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Abstract: An innovative design of a magnetic coupler for shaft speed amplification is proposed and
verified by experiments. The structure of the proposed magnetic coupler is similar to an infinite-stage
gearbox. In addition, the mathematical model of flux density is derived to look into the equation
of adjustable gear ratio and effect of speed amplification. Moreover, two sets of experiments,
namely verification of gear ratio and observation of stall phenomenon, are built up to examine
the capabilities and drawbacks of the proposed variable-gear-ratio magnetic coupler. Three types of
gear ratios are presented by theoretical analysis at first and then examined by experiments. The gear
ratios for these three specific types between the input and output rotors are 4.75, 5.75 and 10.5,
respectively. That is, the rotational speed of the output rotor can be precisely and realistically
amplified. Besides, in order to reduce the torque inertia of the outer rotor, a ferrite bush is inserted
to the inner side of the core rotor to decrease the flux density in the air gap. On the other hand,
the overlapped depth of permanent magnets, which are attached onto the inner rotor and outer
rotor, has to be appropriately chosen. The smaller the overlapped depth, the weaker is the magnetic
attractive force in the air gap. As long as these two modifications (an inserted ferrite bush and the
aforesaid overlapped depth) are validated, the torque inertia of the outer rotor can be significantly
reduced. Accordingly, the required power to rotate the outer rotor can be greatly reduced if the
overlapped depth is shortened. However, insufficient overlapped depth between the high-speed
rotor and low-speed rotor will bring about a stall phenomenon caused by the magnetic attractive
force between the high-speed rotor and the low-speed rotor being weaker than the start-up torque
inertia. In other words, the reduced overlapped depth can also reduce the start-up torque inertia but
stall phenomenon may easily occur.

Keywords: magnetic coupler; speed amplification; gear ratio

1. Introduction

Existing variable speed magnetic couplings are available in two or three-tiered versions.
Muruganandam et al. changed the operation mode of an existing bevel gear coupling using a two-tiered
magnetic coupling to convert contact-based torque transmission to non-contact operation [1],
while Andersen used a contact-based cycloidal gear in lieu of non-contact transmission [2].
The three-tiered magnetic coupling was pioneered by Atallah in 2001 [3]. Some of the new designs had
drawbacks, while they had a very good magnetic circuit system. This was achieved at the expense of
lower torque transmission efficiency and power [4] while some others suffered the opposite effect [5,6].
Another investigation of three-tiered magnetic couplings by Atallah (2004) included a simulation
of three different RPM ratios [7]. In the same paper, he suggested ways to get a paired RPM ratio
to mitigate the impact of cogging torque. Andersen et al. then switched to the study of power loss
by magnetic couplings [8] when Brönn et al. focused on magnetic loss [9]. Cruden et al. explored
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relationships between the speeds of different rotors [10]. Atallah et al. also reviewed power I/O of their
own magnetic coupling designs as well their application in fans and vehicles as an m-CVT (magnetic
and continuously variable transmission) [11]. As far as applications are concerned, most authors
are interested in fields of greater input power, for example, in the transmission systems of fans and
cars. See papers on fans by Frank et al. [12], Abdel-Khalik [13], Chau et al. [14,15] and Fan et al. [16]
on automobiles.

In areas other than the search for greater power, Jian et al. [17] improved on the work of Atallah [3]
by simplifying the three-tier structure design into a two-tier one while retaining the variable speed
feature. This was aimed at ultra-high torque output at low speed. While a lot of attention has been
given to greater power or magnetic coupling based reducers, applications involving low power or
acceleration have been neglected. This paper presents and tests a design for magnetic couplings
useful for acceleration at low power. There are many occasions for the proposed magnetic coupling
module to be applied. For example, the proposed three-layer coupling can be applied to drive
two mechanisms simultaneously with solely a single power source. More generally, it can be applied
to a CVT (Continuously Variable Transmission) system to replace the traditional fixed gear-ratio
gearboxes. Especially, for the stage of run-up or run-down period for a rotor/shaft to accelerate or
decelerate, the corresponding rotational speed of rotor needs to be continuously variable. The most
popularly employed pumps in clean rooms are TMPs (Turbo Molecular Pumps) which do not allow
noise, clutch shift, friction or serious vibration. By applying the proposed magnetic coupling to TMPs,
the merits, such as electrical energy reduction and the significant downsizing of the overall system, are
obvious because a course pump is not necessary any more for the low-speed zone (below 30,000 RPM).

