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Abstract: In several strongly correlated electron systems, the short range ordering of defects, charge
and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is
growing evidence that such inhomogeneity plays a fundamental role in unique functionality of
quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated perovskite showing
spin stripes order. In this work we present the spatial distribution of the spin order inhomogeneity by
applying micro X-ray diffraction to La1.72Sr0.28NiO4, mapping the spin-density-wave order below the
120 K onset temperature. We find that the spin-density-wave order shows the formation of nanoscale
puddles with large spatial fluctuations. The nano-puddle density changes on the microscopic scale
forming a multiscale phase separation extending from nanoscale to micron scale with scale-free
distribution. Indeed spin-density-wave striped puddles are disconnected by spatial regions with
negligible spin-density-wave order. The present work highlights the complex spatial nanoscale phase
separation of spin stripes in nickelate perovskites and opens new perspectives of local spin order
control by strain.

Keywords: nanoscale phase separation; spin stripes; nickelates; quantum complex materials

1. Introduction

The complex organization of different orders seems to have a fundamental role in the mechanism
governing the emergence of unique functionalities in quantum materials [1]. In cuprate perovskites,
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the stripes phases have been the object of interest for decades [1–3], while in this last decade new
scanning X-ray diffraction methods have been developed due to the ability to focus X-ray synchrotron
radiation to micron and sub-micron spots. These methods have made it possible to obtain visualization
of spatial topological inhomogeneity of charge density wave order in doped cuprate perovskites [4,5].
Short range generalized Wigner charge density waves have been found to be spatially inhomogeneous
with the formation of “striped charge puddles” anti-correlated with competing puddles of “striped
dopants rich clusters” [4–6]. These experimental results have opened a new era in the long-standing
research of complexity in doped strongly correlated perovskites, since they have falsified popular
stripes theories which for decades have assumed a homogeneous spatial distribution of spin stripes
and charge-stripes. In this work we focus on the spin stripes phase in doped nickelate perovskites.
In order to determine the role that the spatial distribution of ordered phases in cuprates plays for the
superconductivity, it is instructive to study a non-superconducting reference system like the layered
nickelates [7]. Keeping this idea in mind, we push forward the investigation of the spatial distribution
of spin-density-wave stripes ordering (SDW-stripes) in La2-xSrxNiO4 nickelates.

It is well known that spin stripes appear in layered nickelates [7] in the doping interval
0.15 ≤ x ≤ 0.5 [7]. In the doping range 0.25 < x < 0.3 magnetic stripes and charge stripes can be
easily investigated separately. In La2-xSrxNiO4 the spin-order scattering exhibits peaks in the k-space
for (1−ε; 0; l) with odd and even l, whereas charge-order scattering always peaks at (2ε; 0; l) with odd
l, [7,8] where the notation refers to the commonly used orthorhombic unit cell. We have investigated a
nominal single crystal La1.72Sr0.28NiO4 to get direct visualization of the inhomogeneity of spin stripes
incommensurate order in the bulk structure from nano to micro scale.

A large number of studies on the spin stripe order in La2-xSrxNiO4 were performed by traditional
neutron scattering [9–13] probing the spin ordering with low energy neutrons, which have been
confirmed by muon spectroscopy [14]. Several authors have focused on both magnetic and charge
order [15–20] phenomena in nickelates. Resonant elastic X-ray scattering REXS [16–18] has been used
to detect spin order directly via magnetic contrast but it has no spatial resolution. Electron diffraction
and hard X-ray diffraction (XRD), or non-resonant-X-ray-magnetic-scattering (NXMS) of nickelates
and related magnetic materials [20–25] have been used to probe the associated tiny lattice distortions
related with polaron ordering or generalized Wigner CDW and magneto-elastic strain effects [26–28].
These last methods could have spatial resolution, therefore, they open new perspectives to unveil
open puzzles on the complexity of the nature of stripes in La2-xSrxNiO4 nickelates. These experiments
are needed to test theories i) proposing spin stripes in strongly correlated systems including orbital
and polaronic degree of freedom [26–28] and ii) the theory predicting a frustrated phase separation
controlled by strain, in a strongly correlated multiband system tuned to a Lifshitz transition, in the
frame of the multiband Hubbard model [29].

