instruments

Article

DOME: Discrete Oriented Muon Emission in
GEANT4 Simulations

Ahmet Ilker Topuz **{, Madis Kiisk > and Andrea Giammanco 2

check for
updates

Citation: Topuz, A.L; Kiisk, M.;
Giammanco, A. DOME: Discrete
Oriented Muon Emission in GEANT4
Simulations. Instruments 2022, 6, 42.
https:/ /doi.org/10.3390/instruments
6030042

Academic Editors: Alan D. Bross,
Jacques E. Marteau and Antonio
Ereditato

Received: 23 May 2022

Accepted: 14 September 2022
Published: 15 September 2022
Corrected: 27 September 2023

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia

Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,
Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

3 GScan OU, Maealuse 2/1, 12618 Tallinn, Estonia

* Correspondence: ahmet.ilker.topuz@ut.ee or ahmet.topuz@uclouvain.be

Abstract: The simulation of muon tomography requires a multi-directional particle source that
traverses a number of horizontal detectors of limited angular acceptance that are used to track cosmic-
ray muons. In this study, we describe a simple strategy that can use GEANT4 simulations to produce
a hemispherical particle source. We initially generate random points on a spherical surface of practical
radius by using a Gaussian distribution for the three components of the Cartesian coordinates, thereby
obtaining a generating surface for the initial position of the particles to be tracked. Since we do not
require the bottom half of the sphere, we take the absolute value of the vertical coordinate, resulting
in a hemisphere. Next, we direct the generated particles into the target body by selectively favoring
the momentum direction along the vector constructed between a random point on the hemispherical
surface and the origin of the target, thereby minimizing particle loss through source biasing. We also
discuss a second scheme where the coordinate transformation is performed between the spherical
and Cartesian coordinates, and the above-source biasing procedure is applied to orient the generated
muons towards the target. Finally, a recipe based on restrictive planes from our previous study is
discussed. We implement our strategies by using G4ParticleGun in the GEANT4 code. While we
apply these techniques to simulations for muon tomography via scattering, these source schemes can
be applied to similar studies for atmospheric sciences, space engineering, and astrophysics where a
3D particle source is a necessity.

Keywords: muon tomography; GEANT4; Monte Carlo simulations; discrete energy spectra; source
biasing; restrictive planes

1. Introduction

In the past, a variety of source geometries have been utilized for specific applications
in muon imaging simulation studies, including planar surfaces and parabolic beams, as
well as hemispherical surfaces [1]. In this study, we describe the implementation of two
schemes aimed at building a hemispherical muon source where the generated particles are
oriented towards a specific point or plane, using what we call the “selective momentum”
direction. While there are different schemes to generate 2D /3D sources, we prefer to use
the existing algorithms in GEANTA4 [2], i.e., G4RandGauss :: shoot() and G4UniformRand ()
as the distribution function. Whereas the geometrical shape of the 2D /3D sources plays
an important role in a particular application, the momentum direction is another variable
the user must specify. In this study, we first generate a spherical surface by using three
Gaussian distributions for the three components of the Cartesian coordinates and we direct
the generated particles from their initial positions on this spherical surface to the preferred
location(s) by using a vector constructed, as described in our previous study [3]. This
methodology is called discrete oriented muon emission (DOME), where the kinetic energy
of the generated particles is intentionally discrete for the computational purposes, as already
implemented in another study [4]. In the latter scheme, we generate the initial positions

Instruments 2022, 6, 42. https:/ /doi.org/10.3390/instruments6030042

https:/ /www.mdpi.com/journal/instruments

https://doi.org/10.3390/instruments6030042
https://doi.org/10.3390/instruments6030042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/instruments
https://www.mdpi.com
https://orcid.org/0000-0002-1397-8839
https://orcid.org/0000-0001-9640-8294
https://doi.org/10.3390/instruments6030042
https://www.mdpi.com/journal/instruments
http://www.mdpi.com/2410-390X/6/3/42?type=check_update&version=3

Instruments 2022, 6, 42

2 0f 8

by randomizing the spherical variables, i.e., azimuth and zenith, and we perform the
coordinate transformation from the spherical coordinates to the Cartesian coordinates [5-7].
We repeat the same operations as performed in the first scheme. This paper is organized as
follows. Section 2.1 describes the first scheme that is based on the Gaussian distribution
functions, while Section 2.2 consists of the second methodology founded on the coordinate
transformation from spherical to Cartesian coordinates. An alternative focusing scheme is
explained in Section 3, and we summarize our conclusions in Section 4.

