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Abstract: We study the non-linear beam splitter in matter-wave interferometers using ultracold
quantum gases in a double-well configuration in presence of non-local interactions inducing inter-well
density-density coupling, as they can be realized, e.g., with dipolar gases. We explore this effect
after considering different input states, in the form of either coherent, or Twin-Fock, or NOON
states. We first review the non-interacting limit and the case in which only the local interaction is
present, including the study of sensitivity near the self-trapping threshold. Then, we consider the
two-mode model in the presence of inter-well interactions and consider the scaling of the sensitivity
as a function of the non-local coupling strength. Our analysis clearly shows that non-local interactions
can compensate the degradation of the sensitivity induced by local interactions, so that they may be
used to restore optimal sensitivity.

Keywords: strongly correlated fluids; ultracold quantum gases; atom interferometry; precision
measurements

1. Introduction

Quantum metrology is raising as a timely research field, where suitably engineered correlations
among many particles represent a new paradigm to push sensitivity to unprecedented limits.
For example, it is well known that the sensitivity of atom interferometers such devices can be improved
by using squeezed states as input states, or taking advantage of interactions in the splitting process [1].
However, in experimental setups, interactions may lead to a degradation of the sensitivity [2], so that a
general issue is to explore how the performance of quantum interferometers depends on the parameters
and the features of the interatomic couplings. In this paper, we study the effect of non-local interactions
among particles on the sensitivity of a matter-wave interferometer realized with ultracold atoms [1,3,4].

The remarkable features of ultracold atoms [5] make them an ideal platform in which quantum
interferometers can be implemented, with the perspective of making matter-wave interferometers
excellent tools for precision measurements of several physical quantities, such as accelerations and
rotations [6], and to test basic quantum-mechanics [7] and general relativity [8] concepts. To this aim,
an especially suited setup is provided by quantum gases in a double-well potential, with the possibility
to tune the height of the barrier and the energy difference between the two wells [9]. A similar scheme
can be realized after using Rabi-coupled Bose gases [10]. Both configurations give rise to what is also

Condens. Matter 2020, 5, 31; doi:10.3390/condmat5020031 www.mdpi.com/journal/condensedmatter

http://www.mdpi.com/journal/condensedmatter
http://www.mdpi.com
https://orcid.org/0000-0002-6992-5963
http://dx.doi.org/10.3390/condmat5020031
http://www.mdpi.com/journal/condensedmatter


Condens. Matter 2020, 5, 31 2 of 16

referred to as the external (in physical space) and internal (in the atomic species) ultracold Josephson
effect, and are well described by two-mode (2M) models in the regime in which the two gases are
weakly coupled. These two configurations have both been experimentally investigated also in the case
of multi-well potentials, and for bosonic and fermionic ultracold gases [11–28].

In essence, a general (matter-wave) interferometer is an instrument to measure the effect of a
given physical process acting in a differential manner on an input wave. In fact, the input wave
passes through a first suited beam splitter and is separated in two paths, where the two evolving
waves accumulate a phase difference driven by the given physical process to be tested. In order to
enhance the visibility of the effect, a possibility is, e.g., that the paths run as far as possible away from
each other. A second beam splitter then recombines the two paths, so that the accumulated phase
difference can be inferred from the readout. In the double-well setup for a matter-wave interferometer,
the splitting process is realized by letting the barrier being high enough, in order to accumulate a
phase difference between the atoms in the two wells [1]. After a phase difference is accumulated,
recombination is performed by lowering the barrier back or by letting the atom clouds fall and overlap
during their expansion.

