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Abstract: We investigate a Majorana Benalcazar–Bernevig–Hughes (BBH) model showing the emer-
gence of topological corner states. The model, consisting of a two-dimensional Su–Schrieffer–Heeger
(SSH) system of Majorana fermions with π flux, exhibits a non-trivial topological phase in the absence
of Berry curvature, while the Berry connection leads to a non-trivial topology. Indeed, the system
belongs to the class of second-order topological superconductors (HOTSC2), exhibiting corner Majo-
rana states protected by C4 symmetry and reflection symmetries. By calculating the 2D Zak phase, we
derive the topological phase diagram of the system and demonstrate the bulk-edge correspondence.
Finally, we analyze the finite size scaling behavior of the topological properties. Our results can serve
to design new 2D materials with non-zero Zak phase and robust edge states.

Keywords: second-order topological superconductivity; Majorana fermions; generalized Kitaev
models

1. Introduction

The notion of higher order topological phases first appeared for insulating systems
(HOTIs) [1–4]. Indeed, a second-order topological insulator is a d dimensional system
with gapped d− 1 dimensional boundaries and d− 2 localized modes (corner states in
two-dimensional systems). This new topological phase can be protected by a variety of
crystalline symmetries, such as reflection symmetries and C4 symmetry [1].

Recently, a similar physics has also been explored in the context of superconduct-
ing systems (HOTSCs) [5–9]. Superconductors with such novel topological properties
have attracted increasing attention as they possess surface states that propagate along
one-dimensional curves (hinges) or are localized at some points (corners) on the surface.
In particular, m-dimensional Majorana corner states can be realized in d-dimensional
superconductors, with m ≤ d− 2.

In close analogy with Ref. [2], we consider a Benalcazar–Bernevig–Hughes (BBH)
model of Majorana fermions and will show that it is a suitable model to realize an HOTSC
with robust corner Majorana zero modes. It has been demonstrated that the original
fermionic 2D SSH model cannot support topological corner states [10,11] unless one con-
siders a negative coupling per plaquette, as theoretically proposed [2] and experimentally
demonstrated in [12–14]. On the other hand, in our model, the mapping of Majorana
fermions onto complex fermion operators gives rise to a model of Kitaev chains coupled
by a staggered pairing coupling, showing a higher order topological phase. Despite being
characterized by a specific set of parameters, our model could be realized in photonics
systems where a high efficiency to control parameters through gauge fields has been
demonstrated [15,16]. Furthermore, our model could have several interesting and potential
applications, in particular, in studying the braiding dynamics of Majorana fermions [17] for
condensed matter platforms. Topological insulators are phases of matter characterized by
topological edge states that propagate in a unidirectional manner that is robust to imperfec-
tions and disorder. They propose a concept that exploits topological effects in a unique way:
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the topological insulator laser. These are lasers whose lasing mode exhibits topologically
protected transport without magnetic fields. The underlying topological properties lead
to a highly efficient laser, robust to defects and disorder, with single-mode lasing even at
very high gain values. The topological insulator laser alters current understanding of the
interplay between disorder and lasing, and at the same time, opens exciting possibilities
in topological physics, such as topologically protected transport in systems with gain.
On the technological side, the topological insulator laser provides a route to arrays of
semiconductor lasers that operate as one single-mode high-power laser coupled efficiently
into an output port.

The paper is thus organized as follows. In Section 2, we present the model and
the lattice geometry. In Section 3, we discuss the phase diagram and check the bulk-
edge correspondence. Section 4 is devoted to the analysis of the finite size scaling of the
topological properties. In particular, we discuss the behavior of the gaps closing and the
non-local fermion correlation functions. Conclusions are drawn in Section 5. Appendix A
contains details on the calculation of non-local fermion correlations.

2. Model

We consider a two dimensional lattice model of Majorana fermions with staggered
couplings w, v which define a plaquette with π flux, (see Figure 1, panel (a)) described by
the Hamiltonian:

H =
i
2

[
w

L,N

∑
m,l=1

am,lbm,l + v
L−1,N

∑
m,l=1

bm,lam+1,l + w
N−1,2

∑
l=1

L

∑
m=1

(
bm,lbm,l+1 − am,lam,l+1

)