2. Central Focus Scheme
2.1. Generation through Gaussian Distributions

Our objective is to build a hemispherical muon source that surrounds our detector
setup [8] similar to the other configurations existing in the literature [9-11], as illustrated in
Figure 1. First, the particle locations in Cartesian coordinates are generated by using the
Gaussian distributions formally defined as G4RandGauss::shoot() in GEANT4 as:

xo = G(%, 0y, x) = G4RandGauss :: shoot(), 1)
and

vo = G(¥,0y,y) = G4RandGauss :: shoot(),)
and

zg = G(2,0%,z) = G4RandGauss :: shoot(). 3)

where ¥ = 7 = Z = 0 and 0y = 0y = 0; = 1 by definition. The generated spatial points are
renormalized in order to form a unit sphere, as indicated in

X0 0
e e T Tt TS
VX5 Y5+ 2 VR \/ X6 VG 25

Given a sphere of radius denoted by R, the initial positions on the spherical surface of
radius R in cm in the Cartesian coordinates are obtained as follows

z
Xy = 0

xj =R=*xj5, y;=Rx|yy| = RxABS(y;), zi = Rx*z. (5)

where the y-component of the Cartesian coordinates constituting the vertical axis is posi-
tively defined in order to yield the hemispherical surface. Then, the generated particles on
the spherical surface are directed to the origin

XfZO, yfIO, ZfZO. (6)
By constructing a vector from the hemispherical surface to the origin, one obtains
px =Xf—Xi, pY=Yf—VYi, Pz=2zf—Z. 7)

Thus, the selective momentum direction denoted by P= (Py, Py, P;)is

4 P - 7 P .
Vit p2vp2 T rp e T pa ot p? + p22

The developed code via the Gaussian distributions is given in Appendix A.

P px Py pz ®)

2.2. Generation via Coordinate Transformation

The second scheme is composed of the coordinate transformation, as depicted in
Figure 2. To begin, two numbers, q; and g5, are uniformly generated and inserted into the
associated expression of the spherical variables as follows

g1 = G4UniformRand(),)

and
g2 = G4UniformRand(). (10)

Instruments 2022, 6, 42 30f8
The surface generation is initiated by randomizing 6 as well as ¢, as shown in
6 = arccos (2 x q1 — 1), (11)
and
@ =2 X 7T X g (12)

The coordinate transformation yields the generated points on the hemispherical surface of
radius R in Cartesian coordinates, as described in

x; = Rsinfcos ¢ (13)
Yi = Rcosf = R|cosf|= R ABS(cos) (14)
z; = Rsinfsin ¢ (15)

The y-component of the Cartesian coordinates constituting the vertical axis is positively
defined in order to yield the hemispherical surface as usual. Then, the generated particles
on the spherical surface are again directed to the origin

Xf:(), yf:O, ZfZO (16)

By constructing a vector from the hemispherical surface to the origin, one obtains
px =Xy —Xx;, pY=Yr—Vi, Pz=2zf—2z. (17)

Thus, the selective momentum direction denoted by P= (Py, by, P,)is

b px _ Py _ pz 18)

- 4 P 7 P .
! p2+pyr+p2 p2+pp+p2 px% + py? + pz?

The obtained code by means the coordinate transformation is shown in Appendix B. A
simulation preview through either scheme is displayed in Figure 3.

125

100
75
50
25 ,
H Air
0 Origin

B Plastic scintillators
B 40 x 10 x 40 cm?® slab

-25

Vertical distance [cm]

-50
-75

-100

~12325-100 75 -50 -25 0 25 50 75 100 125
Horizontal distance [cm]

Figure 1. Delineation of the generated particles from the hemispherical source with a momentum
direction towards the origin.

Instruments 2022, 6, 42 40f8

Figure 2. Spherical variables consisting of 8 and ¢ with respect to the Cartesian coordinates (x,y,z).