The presence of interactions among the atoms in a matter-wave interferometer leads to several
relevant effects that have been investigated in the literature [2,29–36]. In particular, these include the
connection between the Heisenberg limit, in which sub-shot noise can be achieved, and multiparticle
entanglement useful for metrology, measured by the Fisher information [1,4,32,37]. Given the essential
role that the beam splitter plays in interferometric scheme, it is crucial to study the interaction effects
occurring during the beam-splitting process and the corresponding non-linear contributions to the
scaling of the phase sensitivity with the total number of particles. These effects have been extensively
investigated in the literature [2,38–45] (see also [4] and references therein). In [2], three regimes, namely
Rabi, Josephson and Fock, were distinguished in the presence of local interactions, associating to them
different scalings of the phase sensitivity with the total number of particles.

The non-local nature of interparticle interactions represents one additional issue to be considered
in atomic, molecular and optical systems, where several studies have been carried out on how
equilibrium properties and quantum dynamics are affected and the long-rangeness of the interactions
possibly exploited [46–52]. In cold atoms, these characterize for example the physics of dipolar
gases [53]. In the context of ultracold quantum interferometers, the natural question arises on how
their performance can be modified. In the present paper, we provide the first segment of the answer
to this question, by focusing our attention on the physics of the non-linear beam splitters in the
presence of non-local interactions. We find that that non-local interactions can compensate the
degradation of the sensitivity induced by local interactions, which can therefore be engineered to
restore optimal sensitivity.

The paper is organized according the following scheme. In Section 2 we introduce the 2M
model, we present a brief discussion of the self-trapped regime occurring in a double-well above a
critical population imbalance and then remind basic properties of ultracold quantum interferometers.
In Section 3 we describe the effect of inter-well interactions. The analysis of the ultracold beam
splitter in the presence of non-local interactions is discussed for different input states in Section 4.
Our conclusions are presented in Section 5.

2. The Model

In the 2M approximation, the many-body description of N bosons in a double-well potential
interacting via local interparticle interactions can be simplified in the form of a two-sites Bose-Hubbard
model with the following Hamiltonian:

Ĥ = −J(â† b̂ + b̂† â) +
U
2
(â† â† ââ + b̂† b̂† b̂b̂) +

δ

2
(â† â− b̂† b̂) , (1)
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where â† (b̂†) creates a particle in the left (right) well and â (b̂) destroys it, J is the tunnelling strength,
U the interaction strength in each well and δ the energy shift between the two wells. These quantities
can all vary with time: during the interferometric process, U, J and δ need to be varied and are thus
time-dependent. In the following, we denote with n̂a = â† â and n̂b = b̂† b̂ the number operators in
each well. The elements of the Fock space are denoted as |n〉, with |n〉 ≡ |nL = n; nR = N − n〉.

While we refer to [4,54] for a detailed discussion on the 2M model and its applications to
interferometry, we remind readers here of the essential properties. First, the ground state of
Hamiltonian (1) can be written in the form |Ψ〉 = ∑N

n=0 cn|n〉. Second, considering a symmetric
double-well (δ = 0), Hamiltonian (1) depends only on the parameter γ = U/(2J), and the three
regimes in Figure 1 can be identified [55]:

(i) Rabi with γ � 1/N. Here, interactions are negligible and the tunnelling term dominates.
The energy spectrum is linear, such as in an harmonic oscillator with levels separated by 2J;

(ii) Fock with γ� N. Here, interactions dominate and the spectrum has a quadratic form, such as in
a pairwise quasi-degenerate states with opposite imbalance (|nL, nR〉, |nR, nL〉);

(iii) Josephson with 1/N � γ � N. Here, both interactions and tunnelling play a relevant
role. The spectrum starts with a linear behavior and then becomes quadratic with pairwise
quasi-degenerate states.

Figure 1. Variance of population imbalance vs. interaction energy U/(2J), characterizing the Rabi,
Josephson, and Fock regimes (see text). N = 10.

In addition, one can see that

(a) For large and negative γ, the ground state is the NOON state (|N, 0〉+ |0, N〉)/
√

2 [56].
(b) For attractive energies such that 1/N � |γ| � N, the energy spectrum starts with a quadratic

behavior, with pairwise degenerate states and then it becomes linear with levels separated by 2J.
(c) For |γ| � N, the energy spectrum is quadratic with pairwise degenerate states for large negative

values of the interaction energy.

