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Abstract: This study investigates an economic order quantity model of deteriorating items, where
demand is fuzzy in nature and depends on promotional effort with full backorder for a given
time horizon. The learning effect in the fuzzy environment is added in this model. A constant
deterioration rate is assumed. Under these circumstances, a mathematical model is developed to
curtail the total cost over a finite time horizon by determining the replenishment order quantity,
number of replenishments, and the fraction of the replenishment cycle when inventory is positive.
A solution algorithm is developed to find the optimal solutions. The applicability of the proposed
model is illustrated through numerical examples. To get further insights, sensitivity analysis is carried
out for the main parameters in crisp, fuzzy, and fuzzy-learning environments.

Keywords: promotional effort; deterioration items; triangular fuzzy number; learning in fuzziness

1. Introduction

In today’s highly competitive global era, most organizations face challenges to meet customer’s
ever-changing demands and to earn a profit. Use of promotion has been a marketing strategy for years.
Even smaller organizations and retailers have used promotion to increase sales for more revenue and
higher market share. Various promotional strategies such as price discounts, free goods, free credit
period, and after sale services are widely used. The importance of promotional efforts also attracts the
attention of researchers and practitioners. On this note, a first of its kind study was done by Tsao and
Sheen [1] regarding policies on dynamic pricing, promotion, and replenishment under permissible
payment delay with time- and price-dependent demand for deteriorating items. Zhang et al. [2]
developed a finite horizon periodic model for maximizing profit by jointly optimizing pricing,
promotion, and stock replenishment policy, being considered a single item. Grewal et al. [3] studied the
broad advancement in pricing and promotion in retail while putting three key research areas, targeting,
models, and design, before the researchers. Among others, researchers (Maihami and Karimi [4],
Palanivel and Uthayakumar [5], Priyan et al. [6], and Taleizadeh [7]) have undertaken different
interesting studies related to promotional efforts with sensitive demand in the inventory systems.
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Recently, Soni and Suthar [8] studied replenishment policy for non-instantaneous deteriorating items
for price- and promotional effort-dependent stochastic demand. It was found that deterioration is an
important factor in deciding the optimal replenishment policy.

Deterioration is a manifestation that affects inventory systems. Risks, like obsolescence, pilferage,
decay, damage, loss of the marginal value of a commodity, dryness, evaporation, or loss of utility,
affect many items in inventory. In real-life situations, most manufacturing companies face challenges
to protect items such as food items, pharmaceuticals, chemicals, blood, gasoline, radioactive chemicals,
etc., which deteriorate with time. While deciding the economic order quantity, the loss from
deterioration ought to be considered. Ghare and Schrader [9] were first to develop a deteriorating
inventory model. Aggarwal and Jaggi [10] explored an EOQ model to obtain the optimal order
quantity of deteriorating items under a permissible delay in payments. After that, Chang et al. [11],
Sana and Chaudhiri [12], and Ouyang et al. [13] studied different forms of deteriorating items for
different inventory models with time-dependent demand. Roy [14] and Sana [15] analyzed an EOQ
model with various types of deteriorating items for time-dependent demand. Dye and Hsiesh [16]
developed an EOQ inventory model by considering deteriorating items with price-dependent demand
under inflation. Sarkar and Sarkar [17] analyzed an inventory model for time-varying deteriorating
rate with stock-dependent demand by considering shortage and partial backlogging. Soni and
Patel [18] discussed an inventory model for joint pricing and replenishment policies by considering
time taking deteriorating products. Zhang et al. [19] pioneered an EOQ model for deteriorating
items by considering a joint pricing and replenishment cycle decision-making problem. Geetha and
Udayakumar [20] presented an EOQ inventory model by allowing shortages and partial backlogging
for deteriorating items with price- and advertisement-dependent demand.

Apart from the promotional effort and deteriorating items, uncertainty in demand arises due to
many unknown factors in the inventory model. Hence, to capture the uncertainty in a fuzzy sense,
the articles authored by Park [21], Yao et al. [22], Yao and Chang [23], Chang et al. [24], Kar et al. [25],
Rong et al. [26], Shah and Soni [27], Dutta et al. [28], Mondal et al. [29], Dey et al. [30], Sarkar and
Mahapatra [31], and Soni et al. [32] are worth mentioning. Afterward, De and Sana [33] developed an
optimal inventory policy for imprecise selling price and promotional effort where the decision variables
are fuzzy random variables. De et al. [34] developed an EOQ model using the intuitionist fuzzy
programming technique by considering selling price and promotional effort with full backlogging. De
and Sana [35] also investigated the classical backorder EOQ model by considering the promotional
effort and fuzzy unit selling price.

