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Abstract: Unpredicted deviations in time series data are called change points. These unexpected
changes indicate transitions between states. Change point detection is a valuable technique in
modeling to estimate unanticipated property changes underlying time series data. It can be applied in
different areas like climate change detection, human activity analysis, medical condition monitoring
and speech and image analyses. Supervised and unsupervised techniques are equally used to
identify changes in time series. Even though change point detection algorithms have improved
considerably in recent years, several undefended challenges exist. Previous work on change point
detection was limited to specific areas; therefore, more studies are required to investigate appropriate
change point detection techniques applicable to any data distribution to assess the numerical
productivity of any stochastic process. This research is primarily focused on the formulation of
an innovative methodology for change point detection of diversely distributed stochastic processes
using a probabilistic method with variable data structures. Bayesian inference and a likelihood ratio
test are used to detect a change point at an unknown time (k). The likelihood of k is determined
and used in the likelihood ratio test. Parameter change must be evaluated by critically analyzing
the parameters expectations before and after a change point. Real-time data of particulate matter
concentrations at different locations were used for numerical verification, due to diverse features,
that is, environment, population densities and transportation vehicle densities. Therefore, this study
provides an understanding of how well this recommended model could perform for different data
structures.

Keywords: probabilistic method; bayesian statistical modeling; change point detection; likelihood
ratio test; time series analysis

1. Introduction

Unexpected deviations in time series data are called change points. These sudden changes
indicate transitions between states. Change point detection is worthwhile in modeling, to estimate
unexpected property changes underlying time series data. It is applicable in different areas like
climate change detection, human activity analysis, medical condition monitoring and speech and
image analyses. Supervised and unsupervised techniques are equally used to identify changes in time
series. Even though change point detection algorithms have improved considerably in recent years,
several undefended challenges exist [1].

Several techniques have been recommended for the identification of undocumented change points
in climate data sequences [2]. A change-point analysis technique has been described and its potential
applications have been highlighted through a number of examples [3]. The kernel-based change point
(KCP) detection procedure can only be used to detect a particular type of change; therefore, based on
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the Gaussian KCP method, a new nonparametric approach was proposed for predicting correlation
changes, called KCP-corr. KCP-corr performs better than the Cusum technique, which specifically aims
to identify correlation changes [4]. A generalized likelihood ratio test (GLRT) was used for detecting
changes in the mean of a one dimensional Gaussian process [5]. A new method was recommended for
change point detection in a Brownian motion, with a time-dependent diffusion coefficient in fractional
Brownian motion [6]. A production inventory model with probabilistic deterioration was developed in
two-echelon supply chain management [7]. A two stage change point detection technique in machine
monitoring was suggested [8]. Bayesian Approach was used for change point detection of polluted
days [9].

A statistical change point algorithm was proposed in which direct density ratio estimation
technique was used for deviation measurement of nonparametric deviation estimation among time
series samples through relative Pearson divergence variable data structures [10]. An innovative
statistical approach for online change point detection was recommended in which estimation
method could also be updated online [11]. An economic production quantity model with stochastic
demand was developed for an imperfect production system [12]. For a change point test in a series,
the Karhunen-Loeve expansion of the limit Gaussian processes was recommended [13]. The test for
sudden changes in random fields was presented as a Cramer-von Mises type test and was dependent
on the Hilbert space theory [14]. An integrated inventory model was developed to determine the
optimal lot size and production uptime while considering stochastic machine breakdown and multiple
shipments for a single-buyer and single-vendor [15]. A new methodology was introduced for the
identification of structural changes in linear quantile regression models because the conventional
mean regression technique couldn’t be appropriate for the identification of such structural changes
at tails [16]. Supply chain model with stochastic lead time, trade-credit financing and transportation
discounts was developed in order to make a coordination mechanism between transportation discounts,
trade-credit financing, number of shipments, quality improvement of products and reduced setup
cost in such a way that the total cost of the whole system can be reduced, where the supplier offers
trade-credit-period to the buyer [17]. The fuzzy classification maximum likelihood change point
(FCML-CP) algorithm was suggested for detection of simultaneous multiple change points in the
mean and variance of a process and it reduces analysis time [18]. For sequential data series, a Bayesian
change point algorithm was presented but it had unreliable restrictions for a number of change points
and their location [19].