The qualitative behavior of the energy spectrum is well confirmed by numerical results [57].
Concerning the variance of the population imbalance, two limiting cases can be identified.

For U = 0, the Hamiltonian is diagonal in the basis of the ground and first excited states: Ĥ ≡
Eg â†

g âg + Ee â†
e âe, and J = (Ee − Eg)/2. The ground state corresponds to

|Ψ〉 = 1√
N!

(â†
L + â†

R)
N |0〉 = 1√

2N

N/2

∑
n=−N/2

N!
(N

2 + n)!(N − N
2 − n)!

|n〉 . (2)
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For J = 0, the Hamiltonian is diagonal in the basis of Fock states |nL, nR〉 (assuming an even number
of particles) with eigenvalues U(n2

L + n2
R − N)/2. The minimum value for n2

L + n2
R with the constraint

nL + nR = N is reached for nL = nR, so that the ground state is a Twin Fock state:

|Ψ〉 = TF = |N/2, N/2〉 . (3)

In this state, ∆n2 = 0 and the phase is uniformly distributed (random phase).
As shown by the numerical results obtained from the solution of Hamiltonian (1) and displayed

in Figure 1, the variance in the three regimes (i)-(iii) defined above results to be:

(i) Fock regime: ∆n = JN/(
√

2U)� 1;
(ii) Rabi regime: the ground state is still close to a coherent state and one has ∆n .

√
N/2;

(iii) Josephson regime: for low-lying energy states one can see that ∆n2 = N/(4
√

1 + Λ).

An analytical estimate of the variance is given by [58]:

∆n =

√
N
2

(
2J

2J + NU

) 1
4

. (4)

2.1. Self-Trapping Regime

For a condensate in a double-well potential it is possible to define the relative phase between the
atoms in the two wells φ = φL − φR and the fractional population imbalance z = (na − nb)/N. In a
mean field picture, the equations of motion for these quantities can be cast in the form [9,59]:

ż(t) = −
√

1− z2(t) sin(φ(t)) , (5)

φ̇(t) = ∆E +
UN
2J

z(t) +
z(t)√

1− z2(t)
cos(φ(t)) , (6)

where ∆E = δ/(2J).
When the interaction strength is large enough compared to the tunnelling rate, Equations (5)

and (6) imply a non-linear behavior and an exact solution for z(t) can be found in terms of elliptic
functions [9,59]. If the initial population imbalance is non vanishing, the sinusoidal oscillations around
z = 0 become anharmonic while the parameter Λ = UN/(2J) is increased. One can see that the value
z = 0 is not accessible at any time if

Λ
2

z(0)2 −
√

1− z(0)2 cos(φ(0)) > 1 . (7)

Under these conditions, one can identify a critical initial population imbalance zc(0) at fixed Λ, and a
critical Λc at fixed z(0): for z(0) > zc(0) or for Λ > Λc the particles are not any longer able to tunnel
between the wells and z(t) starts to oscillate around a non-zero value, i.e., the condensate undergoes
a self trapping. This self trapping is exhibited for the classical, condensate limit, in which one can
treat n̂a,b as functions of time in terms of their phases and numbers. When quantum fluctuations are
considered, the value z = 0 can in fact be reached for large times also for small values of U/J [60–63].

2.2. Squeezing and Sensitivity

In this section, we introduce the core concepts and tools that will be used in our analysis on
matter-wave interferometer sensitivity after reduction of quantum noise. Interactions can lead to
squeezed states; these are states in which the variance along one axis is reduced at the cost of enhancing
it along an orthogonal axis. Spin-squeezed states can be used to overcome the shot-noise limit in
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interferometry [1,64]. In fact, the Hamiltonian (1) for the double-well system can be cast into the
spin form

Ĥ = −2J Ĵx +
U
2

Ĵ2
z + δ Ĵz , (8)

after using the Schiwnger boson representation:

Ĵx =
1
2
(â† b̂ + b̂† â) ,

Ĵy =
1
2i
(â† b̂− b̂† â) ,

Ĵz =
1
2
(â† â− b̂† b̂) .