Figure 3. Hemispherical muon source in GEANT4.

3. Restrictive Planar Focus Scheme

As described in another study [3], the generated particles from any initial point on
the hemispherical surface can be directed to a location randomly selected on a pseudo
plane that restricts the momentum direction and which also leads to the minimization of
the particle loss. Thus, the particle locations in cm on a restrictive plane of 2L x 2D cm?
situated at y = 0 will have the spatial coordinates, such that

xf = —L+2x L x G4UniformRand(), ys =0, zf= —D +2 x D x G4UniformRand(). (19)

Then, by constructing a vector from the generated hemispherical surface to the restrictive
plane, one obtains

px =Xxp—Xi, pY=Yr—Vi, Pz=2zf—2. (20)

Instruments 2022, 6, 42

50f8

Thus, the selective momentum direction, i.e., B = (Py, Py, P,),is

P, — px _ Py _ p o1)

, P , P, :
px2+py2+p2 px? + py? + pz? px? + py? + pz?

4. Conclusions

In this study, we explored the use of random number generators that are defined in
the GEANT4 code. This can provide a number of source schemes where the first strategy is
based on the Gaussian distributions, whereas the latter procedure requires a coordinate
transformation to spherical variables. Finally, we obtain a hemispherical muon source
where the kinetic energies of the generated muons are binned, and the momentum direc-
tions of these generated muons are selected by means of vector constructions. We call this
source discrete oriented muon emission (DOME). DOME has been developed for simula-
tions of muon tomography scenarios where the volume of interest is contained in a gap
between detection layers, and the hemispheric source surrounds the entire setup. However,
it can find applications in a broader array of use cases. For example, as demonstrated in [1],
hemispheric sources are computationally efficient and at the same time unbiased for mea-
surements of the cosmic muon flux where the detector has a complex geometry. Moreover,
nothing prevents applications of the same method in simulations of muon radiography
setups for volcanoes or pyramids or other very large objects of interest that are distant
from the detector [12] where solid angle restrictions can optionally be imposed to increase
computational efficiency.

Author Contributions: Methodology, A.LT.; Software, A.LT.; Supervision, M.K. and A.G.; Validation,
ALT,; Visualization, A.LT.; Writing—original draft, A.LT.; Writing—review & editing, M.K. and A.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the EU Horizon 2020 Research and Innovation
Programme under grant agreement No. 101021812 (”SilentBorder”).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Generation via Gaussian Distributions

#include "BlPrimaryGeneratorAction.hh"
#include "G4LogicalVolumeStore.hh"
#include "G4LogicalVolume.hh"
#include "G4Box.hh"

#include "G4RunManager.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4SystemOfUnits.hh"
#include "Randomize.hh"

#include <iostream>

using namespace std;

B1PrimaryGeneratorAction :: B1PrimaryGeneratorAction ()
: G4VUserPrimaryGeneratorAction (),

fParticleGun (0)

// fEnvelopeBox (0)

{

G4int n_particle = 1;

fParticleGun = new G4ParticleGun(n_particle);

// default particle kinematic

G4ParticleTable+ particleTable = G4ParticleTable:: GetParticleTable ();
G4String particleName ;

G4ParticleDefinition* particle

= particleTable ->FindParticle (particleName="mu-");
fParticleGun->SetParticleDefinition (particle);

}
Bl1PrimaryGeneratorAction::~B1PrimaryGeneratorAction ()

{
delete fParticleGun;
}

//80-bin Discrete CRY Energy Spectrum

void BlPrimaryGeneratorAction:: GeneratePrimaries (G4Events anEvent)

{

//Discrete probabilities

double A[]= {0.0, 0.01253639, 0.02574546, 0.02802035, 0.02706636, 0.03528534, 0.02826496,
0.03157946, 0.03078447, 0.02777574, 0.02546415, 0.03150608, 0.02815489,