In terms of alleviating the impact of fuzziness, it might be said that uncertainty in demand can
be reduced through a process of learning by a proper study of previous data concerning uncertainty
in sales, promotion activities, and so forth. Therefore, this involves a gradual order of demand
instead of a huge risk-taking venture, as is established in the elaborate works of Glock et al. [36]
and Kazemi et al. [37]. Firstly, Wright [38] pioneered an innovative work on the effect of learning
in a repetitive job. In this paper, the concept of the learning effect is applied to a continuous
review inventory model with backorders under a fuzzy environment. There is a dearth of literature
on this phenomenon, but a few researchers have worked on it recently. Jaber and Salameh [39]
discussed the finite production inventory model under learning concepts and allowed shortages
and backorders. Chen et al. [40] initiated an imperfect production system considering shortages for
the unit production time using the learning effect. They minimized the total cost of the production
system through optimal determination of the production quantity and the shortage level of each cycle.
Kumar and Goswami [41] discussed the learning effect of the unit production time under a fuzzy
random environment for an imperfect production process by taking shortages and partial backlogging.
Kazemi et al. [37] investigated a fuzzy EOQ inventory model with backorders by considering the
learning effect over the planning horizon. Recently, Shekarian et al. [42] considered an economic order
quantity (EOQ) model for imperfect quality items based on two different holding costs and learning
considerations, which was analyzed in a fuzzy sense.
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In this study, the ideas proposed by Glock et al. [36] are explored further to examine the impact
of learning to reduce fuzziness within a finite time horizon and also to study how this reduction in
fuzziness affects the operating strategy to reduce the total cost of a continuous review inventory system
in a fuzzy environment. The concept of learning is applied for the fuzzy demand of deteriorating
items in the presence of promotional effort. Numerical analysis is performed for a crisp and fuzzy
model of a continuous review EOQ model (with or without learning) and the impact of learning on
the optimal policy analyzed. Results obtained in this study have a profound impact on the decision
maker’s operation in an uncertain demand scenario and the total inventory cost gradually improving
with the passage of time based on learning.

The rest of the paper is structured as follows: Section 2 presents a continuous review inventory
system for the fuzzy demand of deteriorating items with promotional effort and learning in fuzziness
for a finite time horizon. In Section 3, numerical analysis is done with an example, and sensitivity
analysis is performed on a number of periods for the crisp, fuzzy, and fuzzy-learning scenario. Finally,
conclusions and a possible extension of the model are presented in Section 4.

2. Mathematical Model

2.1. A Continuous Review Crisp Inventory Model (Model I)

Notation:
Parameters:

• H length of finite planning horizon
• T time interval between replenishment
• Q order quantity
• D annual demand
• A ordering cost ($/per order)
• h holding cost ($/per unit)
• c deteriorating cost ($/per unit)
• s shortage cost ($/per unit)
• φ constant deterioration rate
• ρ promotional effort
• k promotional cost for unit promotional effort
• Ti total elapsed time; this also includes the ith replenishment cycle where T0 = 0, T1 = T, Tn = H
• ti time at which the level of the inventory system for the ith replenishment cycle drops to zero
• I(t) inventory level at time t
• Im maximum inventory level
• Ib maximum shortage quantity
• TC(n, F) total cost over the finite time horizon H

Decision variables:

• n number of replenishments (integer) during the planing horizon H = nT
• F fraction of period with a positive inventory in a replenishment cycle

Assumptions:

1. The planning horizon and order size are finite.
2. The customer demand rate is given by the following expression D(ρ) = d0 + d1ρ, where d0 is

the initial demand rate, independent of the sales team’s effort ρ, and d1 is a scale parameter
of demand change, which varies with sales effort. Here, d0 is a triangular fuzzy number d̃0 =

(d0 − ∆l , d0, d0 + ∆r) where 0 < ∆l < d0 and 0 < ∆r < d0, and ∆l and ∆r are determined by the
decision maker.

3. Shortage is allowed and is fully backlogged. The inventory model starts with shortage and ends
with zero inventory.
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4. The replenishment rate is infinite, while the lead time is negligible.
5. The deterioration rate is constant, and a fraction φ (0 ≤ φ ≤ 1) of inventory deteriorates per unit

of time. No repair or replacement of deteriorated units is considered during the replenishment
cycle.

6. The promotional effort cost (PEC) is given by kρm, where k > 0 and m are constants, and values
are selected from the best fit of the promotional cost function (Soni and Suthar [8]).

7. Wright’s [38] explanation of the learning effect is considered to characterize the learning
phenomenon, while placing orders over the finite horizon.

The length of the finite planning horizon H = nT, where n represents an integer decision variable
for the number of replenishments that has to be made during H, while T represents the time between
two replenishments, which is shown in Figure 1 (see Taleizadeh and Nematollahi [43]).

Figure 1. Inventory control system.