(9)

One can thus see that the tunnelling term rotates a state on the Bloch sphere around the x-axis, while
the interaction term twists its components above and below the equator, to the right and to the left
respectively, while the twist rate increases with increasing the distance from the equator.

Different criteria have been introduced to assess whether a state is squeezed [4]. When dealing
with N particles, squeezing can be related to many-body entanglement, so that it turns out to be
especially useful the criterion ξ2

S ≡ N(∆ Ĵ~n3
)2/(〈 Ĵ~n1

〉2 + 〈 Ĵ~n2
〉2) < 1, where ~n is a unitary vector and

∆ Ĵ~n3
is the variance along the direction in which the state is squeezed. On the other hand, the sufficient

condition for entanglement can be introduced [32]:

χ2 ≡ N
FQ[ρ̂inp, Ĵ~n]

< 1 , (10)

in terms of the quantum Fisher information FQ[ρ̂inp, Ĵ~n] = 4(∆R̂)2, with R̂ an Hermitian operator,
solution of {R̂, ρ̂inp} = i[ Ĵ~n, ρ̂inp]. Here, ρinp = |ψinp〉〈ψinp|, R̂ = Ĵ~n is the density matrix of the input
state. It is possible to show that χ2 ≤ ξ2, so that there are states which are entangled, χ2 < 1, but not
spin squeezed, ξ2 ≥ 1.

Quantum interferometry aims to resolve a phase shift φ below the shot-noise limit ∆φ = 1/
√

N.
In general, the phase sensitivity is limited by the Quantum Cramér-Rao (QCR) bound, which depends
only on the input state:

∆φQCR =
1√

FQ[ρ̂inp, Ĵ~n]
=

χ√
N

, (11)

so that the condition (10) becomes also a necessary condition for measuring phase shift below the
shot-noise limit: χ < 1 is required in order to have states there are usefully entangled for sub
shot-noise sensitivity.

To estimate the phase φ accumulated after the interferometric sequence, one measures an
observable Ô which has φ-dependent expectation values and variances. The error propagation
formula yields

∆φ =
∆Ô∣∣∣∣∂〈Ô〉/∂φ

∣∣∣∣ =
ξS√

N
, (12)

where ∆Ô =
√
〈Ô2〉 − 〈Ô〉2. We can thus see that the sensitivity can be improved both by a larger slope

of the expectation value of the operator as a function of φ, or by a smaller variance. In fact, the slope
can be enhanced by the use of Schrödinger cat-type entangled states. However, these states are fragile
against decoherence and, until now, have been realized only with few particles [65,66]. The variance of
〈O〉 instead, can be decreased using spin squeezing, whose aim is to reduce the projection noise.

In the following, we aim at finding the sensitivity with which the interferometer is able to
measure a parameter coupled to Jz in the Hamiltonian. During the phase accumulation stage, the spin
rotates around the Jz axis with frequency δ, the second beam splitter converts the accumulated phase,
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φ =
∫

δdt, into a measurable population imbalance between the two wells, and the sensitivity can be
expressed as:

∆δ =
∆Ô∣∣∣∣∂〈Ô〉/∂δ

∣∣∣∣ . (13)

To this aim, we will mainly use two types of input states. One is a coherent state |N, 0〉, for which the
sensitivity limit is given by the shot noise, i.e., ∆δ = 1/

√
N. The other is is a Twin Fock state, which is

a perfectly number-squeezed state |N/2, N/2〉 (in the sense defined by χN), for which interferometry
beyond the classical limit was studied [23]. Being ∆z = 0, the phase is completely indeterminate and
this state is represented on the Bloch sphere by an arbitrarily-thin line around the equator. A rotation of
this state in the absence of interactions, does not lead to a population imbalance, so that other operators
but z have to be used in order to make a measurement. Possible choices are Ĵ2

z , or the parity operator
Πb = eiπnb [67].