+ v
N−1,2

∑
l=2

L

∑
m=1

(
bm,lbm,l+1 − am,lam,l+1

)]
,

(1)

where am,l and bm,l are the Majorana modes associated to a complex fermion operator
cm,l = (am,l + ibm,l)/2, L and N are, respectively, the length and the width of the system, m
and l are the lattice sites. The lattice representation of our model is reported in Figure 1,
panel (a), where the green plaquette is the unit cell and the Majorana operators a and b
of Equation (1) are represented by two circles of different colors. In panel (b) of the same
figure, we show the topological fully dimerized limit with w = 0, v 6= 0, which generalizes
the same well-known limit discussed for the SSH model in [18]. In this limit, the four
Majorana modes a11, a1,N , bL,1 and bL,N become corner zero-energy modes which decouple
from the lattice. The full topological phase diagram of the model will be discussed in
Section 3. Expressing the Majorana operators in terms of complex fermion operators, the
Hamiltonian in Equation (1) results in N Kitaev chains of length L coupled only by pairing
terms (see Figure 1, panel (c)):

H =
L,N

∑
m,l=1

µc†
m,lcm,l +

L−1,N

∑
m,l=1

(tc†
m,lcm+1,l + ∆cm,lcm+1,l + h.c.)

+
L,N−1

∑
m,l=1

(∆1cm,lcm,l+1 + h.c),

(2)

with µ = w, t = ∆ = −v/2 and ∆1:

∆1 =

{
−iw, l = odd
−iv, l = even.

(3)

In the next section, we will discuss the analysis of the topological phase diagram of
the model by evaluating the Zak phase and the energy spectrum.
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Figure 1. (a) Lattice geometry in the Majorana basis, the green plaquette identifies the translational
invariant unit cell, while pink and brown circles are the Majorana modes a and b associated with a
complex fermionic mode. w and v are, respectively, the intracell and intercell couplings, a dashed
line indicates a negative coupling. (b) Fully dimerized limit of the lattice model depicted in panel
(a) with w = 0 and v 6= 0. The mapping to complex fermionic modes is shown in panel (c) for generic
w, v. Indeed, in (c), the following identities hold: µ = w, t = ∆ = −v/2 and ∆1 is staggered, with
−iw associated with continuous red lines and −iv associated to dashed red lines.

3. Topological Phase

By imposing periodic boundary conditions to the model in Equation (1), we can
apply the Fourier transform. The translational invariant unit cell is given by the green
plaquette in Figure 1 (panel (a)) and we obtain a 4× 4 matrix in the momentum space,
H = 1

2 Ψ†
kH̃(k)Ψk:

H̃(k) =


0 iw− ive−ikx −iw + ive−iky 0

−iw + iveikx 0 0 iw− ive−iky

iw− iveiky 0 0 iw− ive−ikx

0 −iw + iveiky −iw + iveikx 0

, (4)

where: Ψk = (am,l(k) bm,l(k) am,l+1(k) bm,l+1(k))T and k = (kx, ky).
The operator in Equation (4) satisfies reflection symmetries with reflection operators

mx, my exchanging, respectively, x → −x, y→ −y and, therefore, kx → −kx, ky → −ky:

mx H̃(kx, ky)m†
x = H̃(−kx, ky)

my H̃(kx, ky)m†
y = H̃(kx,−ky),

(5)
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where mx = σz ⊗ σy and my = σy ⊗ I. Because of the simple structure, the lattice is also
invariant under rotations by θ = π/2 up to a gauge transformation. The C4 symmetry,
describing the rotation, is associated to the operator R4 exchanging (kx, ky)→ (ky,−kx):

R4H̃(kx, ky)R†
4 = H̃(ky,−kx), R4 =

(
−σ+

σ0−σ3
2

− σ0+σ3
2 σ−

)
, (6)

where σ± = (σ1 ± iσ2)/2, σ0 is the identity , σi with i = 1 . . . 3 are the Pauli matrices
and (R4)

4 = −1. The Hamiltonian in Equation (4) also satisfies particle-hole P = IK,
with I = σ0 ⊗ σ0 and K the complex conjugation, time reversal T = σz ⊗ σzK and chiral
symmetries C = σ3 ⊗ σ3:

P H̃(kx, ky)P† = −H̃(−kx, ky)

T H̃(kx, ky)T † = H̃(−kx,−ky)

C H̃(kx, ky)C† = −H̃(kx, ky),

(7)

thus the model belongs to the trivial two-dimensional BDI class [19].
Indeed, the Berry curvature B = ∇∧A vanishes everywhere in the Brillouin zone

due to the coexistence of T and reflection symmetries. Here, An,m = 〈ψn|i∂k|ψm〉 and |ψm〉
is the Bloch wave function associated with the m band. However, the reflection symmetries
of Equation (5) ensure fractional quantized components of the polarization:

P =
1

2π

∫
BZ

dkxdkyTr[A(kx, ky)]. (8)

P is also known as a 2D Zak phase [20,21]. In particular, the 2D Zak phase takes the value
P = (1/2, 1/2) in a non-trivial phase and P = (0, 0) in the trivial one. The presence of
C4 symmetry ensures that the model described is a second-order topological system with
intrinsic Majorana corner states associated to the fractional quantized values of P, which
cannot be removed by a change of boundary preserving the bulk [22]. Indeed, for systems
with spatial symmetries, the simultaneous presence of standard symmetries (C, P , T ) and
crystalline symmetries is essential to realize a second-order topology. In analogy with
the Aharonov–Bohm (AB) effect for a magnetic field [23], one observes the presence of
a quantized charge polarization in the absence of the Berry curvature; this phenomenon
gives rise to the higher order topological superconductivity [5–9,22]. In Figure 2 panel (a),
we report the topological phase diagram (PD) of our system, which falls in a non-trivial
regime for |w| < |v|. Panels (b) and (c) of the same figure show the band structure along
the path in k-space: M → X → Γ → M, with M = (π, π), X = (π, 0), Γ = (0, 0). The
energy bands are doubly degenerate and invariant under the exchange of w→ v:

E± = ±
√

2e−i(kx+ky)
√

e2i(kx+Ky)[v2 + w2 − vw(cos kx + cos ky)]. (9)

More precisely, the system shows a phase transition at the critical point w = v, as can
be seen from the gap closing at Γ = (0, 0) point in panel (c) (w = v = 1). Panel (b) of
Figure 2 shows the bands for the points (w = 2, v = 1) and (w = 1, v = 2), in the trivial
and non-trivial region, respectively. Looking at the expression of the energy bands in
Equation (9), the two points are indistinguishable from the bulk properties point of view
and a check of the bulk-edge correspondence is needed to show the different behaviour of
topological and trivial points. To this end, in Figure 3, a system of finite size, L = 100 and
N = 50, is analyzed. Panel (a) of Figure 3 shows the lowest energy spectrum of the system
following the horizontal red cut in the phase diagram of Figure 2a. Here, we observe the
expected correspondence between the gap closing and the appearance of non-trivial states.
Non-trivial topological corner states associated with 2D Zak phases are shown in panel (b)
of Figure 3, where we fix the parameters to those corresponding to the red circle of panel
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(a). In panel (c), we fix the parameters in the trivial phase corresponding to the green circle
of panel (a) where the modulus square of the wavefunction does not show edge or corner
states. In panels (b) and (c), x and y indicate the real space directions.

Figure 2. (a) Topological phase diagram of a 2D Majorana Benalcazar–Bernevig–Hughes (BBH)
model in the parameter space v, w. Blue and yellow regions identify the topological and trivial
phases, respectively. The red horizontal line is the cut at which we evaluate the lowest energy
spectrum in Figure 3 panel (a). Panel (b) shows the spectrum along the MXΓM path in the Brillouin
zone in a trivial (topological) phase w = 2 , v = 1 (w = 1, v = 2) and panel (c) shows the spectrum at
the phase transition point w = v = 1.

Figure 3. (a) Low energy spectrum of a strip following the horizontal red cut of Figure 2 panel (a).
Here, w is in units of v. In panel (b), we show the square modulus of the lowest four energy modes
corresponding to a gap closing point (red point of panel (a)) and in the gapped phase (green point of
panel (a)). The sizes of the strip for all the plots are L = 100 and N = 50.

4. Topological Properties of Finite Size Systems

In the thermodynamic limit, when |w| < |v|, we have seen that the Majorana BBH
model exhibits four Majorana corner modes and the ground state manifold is fourfold
degenerate. In particular, since the model preserves the parity, the system is twofold degen-
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erate for every parity sector. If the size is finite, there is a weak coupling between Majorana
corner states, which decreases as the system size increases. In Figure 4, we report a scheme
of the three lowest energy levels for the two parity sectors for a finite size strip and set the
parameters in the topological regime. To analyze the topological properties of the finite
size system, we study the behavior of: (a) the gaps between ground states and first excited
states indicated by δ0, and δ1, (b) the energy separation between the second and third
excited states, indicated by E0 and E1 and (c) the energy separation between the ground
states corresponding to the two different parities (ε). The subscripts 0, 1 represent the two
parities. In the thermodynamic limit, fixing the parameters in a topological point of the
phase diagram, the following asymptotic limits are expected: δ0 → 0, δ1 → 0, ε→ 0, while
E0 and E1 should remain finite. More precisely, the manifold gaps δ0, δ1 and ε are expected
to decay exponentially to zero, while increasing the system size. Actually performing the
analysis of the manifold gaps and of ε while varying the size of the system is the best way
to test the robustness of non-trivial regime.