The inventory level I(t) gradually decreases due to demand fulfillment and deterioration. Based
on the aforementioned description, the inventory level in the system during the time interval (0 ≤ t ≤
T) can be expressed through the differential equation as described below:

dI(t)
dt

+ φI(t) =− D, 0 ≤ t ≤ t1, (1)

dI(t)
dt

=− D, t1 ≤ t ≤ T (2)

Solving the above Equation (1) using the boundary condition I(t1) = 0, the following solution
can be found:

I(t) =
D
φ

[
eφ(t1−t) − 1

]
, 0 ≤ t ≤ t1 (3)

Again, solving the second differential equation, one gets:

I(t) = −D(t− t1), t1 ≤ t ≤ T (4)

The maximum level of inventory and backorder can be found at t = 0 and t = T from Equations (3)
and (4), respectively, and presented as follows:

Im = I(0) =
D
φ

[
eφt1 − 1

]
Ib = I(T) =− D(T − t1) = −D

(
H
n
− FH

n

) (5)

Therefore, the cost components of total inventory cost with n replenishments are computed
as follows:
(a) The ordering cost is A for each replenishment.
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Therefore, the total ordering cost (OC) is (n + 1)× A.
(b) Using Equation (3), the inventory holding cost during the first cycle is given by:

HC = h
∫ t1

0
I(t)dt =

hD
φ2

[
eφt1 − φt1 − 1

]
Hence, the total holding cost (HC) for the time horizon H would be:

HC =
nhD
φ2

[
e

φFH
n − φFH

n
− 1
]

(c) The deterioration cost (DC) during the first cycle is given by
cD
φ

[
eφt1 − φt1 − 1

]
.

Hence, the total deterioration cost for the time horizon H is given by

DC =
ncD

φ

[
e

φFH
n − φFH

n − 1
]
.

(d) Using Equation (4), the shortage cost (SC) during the first cycle is given by s
∫ T

t1
D(t− t1)dt =

sD
2

[
H
n
− FH

n

]2
.

Hence, the total shortage cost (SC) for the time horizon H would be SC =
nsD

2

[
H
n
− FH

n

]2
.

(e) The promotional effort cost (PEC) is given by kρm. Therefore, the total promotional effort cost (PEC)
for the time horizon H is given by nkρm

Hence, the total cost of the system over planning period H would be:

TC(n, F) = Ordering cost + Holding cost + Deterioration cost+ Shortage cost+ Promotional cost

=OC + HC + DC + SC + PEC

= (n + 1)A +
nhD
φ2

[
e

φFH
n − φFH

n
− 1

]
+

ncD
φ

[
e

φFH
n − φFH

n
− 1

]
+

nsD
2

[
H
n
− FH

n

]2

+ nkρm

= (n + 1)A +
nD(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

nsD
2

[
H
n
− FH

n

]2

+ nkρm

(6)

The value of the deterioration rate is usually very small for real-world problems. The following
expression can be used from a truncated Taylor series expansion by ignoring the higher order term
(see Taleizadeh and Nematollahi [43]):

eφx = 1 + φx +
1
2
(φx)2 (7)

Using the approximate value as per Equation (7), the total cost of the crisp model as per Equation
(6) is rewritten as:

TC(n, F) = (n + 1)A +
nD(h + φc)

φ2

[
1
2

(
φFH

n

)2
]
+

nsDH2

2n2

[
1− F

]2

+ nkρm (8)
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Considering first and second order partial derivatives of TC(n, F) with respect to n and F in
Equation (8), one gets:

∂TC(n, F)
∂n

= A− D(h + φc)H2F2

2n2 − sDH2

2n2

[
1− F

]2

+ kρm (9)

∂TC(n, F)
∂F

=
D(h + φc)H2F

n
− sDH2

n
(1− F) (10)

∂2TC(n, F)
∂n2 =

DH2

n3

[
(h + φc)F2 + s (1− F)2

]
(11)

∂2TC(n, F)
∂F2 =

DH2

n

[
(h + φc) + s

]
(12)

∂2TC(n, F)
∂n∂F

=
DH2

n2

[
− (h + φc)F + s (1− F)

]
(13)

Therefore, from the classical EOQ model, we obtain the number of replenishments and the fraction

of replenishment cycles by setting
∂TC(n, F)

∂F
= 0 and

∂TC(n, F)
∂n

= 0, and one gets:

FC =
s

s + (h + φc)
(14)

nC = Integer value of H ×

√√√√√√ sD
(

h + φc
)

2
(

A + kρm
)[

s + (h + φc)
] (15)

Hence, the optimal replenishment number (n∗C) and fractional period of positive inventory (F∗C)
can be determined using the minimum total cost condition as follows:

TC(n∗C, F∗C) =min{TC(nC, FC), TC((nC + 1), FC)} (16)

A sufficient condition for TC(n, F) to be minimum is to prove the convexity with the Hessian
matrix as positive definite at (n, F). It can be shown as follows:

∂2TC(n, F)
∂n2

∂2TC(n, F)
∂F2 −

[
∂2TC(n, F)