2. Materials and Methods

The variable speed magnetic coupling used in this study has a cross-sectional structure as shown
in Figure 1. There are three tiers of rotors: outer, core, and inner. The frame structure of the core rotor
is made of aluminum while the ferrite sticks are embedded in the slots of the frame along the circular
direction. Also, the inner and outer tiers have radially magnetized permanent magnets.
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To get the greatest magnetic coupling force, speed relationships between rotors must meet the
requirements of Formula (1) according to a spectrum analysis of the magnetic flux density in the gaps
between the inner and core rotors [3]:

Ωh =
pl

pl − ns
Ωl −

ns

pl − ns
Ωc (1)

where Ωc, Ωl , and Ωh, are speed of core, outer (low speed) and inner (high speed) rotors, respectively,
pl is the magnet pole pair of the outer rotor magnet and ns is the number of bars in the core rotor.
In a case like this, the number of virtual magnet pole pairs in the main magnetic field must be equal to
those in the secondary magnetic field:

pl = |ph − ns| (2)

where ph the count of magnet pole pairs of the inner rotor. At the same speed, Formula (1) suggests
the maximum I/O speed ratio Ĝr can be reached when −Ωl = Ωc.

Ĝr =

∣∣∣∣ pl + ns

pl − ns

∣∣∣∣ (3)

The count of magnetic pole pairs and iron rods in the rotor is determined by the cogging torque
factor [18] to mitigate cogging torque at a low rotation speed:

CT =
2phns

Nc
(4)

where Nc the least common multiple of magnet count (2p) and the rotor iron rod count (ns) with
CT = 1 the optimum value. Setting the inner rotor magnet pole pair count ph = 4 we can obtain
Table 1 based on Formulas (2)–(4).

Table 1. Maximum speed with ph = 4.

Options ph ns pl 2 × ph Nc CT Ĝr

A 4 22 18 8 88 2 10
B 4 23 19 8 184 1 10.5
C 4 24 20 8 24 8 11
D 4 25 21 8 200 1 11.5

In this study, the target speed ratio was set to 1:10. Option B of Table 1 was chosen to pair with
the count of outer magnets and iron rods. To reach the target ratio of 1:10, input torque must outrun
the maximum coupling magnetic moment of inertia between the outer and core rotors before getting
the two rotating in the opposite direction during gradual acceleration of the inner rotor. Jang et al. [19]
suggest that the maximum magnetic moment of inertia between outer and core rotors can be reduced
effectively by inserting a thin ring between the outer and core rotors. The impact of ring thickness on
the maximum magnetic moment of inertia is shown in Figure 2. The finite element analysis program
Ansoft Maxwell (Ansoft Corporation, Pittsburgh, PA, USA) was used with the parameter settings in
Table 2. A 1 mm thick ring was used to ensure machining precision.
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Table 2. Parameters of variable speed magnetic coupling.

Parameter Symbol Value

Radial Length of Ferrite Rods lc 4 mm
Radial Length of Air Gap lg, lg 1 mm

Radial Length of Outer-rotor Magnets lo 5 mm
Arc Width of Ferrite Rods on the Inner Side l2 4.23 mm

Arc Width of Outer-rotor Magnets on the Outer Side l3 6.95 mm
Thickness of Ring lc_ring 1 mm

Radial Length of Inner-rotor Magnets li 10 mm
Arc Width of Inner-rotor Magnets on the Inside l2 15.7 mm

Arc Width of Ring with the Same Arc Angle with
Inner-rotor Magnets l3 25.13 mm

Relative Permeability of Ferrite Rods/Ring µri 5000
Relative Permeability of Magnets µrm 1.05

Permeability of Vacuum µ0 4π × 10−7H/m
Coercive Force of N35 Hc 955 KA/m

3. Results

3.1. Magnetic Moment of Inertia Derivation

The magnetic circuit in the outer and inner air gaps is shown in Figure 3. The magnetic line of the
magnetomotive force (MMF) path 1© (Λmax) passes through magnet, air gap, and iron bar while path
2© (Λmin) through magnet and air gap only. As path 1© and 2© is a periodic distribution function of the

outer air gap magnetic conductivity must be a sinusoidal wave with bias. The magnetic lines of force
of path 3© (Λ) go through the magnet, air gap, and iron ring with a constant magnetic conductivity
coefficient, so they follow a consistent path.
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Figure 3. (a) Outer air gap magnetic circuit and (b) inner air gap magnetic circuit.