Instruments 2022, 6, 42

6 0f 8

0.02580661, 0.02364179, 0.02170935, 0.02152589, 0.02348279,
0.0196913, 0.02036398, 0.01841931, 0.01718402, 0.01700056,
0.01539835, 0.01536166, 0.01471344, 0.01422421, 0.01412637,
0.01260977, 0.01213278, 0.0129033, 0.01248746, 0.01196155,
0.01057949, 0.0096255, 0.0103838, 0.00928304, 0.00879382,
0.00793767, 0.00786429, 0.00769306, 0.00709376, 0.00736283,
0.00721607, 0.00692253, 0.00643331, 0.00678799, 0.00673907,
0.00634769, 0.00665346, 0.00650669, 0.00561385, 0.00589516,
0.00578508, 0.00557716, 0.00550378, 0.00434187, 0.0043541,

0.00364472, 0.00399941, 0.00388934, 0.00396272, 0.00431741,
0.00363249, 0.00362026, 0.00410949, 0.00336342, 0.00358357,

0.00348573, 0.0035958};
//Discrete energies

0.02134243,
0.01624226,
0.01284215,
0.01064064,
0.00884274,
0.0071916,

0.00618869,
0.00589516,
0.00408503,
0.00368142,
0.00362026,

double B[]= {0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,

1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000,
2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000,
3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000,
4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000,
5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000,
6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000,
7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000};
G4int SizeEnergy=sizeof (B)/sizeof (B[0]);

G4int SizeProbability=sizeof (A)/sizeof (A[0]);

G4double Grid[sizeof(B)/sizeof(B[0])];

double sum=0;

for(int x=0; x < 81; x++){

sum=sum+A[x] ;

Grid[x]=sum;

std :: ofstream GridFile;
GridFile.open (" Probability_grid.txt", std::ios::app);
GridFile << Grid[x] << Gd4endl;

GridFile. close ();

}

G4double radius=100+cm; //radius of sphere

for (int n_particle = 1; n_particle < 100000; n_particle++){
G4double x0=G4RandGa shoot ();

std :: ofstream GaussFile;

GaussFile.open ("Gauss_x. txt", std::ios::app); //in mm
GaussFile << x0 << Gdendl;

GaussFile. close ();

//Centerally focused semi-spherical source via Gauss distributions

G4double y0=G4RandGauss:: shoot ();

G4double z0=G4RandGauss:: shoot ();

G4double n0O=sqrt (pow(x0,2)+pow(y0,2)+pow(z0,2));
//Coordinates on sphere

x0 = radius=*(x0/n0);

radius=abs(y0/n0);

= radius*(z0/n0);

std :: ofstream SphereFile;
SphereFile.open (" coordinates_on_sphere.txt", std::ios::app);
SphereFile << x0 << " "<< y0 << " " << z0 << " << Géendl;
SphereFile. close ();
fParticleGun->SetParticlePosition (G4ThreeVector (x0,y0,z0));
//Aimed at origin

G4double x1=0;

G4double y1=0;
Gé4double z1
G4double mx = x1-x0;

G4double my = yl-y0;

G4double mz = z1-z0;

G4double mn = sqrt (pow(mx,2)+pow (my,2)+pow(mz,2));
mx = mx/mn;

my = my/mn;

mz = mz/mn;

N
I=R=}
([

//in mm

fParticleGun —>SetParticleMomentumDirection (G4ThreeVector (mx,my,mz));

G4double Energy=0; //Just for initialization
G4double pseudo=G4UniformRand ();

for (int i=0; i < 81; i++){

if (pseudo > Grid[i] && pseudo <= Grid[i+1]){
Energy=B[i+1];

std :: ofstream EnergyFile;
EnergyFile.open("Energy.txt", std::ios::app);
EnergyFile << Energy << G4endl;
EnergyFile.close ();

}

}

fParticleGun ->SetParticleEnergy (Energy);
fParticleGun —>GeneratePrimaryVertex (anEvent);
}

}

Appendix B. Generation by Means of Coordinate Transformation

#include "Bl1PrimaryGeneratorAction.hh"
#include "G4LogicalVolumeStore.hh"
#include "G4LogicalVolume.hh"
#include "G4Box.hh"

#include "G4RunManager.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4SystemOfUnits.hh"
#include "Randomize.hh"

#include <iostream>

using namespace std;

BlPrimaryGeneratorAction :: BIPrimaryGeneratorAction ()
: G4VUserPrimaryGeneratorAction (),

fParticleGun (0)