∂n∂F

]2

=
sD2H4(h + φc)

n4 > 0

∂2TC(n, F)
∂n2 =

DH2

n3

[
(h + φc)F2 + s (1− F)2

]
> 0

Therefore, the objective function TC(n, F) is a convex function of (n, F). Using the optimal
replenishment number (n∗C) and the fraction of the period with positive inventory (F∗C), one can obtain
the optimal order quantity (Q∗C) as:

Q∗C = I(0) + Ib =
D
φ

[
e

φF∗C H
n∗C − 1

]
+ D

[
H
n∗C
−

F∗C H
n∗C

]
(17)

2.2. A Fuzzy Continuous Review Inventory Model with an Imprecise Demand Rate (Model II)

In this section, the demand rate is assumed to follow D(ρ) = d0 + d1ρ where d0 is considered as a
fuzzy variable, so that real scenarios can be represented in a more suitable manner with its flexibility.
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d0 is treated as a triangular fuzzy number (TFN), then the cost function in (8) also becomes TFN. Thus,
the problem can be stated as:

Minimize T̃C(n, F)

Subject to 0 ≤ F ≤ 1

n ≥ 1, and an integer

where T̃C(n, F) =
(
TC1(n, F), TC2(n, F), TC3(n, F)

)
; here, TCi(n, F) (i = 1, 2, 3) are real-valued

functions satisfying the condition TC1(n, F) ≤ TC2(n, F) ≤ TC3(n, F).
Using the function principle (see Chen et al. [44]), the expressions for TCi(n, F), i = 1, 2, 3, are

as follows:

TC1(n, F) =(n + 1)A +
n(D− ∆l)(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

ns(D− ∆l)

2

[
H
n
− FH

n

]2
+ nkρm

TC2(n, F) =(n + 1)A +
nD(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

nsD
2

[
H
n
− FH

n

]2
+ nkρm

TC3(n, F) =(n + 1)A +
n(D + ∆r)(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

ns(D + ∆r)

2

[
H
n
− FH

n

]2
+ nkρm

Applying the centroid formula, the estimation of the total variable cost over the planning horizon
H in the fuzzy case is given by:

M(T̃C(n, F)) =
TC1(n, F) + TC2(n, F) + TC3(n, F)

3

= (n + 1)A +
nD(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

nsD
2

[
H
n
− FH

n

]2
+ nkρm

+
n(h + φc)(∆r − ∆l)

3φ2

[
e

φFH
n − φFH

n
− 1

]
+

ns(∆r − ∆l)

6

[
H
n
− FH

n

]2

= TC(n, F) +
n(h + φc)(∆r − ∆l)

3φ2

[
e

φFH
n − φFH

n
− 1

]
+

ns(∆r − ∆l)

6

[
H
n
− FH

n

]2

(18)

Therefore, the total relevant cost over the finite horizon H for the fuzzy model would be as per
Equation (18), which can be rewritten using Equation (7) as:

M(T̃C(n, F)) = TC(n, F) + GC(n, F) (19)

where

GC(n, F) =
H2(∆r − ∆l)

6n

[
(h + φc)F2 + s (1− F)2

]
(20)



Inventions 2019, 4, 36 8 of 16

Again, considering the first and second order partial derivatives of GC(n, F) with respect to n
and F in Equation (20), one gets:

∂GC(n, F)
∂n

= −H2(∆r − ∆l)

6n2

[
(h + φc)F2 + s (1− F)2

]
(21)

∂GC(n, F)
∂F

=
H2(∆r − ∆l)

3n

[
(h + φc)F− s (1− F)

]
(22)

∂2GC(n, F)
∂n2 =

H2(∆r − ∆l)

3n3

[
(h + φc)F2 + s (1− F)2

]
(23)

∂2GC(n, F)
∂F2 =

H2(∆r − ∆l)

3n

[
(h + φc) + s

]
(24)

∂2GC(n, F)
∂n∂F

= −H2(∆r − ∆l)

3n2

[
(h + φc)F− s (1− F)

]
(25)

Therefore, the optimal replenishment number (n∗f ) and fraction of the cycle with positive

inventory (F∗f ) in the fuzzy scenario can be obtained from the equations
∂M(T̃C(n, F))

∂F
= 0 and

∂M(T̃C(n, F))
∂n

= 0, which implies:

Ff =
s

s + (h + φc)
(26)

n f = Integer value of H×

√√√√√√ s
[
3D + (∆r − ∆l)

](
h + φc

)
6
(

A + kρm
)[

s + (h + φc)
] (27)

Hence, the optimal replenishment number (n∗f ) and fraction of the period with positive inventory (F∗f )
can be determined from the minimum total cost condition as follows:

TC(n∗f , F∗f ) =min{TC(n f , Ff ), TC((n f + 1), Ff )} (28)

Theorem 1. The addition of two convex functions having the same interval would generate a convex function.
If one of them is strictly convex, then the sum is also strictly convex.