3. Inter-Well Interactions

We are now ready to explore the effect of inter-well interactions. The Hamiltonian for the 2M
model now reads

ĤIW = Ĥ + Vn̂an̂b , (14)

where Ĥ is given in (1). In the case V 6= 0 and J = 0, it can be shown that, for V > U, Equation (14)
admits the NOON state as the ground state, even if the interactions between bosons are repulsive, see
Figure 2. This can be understood in terms of the interplay between inter- and intra-well interactions [68]:
the former leads to a balanced population among the two wells, while the latter is minimum when one
of the on-site average occupations vanishes.

Figure 2. Probabilities |cn|2 for the ground state of Hamiltonian (14) at different values of V as in the
legend, and for U = 0.2 and δ = 0. U and V are scaled in units of J.

After using the notation n̂ = (n̂a − n̂b)/2, Hamiltonian (14) can be cast in the form

Ĥ = −J(â† b̂ + b̂† â) +
U
2
(

4n̂2 + N2

2
− N) +

V
4
(N2 − 4n̂2) + δn̂

= −J(â† b̂ + b̂† â) +
N2

4
(U + V) + n̂2(U −V)− U

2
N + δn̂ .

(15)

We thus see that when inter- and intra-well interactions are equal, the system behaves as if there were
no interactions. On the other hand, for V = 2U the behavior is the same of a system with attractive
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interactions, i.e., with −U coupling. As we shall see, this concept is crucial to our system, leading to
the possibility of devicing a useful tool.

4. Beam Splitter

We are now ready to analyze the behavior of the first beam splitter acting in the interferometric
process. We perform our study for two different initial states: a Twin Fock state |N/2, N/2〉 (Section 4.1)
and a |N, 0〉 state (Section 4.2). For the sake of comparison, we also study the sensitivity reached when
a NOON state, (|N, 0〉+ |0, N〉)/

√
2, is created after the beam splitter (Section 4.3).

The general process used to realize a beam splitter for an atomic interferometer is to let the
particles tunnel after lowering the inter-well barrier in the case of a double-well interferometer, or by
coupling the two states with resonant light, in the case of an internal two-level system interferometer.
In characterizing the beam splitter, we use the sensitivity as the full width at half maximum (FWHM)
of the narrowest peak in the phase probability distribution. The latter can be calculated as [2]:

P(φ, t) =
N + 1

2π
〈φ|ψout(t)〉〈ψout(t)|φ〉 =

=
1

2π

∣∣∣∣ N

∑
n=0

c∗nei(N/2+n)φ
∣∣∣∣2 ,

(16)

where

|ψout〉 =
N

∑
n=0

cn(t)|n〉 , (17)

is the state after the first beam splitter. The coefficients cn(t) are given by cn(t) = 〈n|ψout(t)〉, {|n〉}
with n = [0, N] being the N + 1 Fock basis vectors for the two-mode model: |n〉 = |n〉a|N − n〉b. The
|φ〉 are the normalized phase states |φ〉 = (N + 1)−1 ∑N

m=0 eiφ(N/2+m)|m〉.

