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Abstract: Bright beams are commonly represented by sampled data in the numerical algorithms
used to simulate their properties. However, in these calculations and the analyses of their outputs,
the beam’s density is sometimes required and must be calculated from the samples. Axisymmetric
beams, which possess a rotational symmetry and are naturally expressed in polar coordinates, pose
a particular challenge to density estimators. The area element in polar coordinates shrinks as the
radius becomes small, and weighting the samples to account for their reduced frequency may cause
unwelcome artifacts. In this work, we derive analytical expressions for two kernel density estimators,
which solve these problems in the spatial coordinates and in the transverse phase space. We show
how the kernels can be found by averaging the Gaussian kernel in Cartesian coordinates over the
polar angle and demonstrate their use on test problems. These results show that particle beam
symmetries can be taken advantage of in density estimation while avoiding artifacts.
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1. Introduction

Sampled representations of charged particle beams are abundant in the numerical
calculations used in accelerator physics (e.g., particle tracking codes). However, some
algorithms and analyses require the beam’s density, which must somehow be estimated
from the samples. For example, the density along a set of grid points is required when
calculating space charge forces using the common particle-mesh algorithm [1]. Related
algorithms are used in free electron laser codes and need the density for calculating the
discretized radiation field [2,3]. Some machine learning architectures such as convolutional
neural networks [4] or physics-informed neural networks [5–7] (PINNs) require data that
look like images or continuous functions (i.e., like the solution to a partial differential
equation). When talking about a particle beam distribution, this means a density, and for
PINNs in particular, one concept of how to introduce physics-based priors to models of a
particle accelerator involves the Vlasov equation [8], which applies to the density and not
the particles themselves. With the importance of finding densities from sampled data in
accelerator physics, it is necessary for us to have good algorithms that solve this problem
quickly and accurately.

Kernel density estimation (KDE) is one popular method for the conversion from
sampled data to a density. It has already found some use in accelerator physics when the
beam does not possess any special symmetries [9–11] and is being used for training PINNs
on sampled data [12,13]. In this method, the density is given by the convolution between a
kernel function f (x, x̃) and the (possibly multidimensional) samples x̃i. Precisely, this is,

ρ(x) =
1

nhd

n

∑
i=1

f
(

h−1x, h−1x̃i

)
, (1)

where n is the number of samples, x is the point where the density is being evaluated,
d is the number of dimensions, and h is a parameter (generalizable to a matrix) called the
bandwidth that controls how much “smoothing” the kernel provides [14]. In this article,
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we will use the Gaussian kernel, f (x, x̃) = (2π)−d/2 exp(−|x− x̃|2/2), as a starting point.
Bandwidth selection plays an important role in the accuracy of the density estimator, but is
out of the scope of this article. We point readers to review papers on the subject for more
information [15–17].

Symmetries play an important role in numerical algorithms and can enable better per-
formance and accuracy of the calculations by reducing the number of dimensions involved.
One important class of symmetries in accelerator physics is a rotational symmetry around
the longitudinal axis. These axisymmetric beams (such as those in most photoinjectors)
are better represented in cylindrical coordinates, where the invariance of quantities like
density with rotation is more naturally expressed. To reference later, the transformation of
transverse phase space into cylindrical coordinates is,

x → r cos(θ), x′ → r′ cos(θ)− rθ′ sin(θ), (2)

y→ r sin(θ), y′ → r′ sin(θ) + rθ′ cos(θ), (3)

where the primed coordinates represent velocities with respect to the time-like dimension
(time or position along the accelerator). Since the density is by definition invariant along
the θ coordinate, it can be dropped to improve all of the previously mentioned applications
of densities in accelerator physics. The only challenge now is to develop a density estimator
that is appropriate for axisymmetric particle beams.

The remainder of the paper is dedicated to deriving kernels useful for density estima-
tion of axisymmetric particle beams from sampled data. We begin with an example of the
problems that come up in naive implementations of a density estimator for this application.
We then continue on to derive kernels for use with the spatial coordinate and then the
full phase space of axisymmetric particle beams. The article then concludes with a brief
discussion of the results and their potential applications in accelerator physics.

2. A Motivating Problem

Before deriving kernels for axisymmetric density estimation, we provide a motivating
example to demonstrate the problems with naive density estimators and why deriving a
more serious method is needed.