It was already proven that TC(n, f ) is a convex function of (n, F). Now, for the sufficient condition
for n and F to obtain the convexity of GC(n, F), its Hessian matrix must be positive definite at (n, F),
and that requires:

∂2GC(n, F)
∂n2

∂2GC(n, F)
∂F2 −

[
∂2GC(n, F)

∂n∂F

]2

=
sH4(h + φc)(∆r − ∆l)

2

9n4 > 0

∂2GC(n, F)
∂n2 =

H2(∆r − ∆l)

3n3

[
(h + φc)F2 + s (1− F)2

]
> 0

Hence, the function GC(n, F) is a convex function of (n, F). Therefore, from the above proposition, it
can be verified that M(T̃C(n, F)) is a convex function of (n, F) under the fuzzy sense, as well.
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Similar to the crisp model, using the optimal replenishment number (n∗f ) and fraction of period
with positive inventory (F∗f ), the optimal order quantity (Q∗f ) for the fuzzy model can be derived as:

Q∗f =

[
e

φF∗f H

n∗f − 1
φ

+
H
n∗f
−

F∗f H

n∗f

][
D +

∆r − ∆l
3

]
(29)

2.3. Fuzzy Learning in a Continuous Review Inventory Model (Model III)

In this section, the fuzzy model developed in the previous section is extended to incorporate
the effect of learning. In real-life situations, decision makers collect information about the customer
demand through various modes of interaction before processing an order. Thus, it may be concluded
that the estimation of the learning effect is depended on the number of orders instead of the quantity
of the order. Learning in fuzziness is assumed to follow the mathematical relationship formulated
by Wright [38] and also used by many researcher’s such as Yelle [45] and Jaber [46], which can be
written as:

pi = p1i−l (30)

where pi represents the performance at the time of the ith replenishment, p1 is the performance
at the starting of the planning period, the index i is the number of replenishments, and l is the
learning exponent.

If learning occurs as a function of the number of orders placed and affects the fuzzy parameters
∆l and ∆r subject to the same learning rate, then the value of the fuzzy parameter j, for j = 1 and 2, at
the time of the ith order is given by the expression (Glock et al. [36]):

∆j,i =

∆j,1, for i = 1

∆j,1

(
(i−1)H

n

)−l
, otherwise

(31)

Therefore, the total cost for the ith replenishment cycle with 1 < i ≤ n and n ≥ 2 is given as:

A +
D(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

sD
2

[
H
n
− FH

n

]2
+ kρm

+
(h + φc)

3φ2

[
e

φFH
n − φFH

n
− 1

][(
∆r,1 − ∆l,1

)(
(i− 1)H

n

)−l]

+
s
6

[
H
n
− FH

n

]2[(
∆r,1 − ∆l,1

)(
(i− 1)H

n

)−l]
(32)

Thus, the total cost for n replenishments amounts to:

M f L(T̃C(n, F)) = (n + 1)A +
nD(h + φc)

φ2

[
e

φFH
n − φFH

n
− 1

]
+

nsD
2

[
H
n
− FH

n

]2
+ nkρm

+

[
(h + φc)

3φ2

(
e

φFH
n − φFH

n
− 1
)
+

s
6

(H
n
− FH

n

)2
](

∆r,1 − ∆l,1

)

×
(

1 +
n

∑
i=2

(
(i− 1)H

n

)−l)
(33)
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To continue, using Equation (7), the total relevant cost for the fuzzy-learning model, Equation (33), can
be rewritten as:

M f L(T̃C(n, F)) = (n + 1)A +
nD(h + φc)

φ2

[
1
2

(
φFH

n

)2
]
+

sDH2

2n

[
1− F

]2

+ nkρm

+

[
(h + φc)

3φ2
1
2

(
φFH

n

)2
+

sH2

6n2

(
1− F

)2](
∆r,1 − ∆l,1

)

×
(

1 +
n

∑
i=2

(
(i− 1)H

n

)−l)

= TC(n, F) +
H2

6n2

[(
h + φc

)
F2 + s

(
1− F

)2
](

∆r,1 − ∆l,1

)

×
(

1 +
n

∑
i=2

(
(i− 1)H

n

)−l)

(34)

The convex property of M f L(T̃C(n, F)) is difficult to establish analytically due to the complex
expression in Equation (34). In such scenarios, numerical approaches are generally adopted. Therefore,
we also ensured the convex nature of the objective function through a numerical process. It can be
observed in Figure 2 that total cost functions for all the three models were convex in nature. We can
observe that at (n f L) = 15, the total cost for the fuzzy-learning model was $7136, and the total cost
decreased with the increase in (n f L). At (n f L) = 22, the minimum cost for the fuzzy-learning model
($6412.73) was observed. Again, the total cost increased with the increase in (n f L). Therefore, the
cost function was found to be convex, and the developed algorithm would converge at the optimum
number of replenishments. Hence, the following algorithm would ensure obtaining the optimal
number of replenishments (n∗f L and the fraction of the period with positive inventory F∗f L) for the
fuzzy-learning model.