The accumulated data on the La2-xSrxNiO4 system [7–21] enable us to present a temperature
doping phase diagram of this nickelate system in panel (a) of Figure 1. The red area indicates the
antiferromagnetic order (AFM) dominating the lower Sr-doping x given by the percentage of Sr for La
substitutions in the La2O2 plane, which is assumed to give the number of injected doped electronic
holes per Ni atom in the NiO2 plane [7]. The blue and the green areas correspond to the observation
of charge-density-wave order (CDW-stripes) and magnetic spin-density-wave order (SDW-stripes),
respectively. The SDW-stripes modulation wave-vector direction for 0.15 < x < 0.5 extends in real
space diagonally to the Ni-O bond direction along the b-direction of the orthorhombic unit cell. For
samples with tetragonal crystal symmetry, as the one studied here, the stripe order itself breaks the
rotational symmetry of the ab-plane and therefore spin stripes were assumed to show two different
orientations with a 90-degree rotation around the c-axis with equal probability. The spin stripes lead
to superstructure peaks either in the neutron diffraction pattern [9–13] and X-ray diffraction [16–21].
Those at the lowest momentum transfer occur at wave-vectors (1−ε, 0, 0) in the orthorhombic lattice
for SDW-stripes order, where ε is a temperature dependent incommensurability value, which is well
separated from different charge stripe wave-vectors in the k-space.
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While neutron scattering has provided for decades k-space information on spin ordering averaged
over large crystal area, the present X-ray investigation reported here provides spin ordering information
on illuminated spots in micron sized samples using a focused X-ray synchrotron radiation beam which
allows us for the first time to detect spatial inhomogeneous spin order in a nickelate single perovskite
micro-crystal. The results show large spatial fluctuations of the spin order with fractal structure
indicated by power-law distribution of the spin order parameter. The particular fractal distribution
is assigned to quantum criticality near an electronic topological transition or Lifshitz transition as
predicted by multiband Hubbard model for strongly correlated two band systems where the strain
controls the energy shift between the two bands [29].
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Figure 1. Phase diagram of nickelate systems and Spin-Density-Wave order. (a) Temperature-doping
Phase diagram of the nickelate systems. In red the insulating Antiferromagnetic order (AFM), in blue
the charge-density-wave order (CDW-stripes) and in green the spin-density-wave order (SDW-stripes).
The red dotted line represents the temperature range where the sample of this work has been studied;
(b) The intensity evolution of the SDW-stripes peak as a function of temperature; (c) SDW-stripes
peak profile along the a* (left panel) and c* (right-panel) crystallographic directions, recorded at
30 K. The solid lines correspond to Lorentzian profiles fitted to the data, giving the in-plane and the
out-of-plane correlation lengths around the average values of about 20 nm and 2 nm, respectively.

2. Materials and Methods

Single-crystalline La1.72Sr0.28NiO4 was grown by floating zone technique. The seed and feed rods
were prepared from polycrystalline powder obtained by solid state reaction of La2O3, SrCO3 and NiO
with an excess of NiO. The reaction was performed at 1200 ◦C for 20 h with intermediate grinding.
The rods were densified at 1500 ◦C for 5 h in air.

Micro X-ray diffraction measurements of SDW-stripes order in the sample were carried out at
beamline P10 of PETRA III (DESY, Hamburg, Germany) using an energy of 8 KeV. The scattering
signal was detected at a sample to detector distance of 5 m using the large horizontal scattering
set-up of beamline P10 including an evacuated flight path. A PILATUS 300K detector (DECTRIS,
Baden-Daettwil, Switzerland) was used to record the X-rays scattered by the sample. By employing
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a focused beam with a diameter of about 1 µm and translating the sample, we mapped the spatial
distribution of the (1−ε,0,0) peak intensity over different areas of about 40 × 80 µm2 in steps of 1 µm
in both directions resulting in 3321 diffraction images. The scanning was performed translating the
sample along the 80 horizontal lines. The exposure time for each X ray diffraction frame was of 5 s
providing a X ray flux on each spot on the sample of about 109 count per second (cps). The time needed
to collected a map was around 5 hours.

3. Results and Discussion

Scanning micro X-ray Diffraction (SµXRD) has been demonstrated to be a powerful tool in
unraveling material inhomogeneity in superconductors at the micro and nanoscale, and has been
successfully applied to the cuprate systems doped by oxygen interstitials: HgBa2CuO6+y, known as
Hg1201 [4], La2CuO4+y, known as La124, [5,6] Bi2Sr2CaCu2O8+y, known as Bi2212 [30], YBa2Cu3O6+y

known as Y123 [31–33], to iron-based superconductors [34] and to cobaltates materials opening a new
era for our knowledge of quantum complex materials at nanoscale [35–79]. Here we have investigated
a single crystal La2-xSrxNiO4 with Sr doping x = 0.28 with the spin modulation wave-vector ε = 0.29
consistent with the empirical relation for spin stripes wave-vector ε close to the percentage of the
number of holes x per Ni sites. The red dotted line in Figure 1a represents the temperature range where
the sample of this work has been studied.