The magnetic flux density distribution in the inner and outer air gaps is derived with the following
two assumptions:

(1) The magnetic conductivity coefficient of iron rods and the ring is considered infinite (µr ≈ ∞).
(2) here is no flux leakage and fringing effect between iron rods, magnet and iron ring.

Magnetic flux density in the air gap is given by Formula (5) according to MMF conservation:

Bg(θ) = Fm
µ0

g
= FmΛ (5)

where Bg is the magnetic flux density in the air gap, Λ is the sum of the magnetic conductivity
coefficient in paths passed by the MMF, and g is the length of the air gap. Formula (5) can be revised
as in Formula (6) and Formula (7) due to the different number of permanent magnets in the inner and
outer rotors:

Bg(θ) = Fm(θ)Λ(θ) (6)

Bg(θ) = Fm(θ)Λ(θ) (7)

where Bg(θ) and Bg(θ) represent the magnetic flux density function of the outer and inner air gaps,
respectively, Fm(θ) and Fm(θ) the MMF function of outer and inner air gap, Λ(θ) and Λ(θ) the
magnetic conductivity function of outer and inner air gap as shown in Formula (8) and Formula (9):

Λ(θ) =
1

2R1 + R2 + R3
=

1

2(
lc_ring
µriµ0

+
lg
µ0

+ li
µrmµ0

) + l2
µrmµ0

+ l3
µriµ0

(8)

Λmax =
Λmax + Λmin

2
+

Λmax −Λmin

2
sin(nsθ) (9)

where in
Λmax =

1
2R1 + R2 + R3

=
1

2( lc
µriµ0

+
lg
µ0

+ lo
µrmµ0

) + l2
µriµ0

+ l3
µrmµ0

(10)
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Λmin =
1

2R5 + R4 + R6
=

1

2( lc
µ0

+
lg
µ0

+ lo
µrmµ0

) + l3
µrmµ0

+ l2
µ0

(11)

where µ0, µri, and µrm are the magnetic conductivity of air, iron bar, and magnet, respectively; R is
the reluctance at individual points, lc the radial length of iron bar, lg the radial length of outer air gap,
lo the radial length of outer rotor permanent magnet, l2 the root arc of iron bar, l3 the outer arc length
of outer rotor permanent magnet, lc_ring the radial length of iron ring, lg the radial length of inner air
gap, li the radial length of inner rotor permanent magnet, l2 the arc length of inner rotor permanent
magnet, l3 the arc length of iron ring in the same arc length angle as inner rotor permanent magnet.
Due to the weakened magnetic field strength at the permanent magnet border area by the opposing
magnetic field, the MMF at this area looks like a trapezoidal, rather than a square wave, as shown in
Figure 4.
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Figure 4. Magnetomotive force distribution of permanent magnet MMF in the air gap.

The trapezoid wave MMF function in the inner and outer air gap is

f (θ) =



Fmθplr
π , 0 ≤ θ ≤ π

plr

Fm , π
plr
≤ θ ≤ (r−1)π

plr

−Fm plr
π

[
θ − (r−1)π

plr

]
+ Fm , (r−1)π

plr
≤ θ ≤ (r+1)π

plr

−Fm , (r+1)π
plr

≤ θ ≤ (2r−1)π
plr

Fm plr
π

[
θ − (2r−1)π

plr

]
− Fm , (2r−1)π

plr
≤ θ ≤ 2π

pl

(12)