Let us start with the problem of estimating the density of the spatial part of the particle
beam samples, that is, finding an estimate of ρ(r, θ) = ρ(r). Note that in this notation, ρ(r) is
the radial part of the 2D density and not the density of the radial coordinates, which differs
by a factor of r. For the purpose of this example, we consider samples of x and y from the 2D
normal distribution with a unit covariance matrix that is axisymmetric and has the analytical
radial density ρ(r) = 1/(2π) · exp(−r2/2). Since the distribution is independent of θ, we
are motivated to first convert the samples to polar coordinates and then perform a density
estimate of the radial part. Here, we immediately run into a problem. The area element in polar
coordinates is rdrdθ, and the samples disappear near the origin. This is the blue histogram in
Figure 1. To counteract that, we can weight each of the samples as 1/r. This estimate (orange
in Figure 1), however, ends up with artifacts near the origin, as fewer and fewer samples are
given more weight to contribute to the corrected density estimate. Note that we reflect the
densities over r = 0 to make visualization easier, and for the full phase space we will similarly
amend the figures with the data transformed by (r, r′)→ (−r,−r′).

The same artifacts occur when one tries to estimate the density of samples in the trans-
verse phase space (x, y, x′, y′). Here, we take an example distribution in the 4D transverse
phase space as being normally distributed with a diagonal covariance matrix. The standard
deviation of the spatial coordinates is 1.0, and for the velocities, it is 0.2. We then take sam-
ples from this distribution and shear the radial velocities according to r′ → r′ + ar + br3

for some numbers a and b (here, 0.6 and −0.1) to arrive at an interesting shape for us to
estimate. For the density calculation, the samples are transformed according to the inverse of
Equations (2) and (3), and we evaluate a 2D histogram of the coordinates r and r′ weighted by
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1/r. We show this estimate in Figure 2 (labeled “Histogram”), and one can see the same type
of artifacts near r = 0 that pollute our result.

Figure 1. Densities of samples drawn from the 2D normal distribution with unit variance; (green)
analytical radial part of the density function; (blue) density of the radial coordinate of samples;
(orange) estimate of radial density using a weighted histogram.

Figure 2. Density of points sampled from a beam with nonlinear correlation estimated with the
weighted histogram method and the axisymmetric kernel density estimator. The analytical density is
shown to the right.

3. The Radial Density

Our goal is to solve the problem of artifacts near r = 0 when estimating the density of
axisymmetric beams. Let us start again with the simpler case of only the spatial coordinates
(x and y). To avoid the singular weights of points near the origin, we can start by estimating
the density of points in 2D space using the typical Gaussian kernel,

f (x, y, x̃, ỹ) =
1

2π
exp

(
−1

2

[
(x− x̃)2 + (y− ỹ)2

])
. (4)

The resulting density estimate (i.e., using Equation (1), it may be evaluated in polar
coordinates as ρ(x(r, θ), y(r, θ)). Note that we are not scaling the density by the determinant
of the transformation’s Jacobian (|J| = r) because we wish to simply find the original
density evaluated at a polar coordinate and not the density of the radial coordinates,
which would go to zero like ρ(r) ≈ r near the origin. This new function, ρ(r, θ) contains
an estimate of the radial part at every value of θ but does not benefit from the known
symmetry of the points. To incorporate this, we average over the angular coordinate to
obtain ρ(r) = 1/(2π)

∫ 2π
0 ρ(r, θ)dθ.

The density estimator in Cartesian coordinates transformed to polar coordinates and
then averaged over the angle should give us an estimate of the density without using the
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problematic weighting strategy. This integral can be solved analytically, and we find that
the kernel is simply replaced by the expression,

f (r, r̃) =
1

2π
exp

(
−1

2

[
r2 + r̃2

])
I0(rr̃), (5)

where I0(rr̃) is a modified Bessel function of the first kind. This function is plotted in
Figure 3a. If we use the Hankel asymptotic expansion for the Bessel function [18], we find
that the behavior as rr̃ becomes large is

f (r, r̃) ≈ 1
(2π)3/2

√
rr̃

exp
(
− (r− r̃)2)

2

)
. (6)

This is the typical Gaussian kernel with the expected weighting of 1/r along r = r̃ to
account for the effect of the growing area element in polar coordinates as r becomes large.
We plot this asymptotic expression against the kernel itself along the diagonal in Figure 3b.

Figure 3. (a) The averaged kernel for evaluating the axisymmetric radial density of the spatial
coordinates; (b) the same function evaluated along f (r, r) compared with its asymptotic form (with
k = 1/(2π)3/2).

Near the origin, however, we see a different behavior. The density no longer has the
pole that caused the artifacts we saw in Figure 1. Additionally, back in Figure 3a, if we look
along the kernel at fixed r̃, we can see that when the sample is near r̃ = 0, there is a boost
in the amount of density measured near r = 0 compared to when the sample is further
away. This comes from the averaging over θ, which means that, for instance, a sample at
x = 1 will also contribute density from the point x = −1 that can “leak” over the origin
and contribute to the estimate when both r and r̃ are small. All of these properties, both
asymptotic and near the origin, will also show up when we deal with the more complicated
case of density estimation for the transverse phase space.