Algorithm.

Step 1 Input all the parameters.
Step 2 Choose an initial trial solution of (n∗f L, F∗f L), say (n, F) = (n∗f , F∗f ), and compute M f L(T̃C(n, F))

and M f L(T̃C(n− 1, F)).
Step 3 If M f L(T̃C(n, F)) ≥ M f L(T̃C(n − 1, F)), then compute M f L(T̃C(n − 2, F)), M f L(T̃C(n −

3, F)),..., until the following inequality is satisfied M f L(T̃C(u)) < M f L(T̃CTC(u − 1)) or the
number of replenishments becomes one. Accordingly, optimal values are set, i.e., (n∗f L, F∗f L) = u,
or n∗f L = 1, and stop.

Step 4 If M f L(T̃C(n, F)) < M f L(T̃C(n − 1, F)), then compute M f L(T̃C(n + 1, F)), M f L(T̃C(n +

2, F)),..., until the following inequality is satisfied M f L(T̃C(u)) < M f L(T̃C(u + 1)). Set
(n∗f L, F∗f L) = u, and stop.

Once the optimal number of replenishments (n∗f L) and fraction of period of positive inventory
(F∗f L) are evaluated, the optimal order quantity for the fuzzy-learning model can be derived as:

Q∗f L =

[
e

φF∗f LH

n∗f L − 1
φ

+
H

n∗f L
−

F∗f L H

n∗f L

][
D +

(∆r,1 − ∆l,1)

3

((
n∗f L − 1

)
F∗f LH

n∗f L

)−l] (35)
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3. Numerical Analysis

In this section, the validity of the above models is examined with a continuous review inventory
system. The annual customer demand rate is assumed to follow a linear function. With suitable units,
the parameters for the three models are as follows: A = 80, H = 12, h = 0.4, d0 = 1000, d1 = 20,
k = 10, m = 2, ρ = 2.5, φ = 0.15, c = 6, s = 3, ∆l = 75, ∆r = 150, and l = 0.5. The optimal solution for
the number of replenishments (n) and the fraction of the period with positive inventory (F) for crisp,
fuzzy, and fuzzy-learning models are presented with the corresponding optimal order quantity and
total cost in Table 1. The closed-form analytical solution approach and algorithm presented in Section
2.3 are applied to find these values.

Table 1. Optimal solution of the crisp, fuzzy, and fuzzy-learning models.

Model n F Q Total Cost

Crisp 22 0.698 584.35 6373.67
Fuzzy 22 0.698 598.26 6447.88

Fuzzy Learning 22 0.698 589.27 6412.73

Based on the results presented in Table 1, it is observed that total cost and order quantity were
lesser for the fuzzy-learning model in comparison with the fuzzy model. This signifies the importance
of learning in decision making. It can also been observed in Figure 2 that the total cost was more
sensitive to the lower number of replenishments than the higher number of replenishments. The
difference of the total cost between the models reduced as the number of replenishments increased.
However, the order quantity continuously reduced (see Figure 3) as the number of replenishments
increased, but the rate of reduction decreased as number of replenishments increased.
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Figure 2. Total cost versus the number of replenishments for the three models.
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Figure 3. Order quantity versus the number of replenishments for the three models.

To handle inaccuracy in customer demand estimation, it is beneficial to place a greater
number of orders with a lesser order size in the initial period in spite of the high ordering cost,
so that an adequate level of learning can be achieved in terms of process information, customer
preference, organizational behavior, etc. Therefore, managers who work in erratic and unpredictable
environments must take into account the impact of learning while selecting an optimal inventory policy.

Sensitivity analysis:
The sensitivity analysis was carried out on all the key parameters such as ordering cost (A), unit

holding cost (h), deterioration rate (φ), promotional effort (ρ), amount of impreciseness (∆), and the
learning factor (l) to get further insights. Ordering cost (A) was found to be a significant factor not
only for the optimal number of replenishments (n), but also for the total cost (TC) and optimal order
quantity (Q) (see Table 2). Low ordering cost (A) led to a greater number of replenishments (n) and
a lesser order quantity (Q), which resulted in a significant reduction of total cost (TC). The number
of replenishment (n) was more sensitive to the lower value of ordering cost (A) than a higher value,
whereas the fraction of the period of positive inventory (F) remained unchanged.

Table 2. Effect of ordering cost (A) on the crisp, fuzzy, and fuzzy learning models.