Figure 4. Scheme of the lowest energy many body states in a strip with finite size and in a topological
point of the phase diagram. tp denotes the even, odd parity sector, δ0 and δ1 are the energy gaps
between the ground states and the first excited states, E0 and E1 are the energy separation between
the second and the first excited states, ε is the energy separation between the ground states of the
two parity sectors and the subscripts 0 and 1 denote the parities.

Figure 5. Plots of the energy gaps at varying the sizes of the Majorana BBH strip L and N, as in the
panel labels. In panel (a,b), the length is fixed L = 68 and the behavior of δ0, δ1, ε (panel (a)) and E0,
E1 (panel (b)) are plotted for different values of the width N = 4, 6, 8, 10, 14. The same plots obtained
by fixing N = 14 and considering L = 16, 24, 32, 48, 56, 61, 68 are reported in panels (c,d). The model
parameters have been fixed as w = 0.1, v = 1.
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Figure 6. Fermion correlations < c†
1,1cm,l > (panels (a,c)) and < c†

L,Ncm,l > (panels (b,d)) for a strip
with L = 100, N = 30 (panels (a,b)) and L = 30, N = 100 (panels (c,d)). The lattice sites indices are m
and l, and the parameters have been fixed in a topological point: w = 0.1, v = 1.

In Figure 5, we show the finite size scaling of δi, ε (panels (a) and (c)) and Ei (panels
(b) and (d)) with i = 0, 1, setting the parameters in a non-trivial point of the phase diagram
(w = 0.1, v = 1). More precisely, in panels (a) and (b), we fix the length L = 68 and consider
different values of the width of the strip N = 4, 6, 8, 10, 14, while in panels (c) and (d), we
fix the width N = 14 and consider the lengths L = 16, 24, 32, 48, 56, 61, 68. In both (c) and
(d), the gap energies E0, E1 remain finite at increasing sizes, as expected in a topological
phase, on the other δ0 and δ1 decay exponentially to zero at increasing widths N (panel
(a)), while for a fixed N = 14 they are already very small and remain almost constant
with increasing lengths L (panel (c)). ε, on the other hand, turns out to be comparable, for
all the considered sizes, to the machine error. This behavior of the gaps ensures that the
topological phase of the system is robust.

To gain further insight into the topological properties of the finite size system in
Figure 6, we show the non-local fermion correlations, where panels (a) and (b) correspond
to < c†

1,1cm,l > and < c†
L,Ncm,l >, respectively, with lattice indices l and m running along

the length and the rung of the strip with L = 100 and N = 30. The shorthand notation
< c†

1,1cm,l > and < c†
L,Ncm,l > instead of 〈GS|c†

1,1cm,l |GS〉 and 〈GS|c†
L,Ncm,l |GS〉 is used,

with |GS〉 being the many body ground state. All the details about the formulas used to
compute the fermion correlations are reported in Appendix A. As we can see, the fermionic
states are always correlated along the shortest directions (1, 1)− (1, N) and (L, 1)− (L, N).
The same behavior is observed when the dimensions of the strip are exchanged L → N,
N → L. In panels (c) and (d) of Figure 6, we report the non-local fermion correlations of a
Majorana BBH strip with L = 30 and N = 100. We observe the tendency of the system to
form topological modes that correlate along the shortest dimension. A finite size square
system L = N is thus the best configuration to observe the formation of Majorana fermions
at the corners.

5. Conclusions

We have proposed and analyzed the topological phases of a Majorana BBH model,
consisting of a Majorana 2D SSH model with a synthetic magnetic flux of π. Due to
the coexistence of C4 symmetry and reflection symmetries, the system turns out to be a
second-order topological superconductor with a quantized 2D Zak phase in the absence of
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Berry curvature. Starting from the Hamiltonian in k-space, we have studied the topological
phases of the system, showing the bulk-edge correspondence and the formation of Majorana
corner states. To study the robustness of the topological phase, we have analyzed the finite
size scaling of the gaps between the ground states and the first excited states in the two
parity sectors and found the expected exponential decay with the system length. The
analysis of the fermion non-local correlation functions shows that the Majorana zero modes
nucleate at the corners of the system, correlating along the shortest dimension.