4.1. Initial State Twin Fock

When the initial state is a Twin Fock (TF) state |N/2, N/2〉, the optimal splitting time is defined
as the time after which the main peak in the phase probability distribution is the narrowest [2].
In the non-interacting case, the 50/50 beam splitter is represented by the unitary transformation

|Ψout〉 = e−i π
2

(
â† b̂+b̂† â

2

)
|Ψin〉 and the optimal splitting time is given by TBS = π/(4J). The latter

corresponds to a π/2 Raman pulse, which in the following we will refer to as Tπ/2. As discussed in [2],
the sensitivity is at the Heisenberg limit, i.e., ∆φ = α/Nβ with β ∼ 1: from our numerical simulation,
we obtain β = 1.001± 0.004 and α = 5.03± 0.05. When local interactions are present (U 6= 0, V = 0),
the phase probability distribution broadens and smaller values of β are found after the beam splitter,
with respect to the non-interacting case: from our numerical simulation we fit the parameters values
α = 1.1± 0.1 and β = 0.53± 0.02. Finally, we observe that the optimal splitting time decreases as the
interaction energy is increased [2].

Let us now consider the effect of inter-well interactions. As already noticed, in the limit
U/J → −∞ the ground state of Hamiltonian (1) is a NOON state. However, when the intra-well
interactions are attractive, a collapse of the atomic cloud would take place, if the number of atoms
exceeds a critical value [69]. Varying the inter-well interactions far from the value V = U, the optimal
splitting time decreases while the width of the peak in the phase probability distribution increases,
as illustrated in Figure 3. The optimal splitting time decreases with increasing N at fixed U, and it is
progressively less dependent on the number of particles while the intra-well interactions get larger.
For V = U, the narrowest peak in the phase probability distribution has the same width for each value
of U. As predicted at the beginning of this section, the scaling parameter β, defined from ∆φ = α/Nβ,
is equal to that for the non-interacting case, in particular α = 5.03± 0.05 and β = 1.001± 0.004.
In Figure 4, the scaling parameter β for different U is reported against V/U: we notice that β decreases
with increasing the interactions, except for V = U, where the non-interacting case is recovered.
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Figure 3. Effect of inter-well interactions at the beam splitter for a Twin-Fock as input state. Optimal
splitting time in units of Tπ/2 (top) and ∆φ (bottom) against V for different values of particles number
N and interaction energy U as in the legends. The value of J is fixed to J = 0.5.

Figure 4. Effect of inter-well interactions at the beam splitter for a Twin-Fock as input state. Scaling
parameter β as a function of the inter-well interaction strength V/U for different values of U.

4.2. Initial State |N, 0〉

We now consider the splitting process for the initial state |N, 0〉, where the system is prepared
with all the particles in one well. In this case, we define the optimal splitting time as the time at which
the population is equally split among the two wells (z = 0). We first analyze the non-interacting case.
As for the Twin-Fock case as input state, the optimal splitting time is given by TBS = π/(4J), once
again referred to as Tπ/2. For U = V = 0, the shot-noise sensitivity is reached and ∆φ = α/Nβ, with
β ∼ 0.5. When considering U 6= 0 (with V = 0), the condition UN/J ≤ 4 must be fulfilled in order to
avoid self trapping. Interactions are found to broaden the peak in the phase probability distribution,
as shown in Figure 5.

After increasing the particles number, the width of the phase probability distribution peak
decreases when N is far from the self-trapping limit. Approaching the self-trapping limit, instead, the
width begins to rise until the self-trapping threshold is reached. As a result, a minimum is found at
intermediate values of N, as visible in the left panel of Figure 6. This can be understood by looking at
the phase probability distributions for different values of the particles number. By increasing N near
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the self-trapping limit, the peak shifts and broadens. As displayed in Figure 7, at the self-trapping
threshold the main peak splits in several sub-peaks, resulting in a narrower width. A similar behavior
is found when the self-trapping threshold is reached by increasing the value of the interaction energy
at fixed particles number. ∆φ increases for energies lower than the self-trapping value and a minimum
is found at the self-trapping threshold. This is illustrated in the right panel of Figure 6.

Figure 5. Beam splitter for |N, 0〉 as input state. Phase probability distributions after the first beam
splitting for U = 0.3, with N = 10, J = 1, V = 0. Inset: the distributions for the non interacting case
with U = 0.