f (θ) =



Fmθphr
π , 0 ≤ θ ≤ π

phr

Fm , π
phr ≤ θ ≤ (r−1)π

phr
−Fm phr

π

[
θ − (r−1)π

phr

]
+ Fm , (r−1)π

phr ≤ θ ≤ (r+1)π
phr

−Fm , (r+1)π
phr ≤ θ ≤ (2r−1)π

phr
Fm phr

π

[
θ − (2r−1)π

phr

]
− Fm , (2r−1)π

phr ≤ θ ≤ 2π
ph

(13)

where f (θ) and f (θ) is the MMF function of the outer and inner air gap respectively; r and r the
normalized design parameters determining the gradient of the trapezoid wave. The Fourier series
expansion of the trapezoid wave can be derived with these two functions [20] with the MMF function
of the outer and inner air gaps as shown below:
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F(θ) =
∞

∑
m=1,2,3,...

f msin(plmθ) (14)

F(θ) =
∞

∑
m=1,2,3,...

f
m

sin(phmθ) (15)

where f m and f
m

are expressed as shown below:

f m =
r

(πm)2 Fm

(
sin

π

r
m + sin

(r− 1)π
r

m− sin
(r + 1)π

r
m− sin

(2r− 1)π
r

m
)

(16)

f
m
=

r

(πm)2 Fm

(
sin

π

r
m + sin

(r− 1)π
r

m− sin
(r + 1)π

r
m− sin

(2r− 1)π
r

m
)

(17)

where Fm and Fm are the MMF of outer and inner rotor magnet respectively, r is set to 6 and r to 15.
The MMF need to be doubled as each magnetic circuit will pass through two permanent magnets:

Fm = 2Hc · lo (18)

Fm = 2Hc · li (19)

where Hc is the coercive force KA
m of magnet (N35). Plug the inner and outer air gap MMFs into

Formulas (6) and (7) to get the magnetic flux density function of the inner and outer air gaps as
shown below:

Bg(θ) =
∞

∑
m=1,2,3,...

f msin(plmθ)

[
Λmax + Λmin

2
+

Λmax −Λmin

2
sin(nsθ)

]
(20)

Bg(θ) =
∞

∑
m=1,2,3,...

f
m

sin(phmθ)Λ (21)

See Formulas (22) and (23) for the magnetic moment of inertia of the inner and outer air gaps:

T(θ) =
∂

∂θ

∫ θ

0

1
2µ0

B2
g(θ)dV =

hlg

2µ0
B2

g(θ) (22)

T(θ) =
∂

∂θ

∫ θ

0

1
2µ0

B2
g(θ)dV =

hlg

2µ0
B2

g(θ) (23)

where T(θ) and T(θ) are the outer and inner magnetic moment of inertia functions, respectively; V and
V the volume of outer and inner air gap, respectively. To explore the reliability of the Fourier series in
Formula (20), the experimental result was compared to a simulation outcome using the finite element
method in Ansoft Maxwell (Ansoft Corporation, Pittsburgh, PA, USA) based on the index of the mean
average percentage error (MAPE) [8] with Formula (24)

M =
1
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100. (24)

where At is the magnetic flux density value of the inner and outer air gaps by the finite element
method and Ft that done by the Fourier Series with square and trapezoid waves MAPE, see Figure 5a,b.
The latter suggests that both the outer and inner air gap magnetic flux density distribution of trapezoid
wave is more precise than its square counterpart in terms of MAPE values.
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3.2. Dynamic Math Model of the Variable Speed Magnetic Coupling

Figure 6 illustrates the magnetic coupling of Figure 1, plane cut with both parts placed side by
side and shown in the axial direction.

To, Tc, and Ti are input torque of outer, core, and inner rotor, respectively; T and T are magnetic
moment of inertia of outer and inner air gap which block the rotation of rotors, and T′ and T′ is the
reverse magnetic moment of inertia in the outer and inner air gap.Inventions 2016, 1, 18 9 of 17 
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Figure 6. Free body diagram between rotors of variable speed magnetic coupling.