Our model could be realized in photonics systems or in cold atoms platforms where
a high efficiency to control parameters through gauge fields has been demonstrated. We
believe that our proposal opens new directions in inducing unique corner states by gauge
field and offering possibilities to design 2D models with non-zero Zak phase and robust
edge states. Various directions remain open, among which the study of the effect of
interactions on the higher order topological phase is a relevant one.
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Appendix A. Non-Local Fermionic Correlations

In this Appendix, we aim to introduce the covariance matrix formalism for the calcu-
lation of non-local fermionic correlation functions.

Appendix A.1. Covariance Matrix

Let us define the covariance Matrix of the density operator ρ defined on a many body
state |φ〉 of a many-body quadratic Hamiltonian. This state |φ〉 is a fermionic Gaussian
state [24]:

Γ(a,b)
ij = − i

2
Tr(ρ[ai, bj]) (A1)

Γ(a,b) = − i
2

(
< [a, a] > < [a, b] >
< [b, a] > < [b, b] >

)
. (A2)

The Γ is expressed in terms of the commutator between Majorana operators ai and bj,
with ai = ci + c†

i and bi = −i(ci − c†
i ), where for simplicity, we adopt the notation

〈φ|[a, b]|φ〉 =< [a, b] > introduced in the main text. Choosing the many body ground
state |φ〉 = |GS〉 and the diagonalizing Majorana basis (p, q) for which the ground state is
the vacuum state and the parity of j-mode is given by Pj = −ipjqj, Equation (A2) can be
expressed as follows:

Γ(p,q) = −i
(

0 < pq >
< qp > 0

)
=

(
0 1
−1 0

)
. (A3)

The covariance matrix in the (p, q) basis in Equation (A3) is very useful. Indeed, the first
excited state can be obtained by Equation (A3) just exchanging a −1 with a 1 between
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the two off-diagonal blocks. In general, the covariance matrix for the thermal state is
the following:

Γ̃(p,q) =

(
0 λ
−λ 0

)
(A4)

with ±λ = ± tanh(−βεα/2).
An analogous quantity to Equation (A1) can be defined for Bogoliubons which are

related to the Majorana operators via the relation pi = fi + f †
i and qi = −i( fi − f †

i ):

Γ( f , f †)
ij = Tr(ρ[ fi, f †

j ]) (A5)

Γ( f , f †) =

(
< [ f , f †] > < [ f , f ] >
< [ f †, f †] > < [ f †, f ] >

)
. (A6)

We are interested in evaluating the fermionic correlations which have an half as large a
dimension as the fermionic covariance matrix in Equation (A6). So, defining the correlation
matrix Λ:

Λ( f , f †) =

(
< f f † > < f f >
< f † f † > < f † f >

)
, (A7)

the desired relation holds: Λ( f , f †) = 1/2 (Γ( f , f †) + I) with I representing the identity
matrix. The transformation of the covariance matrix picture in terms of Majornas (p, q) is
then achieved by the action of the matrix (A8), where:

Ω =

(
1 i
1 −i

)
, (A8)

i.e.,

Λ( f , f †) =
i
4

ΩΓ(p,q)Ω† +
I
2

. (A9)

Equation (A9) allows for computation of the fermionic correlations of Bogoliubons in terms
of the well-known covariance matrix of Equation (A3). A similar relation, but most useful,
arises for the physical fermionic modes (c, c†) by means of the real orthogonal matrix
O (OOt = OtO = 1), which transforms the Majorana operators (a, b) into the diagonalizing
Majorana operators (p, q):

Λ(c,c†) =
i
4

ΩOtΓ(p,q)OΩ†, (A10)

where the following identity holds:(
p
q

)
= O

(
a
b

)
. (A11)

It should be noted that Equation (A9) for a thermal state (Equation (A4)) returns the Fermi
distribution:

Λ( f , f †) =
i
4

ΩΓ̃(p,q)Ω† +
I
2
=

1
2

(
λ 0
0 −λ

)
+

I
2

, (A12)

and so

< f † f >= −λ

2
+

1
2
= −1

2
tanh

(
−βεα

2

)
+

1
2
=

e−βεα

1 + e−βεα
. (A13)
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Appendix A.2. Fermionic Correlations in Degenerate Ground State Manifolds

We report here some details regarding calculations of the fermionic correlations in the
many body ground state degenerate manifolds of the model presented in Section 1.