Figure 6. Beam splitter for |N, 0〉 as input state. ∆φ plotted against N at fixed U = 0.1 (left) and
against U at fixed N = 100 (right), with V = 0. The fit parameters are found to be α = 2.3± 0.1 and
β = 0.46± 0.01. The black dashed line represents the results for the non-interacting case, the red
dashed line marks the self-trapping threshold.

As to the optimal splitting time for the case of |N, 0〉 as input state, this is found to increase with
increasing UN, its values resulting in being the same for both repulsive and attractive interactions.
This behavior is visible in Figure 8, where the optimal splitting time is displayed while varying U at
fixed N. Similar results are found by fixing U and varying N. Now, the red curve in Figure 8 is given
by the terms up to quadratic in the approximated equation for toptimal :

toptimal '
[

1 +
1
16

Λ2 +
9

64
Λ4

16
+

(
15
48

)2 Λ6

64
+ ...

]
, (18)

obtained in terms of Λ ≡ UN/(2J) after integrating the equation for the population
imbalance evolution

Λt
2

=
∫ z(0)

z(t)

dz√
( 2

Λ )2(1− z2)−
[
z2 − 2H0

Λ
]2 , (19)

between z(0) = 1 and z(t) = 0 and by scaling the time in units of π/(4J). The slight discrepancy
between fit and theory can be attributed to the small value of the particles number considered here.
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Figure 7. Beam splitter for |N, 0〉 as input state. Phase distributions (main figure) and relative-number
distributions (inset) after the first beam splitter for N = 40, self-trapping threshold. Here, U = 0.1 and
V = 0.

Figure 8. Beam splitter for |N, 0〉 as input state. Optimal splitting time vs UN/(2J) obtained after
varying UN/(2J) at fixed N = 10. Time is in units of Tπ/2(U = 0) = π/(4J). The red curve
corresponds to the theory and the green curve to the fit (see main text). Similar behavior is found by
fixing U and varying N.

Finally, looking for a universal dependence on UN/(2J), the optimal splitting time has been
found to be dependent on the number of particles at fixed interaction energy (or viceversa) for small N
(large U), as shown in Figure 9. This behavior holds only for small values of the particles number, as
we can infer from the inset in the left panel of Figure 9. By increasing the value of the particles number,
the difference between the corresponding optimal times decreases. In the right panel of Figure 9, the
optimal splitting time is plotted for different values of the particles number: we see that when N is
small, the self-trapping threshold is higher than that prescribed by Equation (7), valid for N � 1.

We now turn to consider the effects of inter-well interactions. Varying the inter-well interactions,
the self-trapping limit can be reached for intra-well energy lower than the one satisfying Equation (7)
(UN/(J) ≤ 4), as shown in the lower panel of Figure 10. Indeed, we can see the self- trapping effect in
the curve for N = 20: for V/U = −0.5 and V/U = 2.5. The curve presents maxima with values higher
than the values found from the curves with N = 18 and N = 16. Notice that near the self-trapping
limit, an increase in the particles number leads to increasing values of ∆φ, as displayed in Figure 6.
Local minima are found for the values V/U = −1 and V/U = 3, corresponding to U −V = ±0.2 in
the Hamiltonian (15), that is the self-trapping threshold.
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Figure 9. Beam splitter for |N, 0〉 as input state. Search for universal behavior of the optimal splitting
time. (Left) Time oscillations of the population imbalance Ĵz = (n̂a − n̂b)/2 for the realization of the
beam splitter, taken to be at the time for which z = 0. The values of the particles number N, as in the
legend, and of the interaction energies UN/(2J) are chosen so that UN/(2J) = 1. Inset: zoom near
Jz = 0. While increasing the particles number, the difference between the corresponding optimal times
decreases. (Right) Optimal splitting time vs UN/(2J) for different values of N as in the legend. The
red dashed line marks the theoretical self- trapping threshold: for small N this limit is higher than that
predicted. Increasing the particles number, the behavior of the optimal splitting time is dependent
solely on UN/(2J) and not on N and U separately. Time in units of Tπ/2.

