figure S2). Low salinity (SSS < 3) was unsuitable for
the marine species (E. japonicus), but it was suitable for the freshwater species (P. sinensis
and H. bleeker). Therefore, DES will select zones with different salinities as their nursery
ground. The SSS suitable range for C. mystus (brackish water species) was 5–10 and 12–20.
Hu et al. (2021) indicated that the suitable salinity of C. mystus larvae was 5–12 in the
Yangtze Estuary (West of 122◦ E) by using the GAM model; they also reported that its
distribution was more inclined to the North Branch with the higher salinity [63]. Due to
the differences in the survey areas, our results can be used as a supplement to previous
studies. Even though the mean salinity was low in 2021, E. japonicus could still maintain a
broad distribution with phenotypic plasticity [57].

Multiple physical or chemical factors can also influence the distribution of larval fish
species [7,17]. We found that E. japonicus belonged to the marine ecological guild and was
deeply influenced by depth, whereas the distribution of the other species was not sensitive
to depth. Hence, marine species may have higher requirements for depth [9]. Wan et al.
(2002) showed that the spawning ground of E. japonicus gradually transferred from offshore
Qingdao to deep-water areas in the south of the Yellow Sea [64]. Moreover, temperature
was the key environmental variable affecting fish in many ways, including spawning,
migration, and diet [26,30,57]. Most fish spawn in temperatures higher than 18 ◦C in
the Yangtze Estuary [33]. Our results showed that temperate was the second key factor
influencing the distribution of C. mystus and P. sinensis larval fish, but H. bleekeri, which
also belongs to freshwater species, had little correlation with temperature. The SST suitable
ranges for C. mystus were 20.5–21.8 ◦C and higher than 22.5 ◦C. The temperature rise might
increase the recruitment success of C. mystus [30]. Thus, the temperature rise may be the
reason why the abundance of C. mystus increased in 2020 and 2021 (Table 1). Moreover, we
should notice that some potential factors, such as time-lagged (e.g., one month prior) SST
and chlorophyll-a concentration, may also affected the distributions of larval fish species.
In some cases, marine processes are better explained by time-lagged ecological variables,
such as surface temperature, rather than simultaneous values [65]. Chlorophyll is often
considered to have a 30-day accumulation period prior to being reflected in higher trophic

http://www.cjw.gov.cn
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levels through ocean food chains [66,67]. Thus, future research can focus on the lag of the
environmental factors affecting the larval fish habitats.

4.3. Potential Habitat Description

This study on the distribution of DES will be helpful to understand the mechanism of
fish habitat selection in estuaries. The four species that we considered are common species
in the Yangtze Estuary and have considerable ecological and economic importance. Their
larvae are important fishery resources and play an important role in the food web, and they
are abundant in the study area [28,68]. Moreover, they use the estuary in different ways,
which may explain the differences in the environmental tolerance and the different impacts
of environmental variables on their distributions [5,9]. C. mystus, which is recognized as a
brackish water species, is an estuarine migratory fish that commonly lives in shallow marine
habitats but migrates to brackish estuarine waters and even freshwater areas in the spring
as sexually mature individuals [23]. The main spawning period and location of C. mystus
are spring and the South Branch of the Yangtze Estuary in China, respectively [14,30,69].
We found that the C. mystus larval fish were mainly distributed inside the North Branch
and outside the South Branch. Thus, further studies are needed to understand the transport
mechanism between the spawning and nursery ground of C. mystus. It may be closely related
to hydrodynamic processes (e.g., the Yangtze River runoff), and geographic attachment may
be the consequence of the recurrence of favorable conditions at particular locations [70,71].
The Japanese anchovy (E. japonicus) has been widely studied in biology, population variety,
and ecology fields [57,72,73]. Kim et al. (2005) found that anchovy larvae peaked in May and
June and that the distribution pattern was influenced by the monsoon season and Yangtze
River discharge [72]. Iseki and Kiyomoto (1997) classified the Japanese anchovy population
into two groups: one of the two groups was strongly characterized by a high concentration
of anchovy ichthyoplankton in the low-salinity and high-turbidity areas at the frontal zone
of the Yangtze River plume [74]. Our results corroborated this finding, as we found that
the suitable habitat of Japanese anchovy larval fish was all areas except for the freshwater
area in our study area. Although freshwater species are also an important part of the fish
community in the Yangtze Estuary, researchers have paid little attention to the distribution
of freshwater species in the Yangtze Estuary. We found that freshwater species were mainly
distributed inside the South Branch. The distribution area for P. sinensis (1615.93 km2) was
relatively larger than that of H. bleekeri (1136.87 km2).