In order to probe the spatial evolution of the SDW-stripes order in real space we used a micron-size
X-ray beam probing the local SDW-stripes via the corresponding intensity of the magnetic so-called
SDW-stripe superlattice peak at (0.71,0) in the orthorhombic (h,k) plane which is well separated from
the so-called CDW-stripe superlattice reflection at (0.56,0).

The temperature variation of the intensity of the SDW-stripes reflection peak as a function of
temperature is shown in panel (b) of Figure 1. The SDW-stripes peak is identifiable for temperatures
below TSDW = 120 K in agreement with previous works [7]. On further cooling, its integrated
intensity increases, reaches a maximum around T* = 65 K, followed by an intensity reduction when the
temperature is further decreased as shown in Figure 1b which confirms the previous X-ray scattering
results [16]. The determined temperature dependence of the SDW-stripes intensity is similar to the one
reported for nickelates of different doping levels [16]. Thus, we can assume the observed behavior to
be a general characteristic for SDW-stripes order. This behavior resembles what has been predicted for
incommensurate cuprate stripes to occur at low temperatures, when a freezing to the lattice potential
disturbs the long-range order [36–38].

The XRD diffraction peak profile of SDW-stripes shows a large anisotropy in the k-space shown in
panel (c) of Figure 1. Line cuts through the SDW-stripes peak along the h-direction and l-direction, are
presented in the left and right panel of Figure 1c, respectively. The solid lines correspond to results of
Lorentzian profiles fitted to the data. The width of the two Lorentzian profiles gives the correlation
lengths in the NiO2 plane direction much larger than in the out-of-plane direction reflecting the quasi
two-dimensionality of the magnetic interactions [7,35] in the NiO2 atomic layer modules. In fact, this
system can be described as a hetero-structure at atomic limit made of weakly interacting atomic NiO2

layers separated by La2-xSrxO2 spacing layers. The NiO2 layers have a sizeable compressive strain
tuned by Sr doping, because of the lattice mismatch between the antiferromagnetic striped layers and
the spacer layers which is a key variable controlling spin and charge ordering [51,52].

We have found an intrinsic inhomogeneous spatial organization of SDW-stripes forming stripy
domains organized in micrometric stripes with different spatial arrangement as a function of
temperature. In Figure 2 we report the micro X-ray diffraction maps probing the spatial inhomogeneity
of the spin stripes order. Three maps were collected by scanning the same sample area at 30 K, 50 K
and T* = 70 K temperatures. In the spatial maps the spin-stripes peak intensity is plotted in a logarithm
scale with red color areas. We observe in panels (a, b, c) of Figure 2 the formation of SDW rich
regions in the sample corresponding to very high spin-stripes diffraction intensity with the shape of
microscale stripes.
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Figure 2. Spatial inhomogeneous stripes order. (a) Maps of spin stripes order showing phase segregation
with spin stripes aggregates (red area) separated by regions (green-blue) with no spin stripes order
signal. Each single pixel of the presented maps has been obtained recording the intensity of the XRD
reflections probing SDW-stripes in a specific x,y position of the sample. l. In order to reconstruct the
spatial maps, the sample has been scanned over an area of about 40 × 80 µm2 in steps of 1 µm in
both directions. The black scale bar shown in the upper frame collected at 30 K corresponds to 10 µm.
Red areas show SDW-stripes domains of the probed SDW-stripes forming puddles of the order of about
10 micrometers. Blue areas are representative of SDW-stripes domains where the SDW-stripes signal is
not detected; (b) Probability density functions of the intensity of the spin stripes signal calculated from
spatial maps at 30 K, 50 K and T* = 70 K. The distributions show evident fat-tails characterized by a
power-law behavior with a critical exponent of 2.1 (solid black line) which rescale on the same curve
with different values of the cut-off (c). The radial correlation function G(r) calculated from the three
spatial maps. The blue line represents the spatial correlation obtained for a random distribution of
stripes XRD peak intensities obtained by just shuffling the data. The G(r) intensities decay exponentially,
on the noise level, at DSDW indicating the size of a typical domain of 10 microns made by aggregation
of individual nanoscale stripes puddles in the NiO2 in the ab-plane; (d) Pictorial view of the stripes
puddles of about RSDW ≈ 20 nm, given by the correlation length extracted from the width of the
diffraction reflection lines (see Figure 1), forming aggregates of about DSDW ≈ 10 micron size below the
critical temperature T*.