We directly compare density estimates for 10,000 samples drawn from the 2D normal
distribution using the weighted histogram described in Section 2 and the axisymmetric kernel
density estimator in Figure 4. It is clear that the artifacts near r = 0 have been reduced
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to provide a more accurate estimate of the density compared with the analytical value.
While experimenting with the density estimator, we found it necessary to use the scaled
Bessel function exp(−x)I0(x) to avoid numerical problems when evaluating the kernel in
Equation (5). Fast implementations of the scaled Bessel function are available in many popular
scientific computing libraries and have been described in, for example, ref. [19].

Figure 4. Comparison between the axisymmetric kernel density estimator (blue), the weighted
histogram method (orange), and the analytical expression for the radial part of the 2D density of
normally distributed points.

4. Density in Phase Space

With a template of how to proceed from the density estimator of the spatial coordinates,
we can begin to derive a kernel for use in phase space. Starting with the Gaussian kernel
over the four phase space variables (x, y, x′, and y′), we can transform them according to
Equations (2) and (3) and average out over the angular variable, θ. This gives us the kernel,

f (r, r′, θ′, r̃, r̃′, θ̃′) =
1

4π2 exp
(
−1

2

[
r′2 + r̃′2 + r2 + r2θ′2 + r̃2 + r̃2θ̃′2

])
I0(u), (7)

with the Bessel function’s argument,

u =
√
(rr̃′θ′ − r̃r′ θ̃′)2 + (r′ r̃′ + rr̃ + rr̃θ′ θ̃′)2. (8)

Oftentimes, however, the angular velocity is uninteresting for the beams used in
accelerator physics. The samples may have negligible angular velocity, or it may take on
a single value for all of the particles such as for magnetized beams. This motivates us to
further reduce the number of dimensions by integrating out the dependence of Equation (7)
on θ′. We find that the integral can be solved analytically and gives us the kernel,

f (r, r′, r̃, r̃′, θ̃′) =
1

(2π)3/2 exp
(
−1

4

[
2r2 + 2r̃2 + r̃′2 + 2r′2 + r̃2θ̃′2

])
I0(u, v; eiφ), (9)

where the arguments to I0(u, v; eiφ) are

u =
√

k2
1 + k2

2, v =
√

k2
3 + k2

4, φ = arctan(−k4, k3)− 2 arctan(−k2, k1), (10)

and arctan(y, x) is the two-argument arctangent that gives the angle from the positive
x-axis to the point (x, y), and the ki are,

k1 = rr̃ + r′ r̃′, k2 = −r̃r′ θ̃′, k3 =
r̃2θ̃′2 − r̃′2

4
, k4 =

r̃r̃′ θ̃′

2
. (11)

A detailed derivation of the kernel is given in Appendix A.
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The function I0(u, v; eiφ) is an order zero “modified generalized Bessel function” of
the first kind with a single parameter (e.g., defined in refs. [20,21]). The function also takes
on the integral form,

In(u, v; eiφ) =
1

2π

∫ 2π

0
exp(u cos(θ) + v cos(2θ + φ)− nθ)dθ, (12)

which can be found by applying the relationship between the modified and unmodified
generalized Bessel functions (i.e., Equation (2.22) in ref. [22]) to the typical integral repre-
sentation (i.e., Equation (2.9) in the same reference). We found that numerically evaluating
the logarithm of this integral provides a stable method of calculating its value for use in
the kernel. This function’s values may also be tabulated before use in density estimation
and then looked up with linear interpolation later to achieve acceptable performance when
used with many samples. Further work could be put into deriving an efficient numerical
expression for the function’s value using a method similar to how the regular modified
Bessel function is computed to improve the speed of evaluating the kernel.

Some examples of the kernel (Equation (9)) for different values of the sample’s location
are shown in Figure 5. When the samples have large radius, the function is visually
similar to the Gaussian kernel and also falls off with a 1/r weighting as was previously
found for the case of the spatial coordinates. As the samples move closer to the origin,
we also find additional density showing up near r = 0. However, unlike in the case of
the spatial coordinates, a 180-degree rotation of the sample will take the coordinates to
(x, x′) → (−x,−x′), and so we see the density “leaking over” from a point at (−r,−r′)
and not just the point reflected across r = 0. The effect of angular velocity is shown in
the second row of Figure 5 and tends to distribute density at a much greater than typical
spread of radial velocity after the integration.

Figure 5. The averaged phase space kernel (Equation (9)) evaluated for different locations of the
sample. The sample’s location is shown as the red cross in each image, and the coordinates are
displayed in the header of each column. The angular velocity of the sample is varied along the rows
and shown in each row label. The colormaps are normalized to the maximum of the data in each
panel to highlight the shape of the kernels rather than their relative magnitude.

