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Abstract: High-resolution TEM (HRTEM) is a powerful tool for structure characterization. However,
methylammonium lead iodide (MAPbI3) perovskite is highly sensitive to electron beams and easily
decomposes into lead iodide (PbI2). Misidentifications, such as PbI2 being incorrectly labeled as
perovskite, are widely present in HRTEM characterization and would negatively affect the develop-
ment of perovskite research field. Here misidentifications in MAPbI3 perovskite are summarized,
classified, and corrected based on low-dose imaging and electron diffraction (ED) simulations. Corre-
sponding crystallographic parameters of intrinsic tetragonal MAPbI3 and the confusable hexagonal
PbI2 are presented unambiguously. Finally, the method of proper phase identification and some
strategies to control the radiation damage in HRTEM are provided. This warning paves the way
to avoid future misinterpretations in HRTEM characterization of perovskite and other electron
beam-sensitive materials.

Keywords: MAPbI3 perovskite; transmission electron microscopy (TEM); electron diffraction (ED);
phase identification; electron beam-sensitive

1. Introduction

High-resolution transmission electron microscopy (HRTEM) is a powerful characteri-
zation tool and has been extensively and successfully used for analyzing crystal structures
on an atomic scale [1–4]. Recently, halide perovskites have achieved substantial success
in various optoelectronic devices owing to their solution-based growth and their remark-
able physical properties [5–9]. However, the extensively studied methylammonium lead
iodide (MAPbI3) perovskite is very sensitive to electron beam irradiation. Figure 1 shows
the MAPbI3 degradation process under electron beam irradiation. Tetragonal perovskite
decomposes into hexagonal lead iodide (PbI2) by the dissociation of methylamine and
hydrogen iodide molecules.

Comparing distances and angles between crystal planes to identify the material phase,
it is easy to ignore the missing crystal planes, which leads to false identification results,
such as labelling lead iodide as perovskite. In a proper phase identification, HRTEM
images alone cannot be used for phase identification, but always have to be supported by
other measurement results such as diffractograms, simulated ED, nanodiffractions, or XRD
specimen data [1]. As a rough estimation, MAPbI3 decomposes into PbI2 at a total dose
irradiation > 150 eÅ−2 [10,11]. However, the value of the electron dose in normal HRTEM
is around 800–2000 eÅ−2 s−1, so the experimental total dose would have been much higher
than the critical dose of MAPbI3 perovskite. Meanwhile, distances and angles between
crystal planes in the decomposition product PbI2 are very similar to MAPbI3, such that
PbI2 can easily be misidentified as perovskite. A typical feature of such misidentification is
missing crystal planes in the results. Therefore, the absence of crystal planes serves as an
indicator that the material is not in the perovskite, but another structural phase.
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Figure 1. MAPbI3 degradation under electron beam irradiation. Tetragonal perovskite (A) decomposes into hexagonal lead
iodide (B) via dissociation of methylamine and hydrogen iodide molecules. Here, colors represent the following: green,
iodine; red, lead; black, carbon; blue, nitrogen; pink, hydrogen.

Such misidentifications were widely ignored in literature studies [9,12–31]. Figure 2
shows typical HRTEM images with missing crystal planes. (110), (002) planes are missing
along the [110] zone axis (Figure 2A) [21], (020) plane is missing along the [101] zone axis
(Figure 2B) [27], (112), (112) planes are missing along the [201] zone axis (Figure 2C) [13],
and (002) plane is missing along the [120] zone axis (Figure 2D) [28]. However, missing
crystal planes have been observed in low-dose imaging. Thus far, Song et al. have observed
the missing (110), (002) planes with 0.63 nm along [110] zone axis at total doses of 1.5
eÅ−2 (Figure 3A) [32]. Similarly, Zhu et al. have observed the missing (112), (112) planes
with 0.44 nm along the [201] zone axis by Cryo-TEM at a low electron dose of about
3 e Å-2 (Figure 3B) [33]. Moreover, the missing crystal planes have also been observed in
other characterization techniques based on the Bragg’s law, such as selected area electron
diffraction (SEAD) (Figure 3C) [34] and X-ray diffraction (XRD) (Figure 3D) [10,35–37].
Finally, the low-order crystal plane (d(112) = 4.4 Å) has longer interplanar spacing than
the high-order crystal plane (d(224) = 2.2 Å). Thus, the missing of low-order crystal planes
should not result from the poor accuracy in the data interpretation. Although the mistakes
are taken seriously [10,11,35], an urgently needed, complete summary and correction of
that issue has not been published yet.
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Figure 2. Typical HRTEM images with missing crystal planes. (A) (110), (002) planes are missing along the [110] zone axis.
(B) (020) plane is missing along the [101] zone axis (Figure 2B). (C) (112), (112) planes are missing along the [201] zone axis.
(D) (002) plane is missing along the [120] zone axis. (A) Reprinted with permission from Ref. [21], © American Chemical
Society 2016. (B) Reproduced with permission from Ref. [27]. (C) Reprinted by permission from Springer Customer Service
Centre GmbH: Springer Nature, Nature Photonics Gong et al., Highly efficient quantum dot near-infrared light-emitting
diodes, © 2016. (D) Reproduced with permission from Ref. [28], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
Germany, 2015.