The microscale spin rich stripes are separated by blue or green areas where the spin diffraction
signal is the noise level. The two regions are separated by the yellow interface domains between red
micro-scale stripes with spin modulations, and blue-green regions with no spin stripe modulation.
The red spin stripes as a function of temperature shows a maximum density at T* = 70 K and by
decreasing the temperature some of the red color spin stripes disappear and are replaced by the
increasing blue-green regions with missing SDW.

Panel (b) in Figure 2b shows the statistical analysis of the distribution of the SDW-stripes intensity,
I, in terms of the probability density function P(x) where x = I/I0 and I0 is the average intensity of the



Condens. Matter 2019, 4, 77 6 of 10

map. The intensity distributions strongly deviate from a Gaussian distribution and show extended fat
tails which can be fitted by an exponentially truncated power-law behavior

P(x) = x−αexp(−x/xτ)

with a critical exponent α = 2.1 ± 0.2 and cut-off xτ = 7 ± 0.5 at T* = 70 K shown by a solid line
in panel (b). Similar behavior has been reported for the distribution of the oxygen interstitials and
the CDW order accompanied by local lattice distortions in the active layers of cuprates and related
materials [4–6,30–34]. This result underlines a spatial organization of the spin stripes order in
“scale-free” or fractal-like geometries showing long-range power-law correlations common to systems
showing fractal geometry which are quantified by the experimentally determined critical exponent α
and the cut-off xτ. This physical state appears in systems “tuned” near a quantum critical point which
is a feature of striped quantum complex matter phase in perovskite materials [4–6,30–34].

For investigating the spatial distribution of the microscale SDW-strip we have calculated the radial
distribution function G(r) of the XRD reflection intensity in the spatial maps at the three temperatures
reported in panel (c) in Figure 2. All the G(r) curves show a similar exponential decay falling on the
noise level at distances with DSDW = 10 µm. We associate this length to the average size of the microscale
SDW-strip domain. The average size RSDW of the nano-spin-puddles in the ab-plane deduced by the
diffraction profile width in Figure 1 is of the order or 20 nm, therefore, each illuminated 1 µm spot in
our scanning mode provides the average value over about 2.5 × 103 nano-spin-puddles. A pictorial
view of spin-rich domain of radius DSDW = 10 µm hosting about 2.5 × 105 nano-spin-puddles of
radius RSDW is shown in panel (d) of Figure 2.

4. Conclusions

In this paper we have provided experimental evidence for spatial phase separation of magnetic
stripes order in nickelates predicted for two bands strongly correlated systems near a Lifshitz
transition [29]. In cuprates and related matter the coexistence of spin ordered, charge ordered and
lattice ordered puddles [39–41] have pointed towards the possibility of quantum complex fluids
at the interfaces spanning filamentary hyperbolic spaces [42] as it has been found in functional
biological matter [43,44]. Moreover, it is possible that the doped charges in nickelates form polaron [45]
anisotropic aggregates [46] with associated tilts [47] making quantum networks [48] of polarons.
Therefore, the phase separation reported in this work could be assigned also to the liquid-striped
liquid phase separation in liquids of anisotropic polarons similar to the liquid-striped liquid phase
separation in water [49,50]. The anisotropy of polaron clusters in nickelates is assigned here to
misfit strain [51,52] and orbital degrees of freedom [53–55]. The detection of the complex magnetic
structures in strongly correlated electron systems by X- ray diffraction [56,57] can be used to support
the association of the spin signal to polaronic distortions. The new mesoscopic phase separation
with scale free spatial correlation for spin stripes order found here in nickelates is in agreement with
previous indications [53–59] and it provides the experimental smoking gun evidence that the spin
ordering in spin stripes phase in nickelates is near a quantum critical point. A similar spatial fractal
landscape has been found in cuprates [46–52] and in other oxides near a quantum phase transition as in
VO2 [60–63], in ruthenates [64,65], and in diborides [66,67]. The observed scale free phase separation in
nickelates is in agreement with the predictions by of the multiband Hubbard model of frustrated phase
separation in strongly correlated two bands systems [29,68]. In this regime the strain manipulation
provides a key physical variable [51,52] to drive the system near a particular quantum critical point
at Lifshitz transitions or topological electronic transitions. Further experimental work is needed to
clarify if hyperbolic space correlations predicted by theory [69,70] and observed in correlated metallic
cuprates [4,42] are present or not in the stripes spatial landscape in nickelates. Finally, we have reported
new information on the quantum complex scenario near criticality in nickelates which opens new
venues to applications and developments of new magnetic and electronic devices. In fact, in the
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proximity of a topological Lifshitz transition it is possible to control novel macroscopic functionalities
by a weak external stimulus such as stress [25–36,71–75], current density [64,65] or photon illumination
dose [5,76–79].
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