The torque balancing equation of the core, outer, and inner rotors:

Tc = T′(θ) + T′(θ) + Icαc (25)

To = T(θ) + Ioαo (26)

Ti = T(θ) + Iiαi (27)

where Ic, Io, and Ii are the rotational inertia of core, outer, and inner rotors; αc, αo and αi the angular
acceleration of core, outer, and inner rotors. Formulas (25)–(27) can be converted into Formulas (29)–(31)
due to T′ and T′ being the corresponding transmitted torque with respect to T and T, respectively:
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Tc = −T(θ)− T(θ) + Icαc (28)

Substitute Formula (20) into Formula (25) to get Formulas (29)–(31):

Tc +
h lg

2µ0
B2

g(θ) +
h lg

2µ0
B2

g(θ) = Icαc (29)

To −
h lg

2µ0
B2

g(θ) = Ioαo (30)

Ti −
h lg

2µ0
B2

g(θ) = Iiαi (31)

Assume, (1) constant input torque and (2) steady rotor speed.
In a steady state, we can differentiate Equation (29) with respect to time to get jerk from

acceleration as shown in Formula (32):

h lg

2µ0

d
dt

B2
g(θ) +

h lg

2µ0

d
dt

B2
g(θ) = 0 (32)

Substitute Formula (20) and Formula (21) into Formula (32) to get Formula (33) as shown below:

h lg
2µ0

d
dt

{
∞
∑

m=1,2,3,...
f msin(plmθ)

[
Λmax+Λmin

2 + Λmax−Λmin
2 sin(nsθ)

]}2

+
h lg
2µ0

d
dt

{
∞
∑

m=1,2,3,...
f

m
sin(phmθ)Λ

}2

= 0

(33)

To simplify the calculation, we took the first term of the Fourier series with MAPE of the inner and
outer magnetic flux density to be 30% and converted Formula (33) to Formula (34) as shown below:

h lg
2µ0

d
dt

{
f 1sin(plθ)

[
Λmax+Λmin

2 + Λmax−Λmin
2 sin(nsθ)

]}2

+
h lg
2µ0

d
dt

[
f

1
sin(phθ)Λ

]2
= 0

(34)

We can convert Formula (34) into Formula (35) as magnetic flux density contains the MMF
generated by permanent magnet and magnetic conductivity of the inner and outer rotors which means
both the MMF and magnetic conductivity rotate with the individual rotors:

h lg
2µ0

d
dt

{
f 1sin(plθ − plωlt)

[
Λmax+Λmin

2 + Λmax−Λmin
2 sin(nsθ − nsωct)

]}2

+
h lg
2µ0

d
dt [ f

1
sin(phθ − phωht)Λ]2 = 0

(35)

where ωl is the speed of outer rotor, ωc is the speed of the core rotor, ωh the speed of inner rotor and
Bg(θ) can be rearranged as shown in Formula (36):

h lg
2µ0

d
dt

{
f 1

Λmax+Λmin
2 sin(plθ − plωlt)

+ 1
2 f 1

Λmax−Λmin
2 cos

[
(pl − ns)(θ − pl ωl−nsωc

pl−ns
t)
]

− 1
2 f 1

Λmax−Λmin
2 cos

[
(pl + ns)(θ − plωl+nsωc

pl+ns
t)
]}2

+
h lg
2µ0

d
dt [ f

1
sin(phθ − phωht)Λ]2 = 0

(36)
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Differentiate Formula (36) with respect to time to get Formula (37):

h lg
2µ0

2Bg(θ)
{

f 1
Λmax+Λmin

2 (plωc − plωl)cos(plθ − plωlt)

+ 1
2 f 1

Λmax−Λmin
2 (pl − ns)

(
ωc − pl ωl−nsωc

pl−ns

)
sin
[
(pl − ns)(θ − plωl−nsωc

pl−ns
t)
]

− 1
2 f 1

Λmax−Λmin
2 (pl + ns)

(
ωc − pl ωl+nsωc

pl+ns

)
sin
[
(pl + ns)(θ − pl ωl+nsωc

pl+ns
t)
]}

+
h lg
2µ0

2Bg(θ) f
1
Λ(phωc − phωh)cos(phθ − phωht) = 0

(37)

Formula (37) must be equal to zero as jerk in the steady state is zero. This means constant terms
in Formula (37) must be zero which leads to the following constraints:

ωc = ωl (38)