Figure 3. Intrinsic MAPbI3 with complete crystal planes. (A) (110), (002) planes along [110] zone axis were observed at
total doses of 1.5 eÅ-2. (B) (112), (112) planes along the [201] zone axis were observed by Cryo-TEM at a low electron
dose of about 3 e Å-2. (C) Selected area electron diffraction (SEAD) of MAPbI3 perovskite. (D) X-ray diffraction (XRD) of
MAPbI3 perovskite. (A) Reproduced with permission from Ref. [32], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
Germany, 2020. (B) Reproduced with permission from Ref. [33], © 2020 Elsevier B.V. 2020. (C) Reproduced with permission
from Ref. [34], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018. (D) Reproduced with permission
from Ref. [10], © Springer Nature 2018.
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2. Results and Discussion

Here misidentifications in MAPbI3 perovskite are summarized, classified and cor-
rected. Figure 4 shows simulated ED patterns of MAPbI3 and PbI2 along different axis
zones. Figure 4A is the ED pattern of MAPbI3 along [110] zone axis. (110), (002) crystal
planes are present in intrinsic tetragonal perovskite, but they are missing in a number of
HRTEM characterizations [12–15]. Figure 4B shows the simulated ED patterns of PbI2
along [441] zone axis. (014), (104) crystal planes of PbI2 have the similar distances and
angles between crystal planes compared to (220), (004) crystal planes of MAPbI3. In the
actual experiment, MAPBI3 would decompose into PBI2 and the missing crystal planes
would be oftentimes ignored, leading to aforementioned mischaracterizations. Similarly,
Figure 4C–H show ED patterns of MAPbI3 along [101] and PbI2 along [8 10 1], MAPbI3
along [201] and PbI2 along [881], MAPbI3 along [120] and PbI2 along [411], respectively. The
missing crystal planes in HRTEM characterizations are indicated by red circles in Figure 4.

Figure 4. Simulated electron diffraction (ED) patterns of tetragonal MAPbI3 and hexagonal PbI2. (A) MAPbI3 along [110]
axis zone. (B) PbI2 along [441] zone axis. (C) MAPbI3 along [101] axis zone. (D) PbI2 along [8 10 1] zone axis. (E) MAPbI3

along [201] zone axis. (F) PbI2 along [881] zone axis. (G) MAPbI3 along [120] zone axis. (H) PbI2 along [411] zone axis.
Crystal planes marked in red circle are missing in published articles [9,12–31].

Misidentifications exist in the following fields: phase identification and structure
determination [16], grain, nanowire, and microwire orientation [9,14,17–19], morphology
analysis and shape control of nanocrystals [20], growth direction of perovskite materi-
als [21], degradation process and kinetics of perovskite [22], phase transition research in
perovskite [26], and ion migration characterization in photoelectric devices [27]. Misidenti-
fications not only occur in single component materials, but also in heterostructures, such as
lattice matching and kinetic study in epitaxial growth of perovskite films on 2D materi-
als [25], PbS quantum dots in perovskite materials [12,13], and lattice-anchoring stabilized
perovskite research [14]. HRTEM is an auxiliary tool to identify the phase of perovskite
materials and misinterpretations would not influence their device performances and con-
clusions. However, in some cases, such as the growth direction, orientation, and lattice
matching of perovskite materials, misinterpretations in HRTEM would result in wrong
conclusions. To make the comparisons and corrections clearer, Table 1 shows the de-
tailed parameters of the intrinsic MAPbI3 and confusable PbI2 along different zone axis,
where missing crystal planes are marked in red. Remarkably, the [110] and [001] zone axes
are equivalent in tetragonal MAPbI3 perovskite.
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Table 1. Detailed crystallographic parameters of MAPbI3 and PbI2 along different zone axes corresponding to Figure 4, the
missing low-order crystal planes of MAPbI3 are marked in red. The similar crystal angles and interplanar spacings make
them to be easily confused.