// fEnvelopeBox (0)

{

G4int n_particle = 1;

fParticleGun = new G4ParticleGun(n_particle);

// default particle kinematic

Instruments 2022, 6, 42

7 of 8

G4ParticleTablex particleTable = G4ParticleTable :: GetParticleTable ();
G4String particleName;

G4ParticleDefinition+ particle

= particleTable ->FindParticle (particleName="mu-");

fParticleGun ->SetParticleDefinition (particle);

}

B1PrimaryGeneratorAction::~Bl1PrimaryGeneratorAction ()
{
delete fParticleGun;

}

//80-bin Discrete CRY Energy Spectrum

void BlPrimaryGeneratorAction:: GeneratePrimaries (G4Event+ anEvent)

{

//Discrete probabilities

double A[]= {0.0, 0.01253639, 0.02574546, 0.02802035, 0.02706636, 0.03528534,
0.03157946, 0.03078447, 0.02777574, 0.02546415, 0.03150608, 0.02815489,

0.02580661, 0.02364179, 0.02170935, 0.02152589, 0.02348279, 0.02134243,
0.0196913, 0.02036398, 0.01841931, 0.01718402, 0.01700056, 0.01624226,
0.01539835, 0.01536166, 0.01471344, 0.01422421, 0.01412637, 0.01284215,
0.01260977, 0.01213278, 0.0129033, 0.01248746, 0.01196155, 0.01064064,
0.01057949, 0.0096255, 0.0103838, 0.00928304, 0.00879382, 0.00884274,
0.00793767, 0.00786429, 0.00769306, 0.00709376, 0.00736283, 0.0071916,

0.00721607, 0.00692253, 0.00643331, 0.00678799, 0.00673907, 0.00618869,
0.00634769, 0.00665346, 0.00650669, 0.00561385, 0.00589516, 0.00589516,
0.00578508, 0.00557716, 0.00550378, 0.00434187, 0.0043541, 0.00408503,
0.00364472, 0.00399941, 0.00388934, 0.00396272, 0.00431741, 0.00368142,
0.00363249, 0.00362026, 0.00410949, 0.00336342, 0.00358357, 0.00362026,

0.00348573,
//Discrete

double B[]=
1100, 1200,
2100, 2200,
3100, 3200,
4100, 4200,
5100, 5200,
6100, 6200,
7100, 7200,

0.0035958};

energies

{0.0, 100, 200, 300, 400, 500, 600,
1500, 1600,
2500, 2600,
3500, 3600,
4500, 4600,
5500, 5600,

1300, 1400,
2300, 2400,
3300, 3400,
4300, 4400,
5300, 5400,
6300, 6400,
7300, 7400,

6

500, 6600,

7500, 7600,
G4int SizeEnergy=sizeof (B)/sizeof (B[0]);
G4int SizeProbability=sizeof (A)/sizeof (A[0]);

1700, 1800,
2700, 2800,
3700, 3800,
4700, 4800,
5700, 5800,
6700, 6800,
7700, 7800,

G4double Grid[sizeof(B)/sizeof(B[0])];

700, 800, 900, 1000,
1900, 2000,
2900, 3000,
3900, 4000,
4900, 5000,
5900, 6000,
6900, 7000,

7900,

8000};

double sum=0;

for(int x=0; x < 81; x++){

sum=sum+A[x | ;

Grid[x]=sum;

std :: ofstream GridFile;

GridFile .open (" Probability_grid.txt", std::ios::app);
GridFile << Grid[x] << G4endl;

GridFile.close ();

}

G4double radius=100+cm; //radius of sphere

for (int n_particle = 1; n_particle < 100000; n_particle++){
//Centerally focused semi-spherical source via coordinate transformation
G4double rand1=G4UniformRand ();

G4double rand2=G4UniformRand ();

G4double theta = acos (2*randl-1);

G4double phi = 2+3.14159265359+rand2;

//Coordinates on sphere

G4double x0 = radiusssin (theta)+cos (phi);

G4double y0 = radius=abs (cos (theta));

G4double z0 = radius+sin (theta)ssin (phi);

std :: ofstream

SphereFile;