The Bogoliubov transformation links the fermionic modes to Bogoliubons. This
transformation can be expressed in terms of Ω and O matrices by means of(

c
c†

)
=

1
2

ΩOΩ†
(

f
f †

)
=

1
2

(
u v
v∗ u∗

)(
f
f †

)
. (A14)

On the other hand, the model presented in Sec.I preserves the parity and has a non-trivial
phase with 4 Majorana zero modes localized at the four corners of the 2D geometry of
the strip. The two non-local fermionic modes: f1 and f2 (with the respective creation
operators f †

1 , f †
2 ) identify the four Majorana modes. This means that in the thermodynamic

limit, we have four degenerate many body ground states divided in two groups with
different parities: 

tp = 0
|GS1〉 = |vac〉
|GS2〉 = f †

2 f †
1 |vac〉


tp = 1
|GS3〉 = f †

1 |vac〉
|GS4〉 = f †

2 |vac〉.
(A15)

In Equation (A10), Λ(c,c†) corresponds to the correlations on the vacuum state |GS1〉 and, in
our specific case, has to be generalized taking into account Equation (A15). Indeed, fixing

the parity sector, every element Λ(c,c†)
ij becomes a 2× 2 matrix acting in the space of the

degenerate manifolds. In Sec.II, we analyze fermionic correlations between creation and
annihilation operators < c†

i cj > and the aforementioned 2× 2 matrices become(
〈GS1|c†

i cj|GS1〉 〈GS1|c†
i cj|GS2〉

〈GS2|c†
i cj|GS1〉 〈GS2|c†

i cj|GS2〉

)
tp=0

(
〈GS3|c†

i cj|GS3〉 〈GS3|c†
i cj|GS4〉

〈GS4|c†
i cj|GS3〉 〈GS4|c†

i cj|GS4〉

)
tp=1

.

The first element of the first matrix is given by Equation (A10), while the other elements can
be computed as correlations of an even number of operators on the vacuum state |GS1〉:

〈GS1|c†
i cj|GS1〉 = Λ(c,c†)

i,j

〈GS1|c†
i cj|GS2〉 = 〈GS1|c†

i cj f †
2 f †

1 |GS1〉
〈GS2|c†

i cj|GS1〉 = 〈GS1| f1 f2c†
i cj|GS1〉

〈GS2|c†
i cj|GS2〉 = 〈GS1| f1 f2c†

i cj f †
2 f †

1 |GS1〉
〈GS3|c†

i cj|GS3〉 = 〈GS1| f1c†
i cj f †

1 |GS1〉
〈GS3|c†

i cj|GS4〉 = 〈GS1| f1c†
i cj f †

2 |GS1〉
〈GS4|c†

i cj|GS3〉 = 〈GS1| f2c†
i cj f †

1 |GS1〉
〈GS4|c†

i cj|GS4〉 = 〈GS1| f2c†
i cj f †

2 |GS1〉.

(A16)

The relations in Equation (A16) can be easily computed by using the Wick theorem [25,26],
in particular by means of the powerful property:

〈vac|A1...A2n|vac〉 = ∑(±1)P〈vac|Ai1 Aj1 |vac〉...〈vac|Ain Ajn |vac〉, (A17)

where the expectation value of the product of an even number of destruction and creation
operators (indicated as Al) is equal to the sum over all partitions of 1, ..., 2n into pairs
(i1, j1)...(in, jn) with ik < jk. P is the permutation that takes 1, ..., 2n to the sequence
i1, j1, ..., in, jn.



Condens. Matter 2021, 6, 15 11 of 12

Below, we report the expressions of the previous matrix elements in terms of u and v
coefficients whose expressions are known by means of Equation (A14) in terms of O and
Ω matrices:(

v∗ikvjk v∗i1uj2 − v∗x2uj1
u∗i2vj1 − u∗i1vj2 v∗xkvjk − v∗x1vj1 − v∗x2vj2 + u∗x1uy1 + u∗x2uy2

)
tp=0

(A18)

(
u∗ikujk + v∗ikvjk − v∗i1vj1 u∗i1uj2 − v∗i2vj2

u∗i2uj1 − v∗i1vj2 v∗xkvjk + u∗i2uj2 − v∗i2vj2

)
tp=1

, (A19)

where the repeated index k means a summation.
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