Material and Zone Axis Characteristic Crystal Planes Interplanar Spacing Interplanar Angle References

MAPbI3 [110] (110), (220)
(002), (004)

d(110) = 6.2Å.
d(220) = 3.1Å.
d(002) = 6.3Å.
d(004) = 3.2Å.

<(110), (002)>
=<(220), (004)> = 90.0◦

[9,15–25]

PbI2 [441]
(014)
(104)

d(014) = 3.2Å
.d(104) = 3.2Å.

<(014), (104)> = 87.5◦ _______

MAPbI3 [101] (020), (040)
(202)

d(020) = 4.4Å.
d(040) = 2.2Å.
d(202) = 3.6Å.

<(020), (202)>
=<(040), (202)> =90.0◦

[26,27]

PbI2 [8 10 1] (108)
(112)

d(108) = 2.2Å.
d(112) = 3.7Å.

<(108), (112)> = 88.0◦ _______

MAPbI3 [201] (112), (224)
(112), (224)

d(112) = 4.4Å.
d(224) = 2.2Å.
d(112) = 4.4Å.
d(224) = 2.2Å.

<(112), (112)>
=<(224), (224)> = 60.5◦

[12–14,18]

PbI2 [881] (01 8)
(108)

d(01 8) = 2.2Å.
d(108) = 2.2Å.

<(018), (108)> = 57.2◦ _______

MAPbI3 [120]
(002), (004)

(211)

d(002) = 6.3Å. d(004)
= 3.2Å.

d(211)= 3.8Å.

<(002), (211)>
=<(004), (211)> = 72.7◦ [28–31]

PbI2 [411]
(104)
(011)

d(104) = 3.2Å.
d(011) = 3.9Å.

<(104), (011)> = 73.7◦ _______

The MAPbI3 perovskite is extremely beam-sensitive with a critical dose around a few
hundred electrons per square angstrom. For most measurements, and in particular HRTEM,
keeping the dose below the critical value is extremely challenging [38–40]. However,
there are some ways to reduce the radiation damage in HRTEM, which might be helpful
in obtaining the intrinsic structure of perovskite materials. Low-dose imaging techniques
are effective approaches for electron beam-sensitive materials [41]. Zhang et al. developed
a program to achieve a direct, one-step alignment of the zone axis and obtained HRTEM
images of electron beam-sensitive materials with a dose of 6–12 e Å−2 [42]. Carlino
reported the in-line holography in TEM for the study of radiation-sensitive materials
providing high-contrast holograms within 1–2 eÅ−2s−1 [43]. The intrinsic structure of
MAPbI3 has been captured by the Direct-detection electron-counting (DDEC) cameras at
doses below 3 e Å−2 [33,44]. Cooling the specimen also poses a feasible way to reduce
damage. Using Cryo-TEM, HRTEM images of MAPbI3 has been captured [11,33]. Lastly,
encapsulation of specimen with a thin, stable, and continuous layer reduces radiation
damage [40]. In any case, the total electron dose should be below the critical dose of
MAPbI3, otherwise substantial damage occurs during TEM characterizations.

3. Conclusions

The MAPbI3 perovskite is very sensitive to electron beam irradiation and easily de-
composes into PbI2. HRTEM characterizations performed above the critical dose can easily
lead to misinterpretations, falsely identifying decomposition products as the actual per-
ovskite. An indicator of such confusable decomposition products is missing crystal planes
when comparing the expected theoretical diffractograms to the actual experimental data of
MAPbI3. The summarized and analyzed misidentifications in HRTEM characterization
of MAPbI3 may be helpful for researchers to avoid such misidentifications in perovskite
research. Our findings show that it is unreliable to identify material phases only by measur-
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ing distances and angles between crystal planes. We need to take diffractograms, simulated
ED, nanodiffractions, or XRD data into consideration in order to ensure complete crystal
planes. We also provide a method of proper phase identification and some strategies to
reduce the radiation damage in HRTEM.

4. Methods

Corresponding crystal structures cif files were downloaded from Crystallography
Open Database (COD) website. COD IDs of MAPbI3 and PbI2 are 4124388 and 9009141
respectively [45,46]. MAPbI3 is I4/mcm space group with tetragonal structure, cell parame-
ters: a = b = 8.839Å, c = 12.695Å; α = β = γ = 90◦. PbI2 is P-3m1 space group with hexagonal
structure, cell parameters: a = b = 4.555Å, c = 20.937Å; α = β = 90◦, γ = 120◦. The elec-
tron diffraction (ED) simulations of MAPbI3 and PbI2 were obtained using CrystalMaker
Software. The interplanar spacings and interplanar angles can be calculated from the cell
parameters. During the process of phase identification, we also tried other polytypes of
PbI2, but the results did not match well.
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