ωc =
plωl − nsωc

pl − ns
(39)

ωc =
plωl + nsωc

pl + ns
(40)

ωc = ωh (41)

Deduct Formula (39) and Formula (41) from Formula (38) and Formula (40) to get Formula (42)
and Formula (43) as shown below:

0 = ωl −
plωl − nsωc

pl − ns
(42)

0 = ωh −
plωl + nsωc

pl + ns
(43)

Include Formula (42) to Formula (43) to get Formula (44) as shown below:

ωh =
(p2

l + n2
s )ωl − 2n2

s ωc

p2
l − n2

s
(44)

Formula (44) indicates the speed ratio of the variable speed magnetic coupling. Results of
combining Formula (44) and Formula (1) can be seen in Figure 7 which are close to what Atallah et al.
got [3]. With the inner rotor magnet pole pair (ph = 4), outer rotor magnet pole pair (pl = 19), and core
rotor iron rod count (ns = 23) set in this study, the maximum speed ratio (Ĝr) given shown by Atallah
et al. may reach 1: 10.5 while its counterpart (Ĝr) found here may hit 1:11.6. The magnetostatic field
analysis and magnetic distribution of this magnetic coupling has been undertaken via Ansoft Maxwell
(Ansoft Corporation, Pittsburgh, PA, USA). The main result of computer simulation is concluded by
the new figure, Figure 8. In fact, the ferrite sticks embedded in the core rotor play the role of the paths
of the magnetic flux to go through. The theoretical saturation level of magnetic flux density of the
ferrite sticks is about 1.4 T. However, the actual maximum value in the frame structure of the core rotor
is only about 0.5 T. That is, no any magnetic saturation at any device can be found in our work.
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The outer rotor employs a timing belt for transmission and is connected to either one of the two 
input sources. It is noted that the overlapped depth, shown in Figure 10, is referred to the 
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outer rotor (Khaki). The overlapped depth is named as OD hereafter in this paper. 
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4. Discussion

Entity and cross section view of a variable speed magnetic coupling is shown in Figures 9 and 10
where Input #2 is a fixed speed input and Input #1 a variable one. The inner rotor is composed of
an aluminum shaft, yoke, and sintered NdFeB (N35), the frame structure of core rotor is made of
aluminum while the ferrite sticks are embedded in the slots of the frame along the circular direction.
The outer rotor employs a timing belt for transmission and is connected to either one of the two input
sources. It is noted that the overlapped depth, shown in Figure 10, is referred to the overlapped length
between the magnets (pink) at the inner rotor (indio) and the magnets (pink) at outer rotor (Khaki).
The overlapped depth is named as OD hereafter in this paper.

4.1. Verifying the Speed Ratio of the Variable Speed Magnetic Coupling

To verify whether this variable speed magnetic coupling can accomplish the following speed ratio:

(i) maximum speed ratio (Ĝr) at 10.5;
(ii) speed of inner rotor is 4.75 times that of the outer one when the outer one serves as power input

and the inner one as the output end and the core rotor is fixed;
(iii) speed of inner rotor is 5.75 times that of the core when the core serves as power input and the

inner one is the output end and the outer rotor is fixed.
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See Table 3 for the speed of individual rotors with an inner rotor magnet and core iron rotor 
overlap of 20 mm in the experiment setup shown in Figure 11. Figures in row of Mode 1, 2, and 3 are 
the results with different core and inner rotor speeds which conform with the values derived from 
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Table 3. Speed of individual rotors in three different operation modes. 

Operation Mode lω
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Figure 10. Cross section of the variable speed magnetic coupling.

See Table 3 for the speed of individual rotors with an inner rotor magnet and core iron rotor
overlap of 20 mm in the experiment setup shown in Figure 11. Figures in row of Mode 1, 2, and 3 are
the results with different core and inner rotor speeds which conform with the values derived from
Formula (25).

Table 3. Speed of individual rotors in three different operation modes.