SphereFile.open (" coordinates_on_sphere.dat", std::ios::app); //in mm
SphereFile << x0 << " "<< y0 << " " << z0 << Gdendl;
SphereFile. close ();
fParticleGun—>SetParticlePosition (G4ThreeVector (x0,y0,z0));
//Aimed at origin

G4double

Gé4double

Gé4double

G4double x1-x0;

G4double yl-y0;

G4double z1-20;

G4double mn = sqrt (pow(mx,2)+pow (my,2)+pow(mz,2));

mx = mx/mn;
my = my/mn;
mz = mz/mn;

fParticleGun ->SetParticleMomentumDirection (G4ThreeVector (mx,my,mz)) ;
G4double Energy=0; //Just for initialization
G4double pseudo=G4UniformRand ();

for (int i=0; i < 81;

i++){

if (pseudo > Grid[i] && pseudo <= Grid[i+1]){
Energy=B[i+1];

std :: ofstream EnergyFile;
EnergyFile.open("Energy.txt", std::ios::app);

EnergyFile <<

EnergyFile .
)
!

close ();

Energy << G4endl;

fParticleGun->SetParticleEnergy (Energy);
fParticleGun ->GeneratePrimaryVertex (anEvent);

}
}

0.02826496,

Instruments 2022, 6, 42 8of8

References

1.

10.

11.

12.

Pagano, D.; Bonomi, G.; Donzella, A.; Zenoni, A.; Zumerle, G.; Zurlo, N. EcoMug: An Efficient COsmic MUon Generator for
cosmic-ray muon applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1014, 165732.
[CrossRef]

Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al.
GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250-303.
[CrossRef]

Topuz, A.L; Kiisk, M.; Giammanco, A. Particle generation trough restrictive planes in GEANT4 simulations for potential
applications of cosmic ray muon tomography. arXiv 2022, arXiv:2201.07068.

Topuz, A.L; Kiisk, M. Towards energy discretization for muon scattering tomography in GEANT4 simulations: A discrete
probabilistic approach. arXiv 2022, arXiv:2201.08804.

Marsaglia, G. Choosing a point from the surface of a sphere. Ann. Math. Stat. 1972, 43, 645-646. [CrossRef]

Tashiro, Y. On methods for generating uniform random points on the surface of a sphere. Ann. Inst. Stat. Math. 1977, 29, 295-300.
[CrossRef]

Weisstein, E.W. “Disk Point Picking”. From MathWorld-A Wolfram Web Resource. 2011. Available online: http://mathworld.
wolfram.com/ (accessed on 22 May 2022).

Georgadze, A.; Kiisk, M.; Mart, M.; Avots, E.; Anbarjafari, G. Method and Apparatus for Detection and/or Identification of
Materials and of Articles Using Charged Particles. US Patent 16/977,293, 7 January 2021.

Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Radiographic imaging with
cosmic-ray muons. Nature 2003, 422, 277. [CrossRef] [PubMed]

Frazdo, L.; Velthuis, J.; Maddrell-Mander, S.; Thomay, C. High-resolution imaging of nuclear waste containers with muon
scattering tomography. J. Instrum. 2019, 14, P08005. [CrossRef]

Frazdo, L.; Velthuis,].; Thomay, C.; Steer, C. Discrimination of high-Z materials in concrete-filled containers using muon scattering
tomography. J. Instrum. 2016, 11, P07020. [CrossRef]

Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [CrossRef]

http://doi.org/10.1016/j.nima.2021.165732
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1214/aoms/1177692644
http://dx.doi.org/10.1007/BF02532791
http://mathworld. wolfram.com/
http://mathworld. wolfram.com/
http://dx.doi.org/10.1038/422277a
http://www.ncbi.nlm.nih.gov/pubmed/12646911
http://dx.doi.org/10.1088/1748-0221/14/08/P08005
http://dx.doi.org/10.1088/1748-0221/11/07/P07020
http://dx.doi.org/10.1016/j.revip.2020.100038

	Introduction
	Central Focus Scheme
	Generation through Gaussian Distributions
	Generation via Coordinate Transformation

	Restrictive Planar Focus Scheme
	Conclusions
	Appendix A. Generation via Gaussian Distributions
	Appendix B. Generation by Means of Coordinate Transformation
	References