Crisp Fuzzy Fuzzy Learning

A n∗
C F∗

C Q∗
C TC(n, F) n∗

f F∗
f Q∗

f M(T̃C(n, F)) n∗
f L F∗

f L Q∗
f L M f L(T̃C(n, F))

40 26 0.698 492.91 5372.19 26 0.698 504.65 5434.98 26 0.698 497.05 5405.32
50 25 0.698 512.98 5637.64 25 0.698 525.20 5702.95 25 0.698 517.29 5672.07
60 24 0.698 534.75 5892.20 24 0.698 547.48 5960.23 24 0.698 539.25 5928.05
70 23 0.698 558.45 6137.07 23 0.698 571.75 6208.05 23 0.698 563.15 6174.45
80 22 0.698 584.35 6373.67 22 0.698 598.26 6447.88 22 0.698 589.27 6412.73
90 22 0.698 584.35 6603.67 22 0.698 598.26 6677.88 22 0.698 589.27 6642.73
100 21 0.698 612.77 6823.71 21 0.698 627.36 6901.45 21 0.698 617.94 6864.61
110 20 0.698 644.09 7039.23 20 0.698 659.43 7120.86 20 0.698 649.53 7082.15
120 20 0.698 644.09 7249.23 20 0.698 659.43 7330.86 20 0.698 649.53 7292.15

Low unit holding cost (h) led to a lesser number of replenishments (n) and thus more order
quantity (Q) (see Table 3). As a result, it also increased the value of the fraction of the period with
positive inventory (F). Similarly, a low deterioration rate (φ) led to a lesser number of replenishments
(n) and total cost (TC), but a higher value of the fraction of the period with positive inventory (F)
and order quantity (Q) (see Table 4). Interestingly, order quantity (Q) was found to be reduced step
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wise with the increase in (h). It may be noted that the order quantity (Q) for the fuzzy model was
more than the crisp and fuzzy-learning models, except for a few values such as (h) = 0.25, 0.60. This is
because, these values of the number of replenishments (n) for the fuzzy model were greater than the
other two models (see Table 3).

Table 3. Effect of holding cost (h) on the crisp, fuzzy, and fuzzy-learning models.

Crisp Fuzzy Fuzzy Learning

h n∗
C F∗

C Q∗
C TC(n, F) n∗

f F∗
f Q∗

f M(T̃C(n, F)) n∗
f L F∗

f L Q∗
f L M f L(T̃C(n, F))

0.20 21 0.732 614.06 6015.09 21 0.732 628.68 6084.08 21 0.732 619.12 6051.38
0.25 21 0.723 613.72 6110.66 22 0.723 599.15 6181.08 21 0.723 618.80 6148.14
0.30 22 0.714 584.92 6202.05 22 0.714 598.84 6272.18 22 0.714 589.79 6238.96
0.35 22 0.706 584.63 6288.89 22 0.706 598.55 6361.08 22 0.706 589.52 6326.89
0.40 22 0.698 584.35 6373.67 22 0.698 598.26 6447.88 22 0.698 589.27 6412.73
0.45 23 0.690 558.21 6456.26 23 0.690 571.50 6529.12 23 0.690 562.93 6494.63
0.50 23 0.682 557.97 6533.61 23 0.682 571.26 6608.32 23 0.682 562.72 6572.95
0.55 23 0.674 557.74 6609.20 23 0.674 571.02 6685.70 23 0.674 562.52 6649.48
0.60 23 0.667 557.52 6683.07 24 0.667 546.61 6760.44 23 0.667 562.32 6724.28

Table 4. Effect of deterioration rate (φ) on the crisp, fuzzy, and fuzzy-learning models.

Crisp Fuzzy Fuzzy Learning

φ n∗
C F∗

C Q∗
C TC(n, F) n∗

f F∗
f Q∗

f M(T̃C(n, F)) n∗
f L F∗

f L Q∗
f L M f L(T̃C(n, F))

0.03 16 0.838 793.76 4668.66 16 0.838 812.66 4723.34 16 0.838 799.92 4697.39
0.06 18 0.798 709.01 5213.60 18 0.798 725.89 5274.24 18 0.798 714.62 5245.46
0.09 20 0.761 640.00 5664.01 20 0.761 655.24 5728.42 20 0.761 645.17 5697.88
0.12 21 0.728 611.09 6044.45 21 0.728 625.64 6114.35 21 0.728 616.13 6081.23
0.15 22 0.698 584.35 6373.67 22 0.698 598.26 6447.88 22 0.698 589.27 6412.73
0.18 23 0.670 559.61 6661.57 23 0.670 572.93 6739.13 23 0.670 564.41 6702.41
0.21 24 0.644 536.69 6915.98 24 0.644 549.46 6996.13 24 0.644 541.38 6958.21
0.24 25 0.620 515.42 7143.16 25 0.620 527.70 7225.28 25 0.620 520.02 7186.46
0.27 26 0.598 495.67 7348.14 26 0.598 507.47 7431.71 26 0.598 500.17 7392.23