Operation Mode
ωl ωc ωh

Gear Ratio
Rotational Speed Rotational Speed Rotational Speed

1 48.83 RPM −48.91 RPM −511.32 RPM 10.5
2 85.94 RPM 0 RPM −409.15 RPM 4.75
3 0 RPM −109.78 RPM −630.24 RPM 5.75
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(1) Outer rotor set to 300 rpm in counterclockwise direction; 
(2) Core rotor set to speed up slowly from 0 to 360 rpm in clockwise direction; 
(3) Outer rotor set to speed up to 420 rpm when the core reaches 360 rpm. 

Relationship between speed and frequency in the steps described above is indicated by the 
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Calculate the individual inner rotor theoretical output speed using the Atallah [16] speed ratio 
equation and the one derived in this study based on the actual outer and core rotor speeds obtained 
by experiment. Figure 12 suggests our experimental figures agree quite closely with those obtained 
by Atallah. However, some errors exist because we derived the speed ratio formula using only the 
first term of the Fourier series. The stall condition (dotted line in Figure 12) suggests a coupling 
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4.2. Speed Ratio Experiment of Variable Speed Magnetic Coupling

Speed ratio experiment of variable speed magnetic coupling are executed in the following steps:

(1) Outer rotor set to 300 rpm in counterclockwise direction;
(2) Core rotor set to speed up slowly from 0 to 360 rpm in clockwise direction;
(3) Outer rotor set to speed up to 420 rpm when the core reaches 360 rpm.

Relationship between speed and frequency in the steps described above is indicated by the solid
line in Figure 12.
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Figure 12. Inner rotor speed at different input speeds (with 20 mm overlap depth).

Calculate the individual inner rotor theoretical output speed using the Atallah [16] speed ratio
equation and the one derived in this study based on the actual outer and core rotor speeds obtained
by experiment. Figure 12 suggests our experimental figures agree quite closely with those obtained
by Atallah. However, some errors exist because we derived the speed ratio formula using only the
first term of the Fourier series. The stall condition (dotted line in Figure 12) suggests a coupling effect
by the magnetic fields of the permanent magnets in the outer and inner rotors when output torque is
weaker than the load.
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4.3. Stall Condition Experiment of Variable Speed Magnetic Coupling

The greater overlapping area between the permanent magnets of inner and outer rotors makes
the coupling effect between rotors as stronger as it can get. The output speed of inner rotor at
different overlap depths with fixed core rotor input frequency and increasing outer rotor frequency
(by experiment steps) given below are shown in Figure 13:

(1) Set core rotor speed to 420 rpm.
(2) Keep core rotor speed constant and increment the outer rotor input frequency until stalling

is encountered.

The solid line in Figure 13 shows the normal output speed of inner rotor, while the dotted line
indicates a stall. Figure 13 suggests stall occurs only when the coupling area between outer and inner
rotor permanent magnet is up and the outer rotor is also spinning fast. On the other hand, the bigger
overlap of the inner rotor will lead to lower output speed as the magnetic moment of inertia in the
air gap goes up due to greater coupling force between the inner and outer rotor permanent magnets.
To be more detailed, the stall torque versus the gear ratio is shown in Figure 14. It can be observed the
stall torque is slightly reduced as the gear ratio is increased. That is, the higher the gear ratio, the less
torque can be transmitted at the high speed rotor, i.e., inner rotor. There are two conclusions from
this experiment:

(1) The variable speed magnetic coupling presented here conforms with the initial target of maximum
speed ratio (Ĝr) at 10.5 and its speed modulating function has been proved correct.

(2) A smaller overlap of the inner rotor reduces the magnetic moment of inertia in the air gap but
increases the likelihood of stalling.
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5. Conclusions

The variable speed magnetic coupling described in this study was designed after careful
calculation of the number of magnet pole pairs needed for the permanent magnets of the inner
and outer rotors and iron rods in the core. The result of the design was a variable speed magnetic
coupling with a maximum speed ratio of 10.5. Calculation of the magnetic energy in the air gap is
based on magnetic flux density derivation of the magnetic moment of the inertia equation which
was used to establish a dynamic formula for individual rotors. The results were used to develop the
speed ratio equation based on the concept of jerk. The experimental results confirmed the theoretical
conclusions and also suggested that a shorter inner rotor overlap may effectively reduce the magnetic
moment of inertia in the air gap at the expense of a greater likelihood of stalling.
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