Figure 10. Effect of inter-well interactions at the beam splitter for |N, 0〉 as input state. Optimal splitting
time in units of Tπ/2 and FWHM of the peak in the phase distribution as functions of V/U for different
values of N as in the legends. (Top): U = 0.05. (Bottom): U = 0.1.

We close this analysis by noticing that the narrowest peak in the phase probability distribution for
V = U has the same width for each value of U. Similarly, the scaling parameter β (∆φ = α/Nβ) has the
same value found in the non-interacting case, as reported in the right panel of Figure 11. As it is evident
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from the left panel of Figure 11 displaying β vs V/U for different U values, increasing interactions
worsen the scaling behavior, except when V = U, where the non-interacting case is recovered.

Figure 11. Effect of inter-well interactions at the beam splitter for |N, 0〉 as input state. (Left). Scaling
parameter β vs V/U while varying the interaction energy. In the case with U = 0.10 a fit for the value
of V/U near the self-trapping threshold would be meaningless. (Right) ∆φ vs particles number for
different energies and V = U: the same scaling parameter β = 0.500± 0.001 as in the non-interacting
case is recovered (α = 2.37± 0.01).

4.3. Discussion

We conclude this section by discussing the comparison between the sensitivity that could be
reached, if a NOON state |NOON〉 = |N, 0〉+ |0, N〉/

√
2 be created after the beam splitter. Though

creating a NOON state is a challenging task [1], this is a useful analysis, since NOON states are
known to provide a very good sensitivity in atom interferometry. In particular, we find that the phase
probability distribution for a NOON state presents equally spaced peaks, whose width depends on the
particles number. The sensitivity is at a Heisenberg limit, with β = 0.995± 0.005 and α = 3.07± 0.04.
We are now in a position to compare the sensitivity that can be reached with the different states
considered in this work. In Figure 12 we present the results for the non-interacting case. Here, the
sensitivity corresponding to the different analyzed states plotted against the particles number. When
the beam splitter is fed with the |N, 0〉 state, the sensitivity scales as α√

N
, close to the-shot noise

limit. If, instead, a TF or NOON state is created after the beam splitter, ∆φ = α
N with the coefficient

αNOON < αTF. The discussion of the non-interacting limit is useful when reference is considered to
the possibility of adding inter-well interactions. Indeed, as we discussed in this section, introducing
inter-well interactions can be equivalent to be within non-interacting conditions. As a result, this work
demonstrates that adding the non-local term may compensate this degradation and restore the best
scaling and sensitivity.

Figure 12. Sensitivity vs. particles number N in the non-interacting case for different input statea:
NOON (blue), TF (green) and |N, 0〉 (red).
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5. Conclusions

In this work, we studied the effect of non-local interactions on the non-linear beam splitter in
ultracold quantum interferometers. After recalling known results on the two-mode (2M) model and
the sensitivity of quantum interferometers, we analyzed the sensitivity for different input states.
We compared results obtained in the case of just local interactions with those found in the presence of
non-local interactions, as those occurring in dipolar gases. In particular, we explored the sensitivity
near the self-trapping limit and investigated the scaling behavior of the sensitivity as a function of the
number of particles, while tuning the non-local interaction strength. Our analysis elucidates the role
of inter-well interactions in compensating the sensitivity degradation induced by local interactions.
This can be traced back to the fact that the inter-well coupling may effectively lead to an attractive
interaction. This simple idea can be suitably exploited whenever intra-well interactions cannot be
otherwise reduced.

In the future, it would be interesting to implement our results to characterize the performance of
a full interferometric scheme, in the presence of non-local interactions and/or when the interactions
are turned on during the whole process.
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