In the same way, it can be observed based on Table 5 that the increase in promotional effort
(ρ) reduced the number of replenishments (n), remained insensitive to the fraction of the period of
positive inventory (F), and increased the order quantity (Q) and total cost (TC). As impreciseness in
demand (∆) increased, order quantity (Q) and total cost (TC) increased considerably for the fuzzy
model, but the corresponding changes in the fuzzy-learning model were not significant (see Table
6). This reemphasizes the importance of learning while dealing with a fuzzy environment. It was
also observed that the change in impreciseness in demand (∆) remained insensitive to the number
of replenishments (n) and the fraction of the period of positive inventory (F). The learning factor
(l) was also an important factor, as can be seen in Table 7, and with the increase in the value of the
learning factor (l), order quantity (Q) and total cost (TC) decreased, but no change was observed in
the number of replenishments (n) and the fraction of the period of positive inventory (F).

Table 5. Effect of promotional effort (ρ) on the crisp, fuzzy, and fuzzy-learning models.

Crisp Fuzzy Fuzzy Learning

ρ n∗
C F∗

C Q∗
C TC(n, F) n∗

f F∗
f Q∗

f M(T̃C(n, F)) n∗
f L F∗

f L Q∗
f L M f L(T̃C(n, F))

0.50 29 0.698 424.34 4769.98 29 0.698 434.84 4826.27 29 0.698 428.03 4799.73
1.00 28 0.698 444.09 5003.96 28 0.698 454.97 5062.27 28 0.698 447.92 5034.76
1.50 26 0.698 483.52 5361.39 26 0.698 495.26 5424.18 26 0.698 487.66 5394.52
2.00 24 0.698 529.66 5824.66 24 0.698 542.39 5892.68 24 0.698 534.15 5860.50
2.50 22 0.698 584.35 6373.67 22 0.698 598.26 6447.88 22 0.698 589.27 6412.73
3.00 20 0.698 650.23 6992.37 21 0.698 633.20 7070.49 21 0.698 623.77 7033.64
3.50 19 0.698 691.72 7662.53 19 0.698 707.88 7748.45 19 0.698 697.46 7707.69
4.00 17 0.698 782.49 8381.23 18 0.698 755.02 8473.53 18 0.698 744.01 8430.50
4.50 16 0.698 840.48 9131.54 16 0.698 859.76 9233.58 16 0.698 847.36 9185.15
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Table 6. Percentage of ∆ changes on the fuzzy and fuzzy-learning models.

Fuzzy Fuzzy Learning

∆(%) n∗
f F∗

f Q∗
f M(T̃C(n, F)) n∗

f L F∗
f L Q∗

f L M f L(T̃C(n, F))

−40 22 0.698 592.70 6418.20 22 0.698 587.30 6397.11
−30 22 0.698 594.09 6425.62 22 0.698 587.80 6401.01
−20 22 0.698 595.48 6433.04 22 0.698 588.29 6404.92
−10 22 0.698 596.87 6440.46 22 0.698 588.78 6408.83

0 22 0.698 598.26 6447.88 22 0.698 589.27 6412.73
10 22 0.698 599.66 6455.30 22 0.698 589.77 6416.64
20 22 0.698 601.05 6462.72 22 0.698 590.26 6420.54
30 22 0.698 602.44 6470.14 22 0.698 590.75 6424.45
40 22 0.698 603.83 6477.56 22 0.698 591.24 6428.35

Table 7. Effect of l on the fuzzy-learning model.

l n∗
f L F∗

f L Q∗
f L M f L(T̃C(n, F))

0.1 22 0.698 595.65 6437.88
0.2 22 0.698 593.53 6429.66
0.3 22 0.698 591.81 6422.89
0.4 22 0.698 590.41 6417.32
0.5 22 0.698 589.27 6412.73
0.6 22 0.698 588.35 6408.96
0.7 22 0.698 587.60 6405.86
0.8 22 0.698 586.99 6403.33

4. Conclusions

In this study, a continuous inventory control model was developed for the determination of
the optimal number of replenishments, the fraction of the period with positive inventory, and their
corresponding optimal order quantity for deteriorating items under promotional effort. The concept
of the learning effect in a fuzzy environment was also addressed in this model. A promotional
effort-dependent linear demand function was considered over the finite horizon. The model
also considered shortage, and it was fully backlogged. Three separate models: crisp, fuzzy, and
fuzzy-learning, were developed considering the above-mentioned features. A closed-form analytical
solution was developed for the crisp and fuzzy model, whereas an algorithm was formulated for the
fuzzy-learning model owing to the complex mathematical expression. Based on the optimal number of
replenishments and the fraction of the period with positive inventory, the optimal order quantity was
evaluated. Further, the proposed models were explained through a numerical example to emphasize
the importance of the models. Sensitivity analysis was also carried out on key parameters to get further
insights.

Developing a model to analyze the impact of preservation technology for deteriorating items and
finding the optimal operational setup could be an interesting future work.
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