We demonstrate the use of this kernel density estimator on the example described in
Section 2 of a beam with some nonlinear correlation to the velocities. A set of 50,000 samples
was generated, and the densities are shown in Figure 2 using the weighted histogram
method and the axisymmetric density estimator with the kernel in Equation (9). This is
compared to the analytical value of the density. Visually, it can be seen that the axisymmetric
kernel density estimator successfully avoids the problem of artifacts near r = 0 and matches
closely with the analytical distribution. To quantify the difference in accuracy between the
two methods at a variety of sample sizes, we numerically evaluated the mean integrated
square error (MISE) of the two estimators using 32 samples each time and evaluating the
densities on a 64× 64 grid of values over the same region shown in Figure 2. The results are
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shown in Figure 6 and suggest that the axisymmetric kernel density estimator successfully
avoids artifacts present in the weighted histogram and converges more quickly to the
analytical density. Note that these results strongly depend on the choice of the histogram
bin size and KDE bandwidth, and for the brief comparison here, we simply used “Scott’s
rule of thumb” [17] in both cases.

Figure 6. Estimates of the mean integrated square error of the two density estimators for a variety of
sample sizes. For each point, 32 samples were evaluated, and the integrated error was calculated
using a 64 × 64 grid of points.

5. Conclusions

In this work, we have derived analytical expressions for two kernel density estimators for
use with axisymmetric particle beams: one for the spatial coordinates and one for transverse
phase space. These density estimators avoid the problem of artifacts near r = 0 that result from
the need to weight samples in polar coordinates according to the shrinking area element when
the radius becomes small. By starting with an estimate of the density in Cartesian coordinates
and then averaging over the angle in polar coordinates, we can find estimates of the density
that do not diverge as the sample approaches the origin. These estimates should be accurate
for any distribution of samples, where the original Cartesian kernel density estimator would
give an accurate estimate of density. Being analytical, the expressions avoid the performance
and convergence penalties that could come from averaging the kernels numerically. We also
note that the longitudinal coordinates can be trivially added to both estimators by multiplying
by another Gaussian kernel in those dimensions.

Taking advantage of known symmetries is important to improving the accuracy
and performance of numerical algorithms. The density estimators presented here are a
stable and efficient method of calculating densities for axisymmetric beams and could
help accelerator codes take advantage of the symmetries present in, for example, many
photoinjectors. By advancing the ways we design and operate these machines, improved
numerical tools will help enable the next generation of particle accelerators.
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Appendix A. Calculation of the Phase Space Kernel

To calculate the kernel in Equation (9), we first begin with the Gaussian kernel over
the four phase space variables (x, y, x′, y′). The coordinates of both the sample and
the point being evaluated are then transformed into polar coordinates according to to
Equations (2) and (3) to achieve the expression,

f
(
r, θ, r′, θ′, r̃, θ̃, r̃′, θ̃′

)
=

1
4π2 exp[

1
2

(
−(r cos(θ)− r̃ cos(θ̃))2 − (r sin(θ)− r̃ sin(θ̃))2

−
(
rθ′ cos(θ)− r̃θ̃′ cos(θ̃) + r′ sin(θ)− r̃′ sin(θ̃)

)2

−
(
r′ cos(θ)− r̃′ cos(θ̃)− rθ′ sin(θ) + r̃θ̃′ sin(θ̃)

)2
)]

.

(A1)

The angular velocity coordinate of the point the kernel is being evaluated at can then
be integrated out of this expression with standard techniques to obtain,∫ ∞

−∞ f (r, θ, r′, θ′, r̃, θ̃, r̃′, θ̃′)rdθ′ = 1
(2π)3/2 exp[ 1

2 (−r2 − r̃2 − r′2 − r̃′2 − r2θ′2+

2rr̃ cos(θ − θ̃) + 2r′ r̃′ cos(θ − θ̃)− 2rr̃′θ′ sin(θ − θ̃) + (rθ′ cos(θ − θ̃) + r′ sin(θ − θ̃))2)].
(A2)

We can safely set θ̃ = 0, as we can see by inspection that our final averaging over angle
will no longer depend on the angular coordinate of the data.

The last step in finding the axisymmetric kernel is to perform the averaging of
Equation (A2) over the angle of the evaluated point (θ). This is the integral,

f (r, r′, r̃, r̃′, θ̃′) =
1

2π

∫ 2π

0
f (r, θ, r′, r̃, r̃′, θ̃′)dθ. (A3)

Fortunately, by factoring out terms that do not depend on θ and rewriting the exponent
in Equation (A2) using trigonometric identities, the expression can be made to exactly cor-
respond with the integral form of the modified generalized Bessel function (Equation (12)).
This gives us the final form of the axisymmetric kernel shown in Equation (9).
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