Moreover, our results showed that the confluence of salt- and freshwater is a place
where multiple ecological guild species coexist. According to the salinity gradient of the
Yangtze Estuary, a previous study divided the Yangtze Estuary into four water systems and
assigned one of the four water systems as the estuarine water because the salinity was in the
range of one to five [18]. Considering the change in the estuarine environment, we assigned
the SSS in the range of 2–5 as the confluence of salt- and freshwater. One possible reason
for this result is that hydrodynamic processes (eddies) are an opportunity to adaptively
respond, giving a competitive advantage for the larval fish [75]. Another possible reason
is that the confluence of salt- and freshwater is the main factor controlling the nutrient
distribution. The nutrient gradient formed in the process of mixing salt- and freshwater
can cause differences in the growth degree and rate of phytoplankton and can change
the nutrient structure of seawater due to local phytoplankton blooms [76,77]. There is an
assumption that if the salinity gradient changes, the distribution pattern of the confluence
of salt- and freshwater in the Yangtze Estuary will be shifted. This salinity gradient may be
the reason why many fish species, particularly marine species, selected the estuary.

Our study suggests that the different distribution patterns were shown in DES larval
fishes and the conservation activities should consider this aspect. Thus, there may be
not a single conservation strategy to protect the total larval fish resource in the Yangtze
Estuary. Adaptive conservation strategies for DES larval fish should take our findings
into account. Species-specific conservation measures, such as species-specific fishing
moratoriums (i.e., closure dates and closure areas), should be considered. At present,
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a long-term fishing ban strategy has been taken in the Yangtze Estuary by the Chinese
government since 2020 for the purpose of protecting the estuarine fisheries resources. This
may play an important role in the recovery of fishery resources in the Yangtze Estuary.
Moreover, to maximize the benefits of conservation strategies, annual larval fish surveys
should help clarify variations in the life-history traits of DES.

5. Conclusions

In this study, we explored spring suitable habitats for DES larval fish and examined the
relationships between the presence of four species and environmental variables by using
ensemble SDMs in the Yangtze Estuary. Nevertheless, our modeling approaches still have
some limitations. First, we should note that we only included the presence/absence data
and not the abundance data in our model. Therefore, it is impossible to confirm whether the
confluence of salt- and freshwater also has abundant fish larvae. Second, the sample size
may affect how well SDMs perform; increasing the amount of survey data will be beneficial
to increase the model accuracy. However, long-term surveys in the Yangtze Estuary are
difficult to conduct because of the fishing ban placed by the Chinese government (west of
122◦15′ E).

The Yangtze Estuary is a very important region as it acts as a nursery ground for
fish species, and many researchers have examined the larval fish assemblage structure in
this area. Compare to other literatures on the Yangtze Esturay, we paid attention to high
resolution samples to study the larval suitable habitats so that we could record various
DES. This study provides the first set of published information on the relationship between
the three ecological guild species and the surrounding environment in the Yangtze Estuary.
Thus, the findings of this study will serve as a baseline against which future trends can
be evaluated for the species, especially the freshwater species. Our findings suggest
that environmental variables likely determine the spatial distribution pattern of the DES
larval fish and that salinity is a key variable that contributes to their spatial variability.
Consequently, no single conservation strategy to protect the total larval fish resources in
our study area may exist. Species-specific conservation measures should be considered
based on our study.
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mdpi.com/article/10.3390/fishes8040209/s1, Figure S1: The distribution of modeled and observed for
the four model species in all three cruises in the Yangtze Estuary. ((a–c) C. mystus; (d–f) E. japonicas;
(g–i) P. sinensis; (j–l) H. bleekeri); Figure S2: The spatial patterns of SSS (a) and the sum of predicted
presences of the four species (b) considered in all three cruises in the Yangtze Estuary; Table S1:
Mean total values for depth (Dep, m), sea surface temperature (SST, ◦C), sea surface salinity (SSS),
sea surface chlorophyll a (SSChl, mg/m3) sampled from three cruises in Yangtze Estuary (±95%
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