The Bayesian change point detection (BCPD) technique being suggested in this research paper can
overcome challenges in identifying the location and number of change points due to the probabilistic
concept. This methodology would precisely be based on posterior distributions and likelihood ratio
test to deduce if a change point has occurred. It can also update itself linearly as new data points
are observed. Posterior distribution monitoring is the best way to identify the presence of a new
change point in observed data points. Simulation studies illustrate that this algorithm is good for
rapid detection of existing change points and it also has a low rate of false detection, [19]. Previous
work on change point detection was limited. Therefore, more studies are required to investigate
appropriate change point detection techniques that are applicable to any data distribution to assess the
numerical productivity of any stochastic process. This research is primarily focused on formulation of
an innovative methodology for change point detection of diversely distributed stochastic processes
by a probabilistic method with variable data structures. The parameter expectations before and after
change point must be critically analyzed so that the parameter change can be evaluated. Bayesian
inference and the likelihood ratio test are used to detect a change point at an unknown time (k).

Real-time data of particulate matter concentrations at different sites were used to validate the
proposed approach. Investigation of particulate matter (PM) pollution status was conducted to evaluate
the long-term trends in Seoul which shows a decreasing trend during the study period (2004–2013) [20].
Long-term behavior of particulate matters at urban roadside and background locations in Seoul, Korea
were analyzed and the mean PM values exhibit a slight fall over the decade [21]. Probabilistic method
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was used to comprehensively analyze the change point (k), parameters before the change point
(µ1, µ2, ..., µn) and parameters after the change point (η1, η2, ..., ηn). Hence, simulation models were
built on diverse data structures of different areas to consider different features, that is, environment,
population densities and transportation vehicle densities. Therefore, this study delivers a vision about
how well this suggested model could perform in different areas. The paper is arranged along these
lines: Section 2 discusses a literature review regarding Bayesian change point detection, while Section 3
refers to problem definitions, explaining assumptions and notations and demonstrates the formulation
of mathematical models. Sections 4 and 5 depict real world application of the model and results to
validate practical application of the proposed models. Section 6 discusses the results for each area;
finally, Section 7 presents conclusions of this study.

2. Related Literature

A basic literature review for Bayesian change point methodology was performed. An approach
was proposed to detect changes in a non-homogeneous Poisson process and it was used to detect
if a change in event rate has occurred, the time of the change and the event rate before and after
the change [22]. A novel Bayesian approach was suggested to detect abnormal regions in multiple
time series. Model was built and revealed that posterior distribution was used for independent
sampling to conclude Bayesian inference. This approach was evaluated for simulated CNVs (copy
number variations) and real data to confirm that this methodology is more accurate as compared to
other methods [23]. An economic manufacturing quantity model with probabilistic deterioration was
developed for a production system [24]. A comparison of Expectation Maximization (EM) method and
Bayesian method for change point detection of multivariate data was done. The Bayesian technique
involves fewer computational work, while EM reveals better performance for unsuitable priors and
minor changes [25]. Min–max distribution free continuous-review model was presented with a
service level constraint and variable lead time [26]. The Bayesian change point detection model was
recommended to identify the flooding attacks in VoIP systems in which the Session Initiation Protocol
(SIP) is used as a signaling mechanism [27].

To acquire accurate and reliable change detection maps for land cover monitoring, a new post
classification methodology with iterative slow feature analysis (ISFA) along with Bayesian soft fusion
was proposed. This methodology included three steps, first one to define the probability class of images,
then a continuous change probability map and last posterior probabilities for the class arrangements
of coupled pixels [28]. An economic production quantity model was developed with random defective
rate, rework process and backorders for a single stage production system [29]. A Bayesian change
point detection methodology was developed to analyze biomarker time series data in women for
earlier diagnosis of ovarian cancer [30]. A method for approximation of digital planar curves with line
segments and circular arcs using genetic algorithms was proposed [31]. The Generalized Extreme Value
(GEV) fused lasso penalty function was used to detect change points for annual maximum precipitation
(AMP) in South Korea. A comparison between GEV fused lasso and Bayesian change point analysis was
conducted, which depicted that GEV fused lasso method should be used if water resource structures
are hydrologically designed [32]. Mathematical models were developed for work-in-process-based
inventory by incorporating the effect of random defects rate on lot size and expected total cost function
[33]. An innovative Bayesian approach was suggested to detect change points in extreme precipitation
data, while the model was based on a generalized Pareto distribution. Four different situations were
used for analysis, first with no change, second with a shape change, third with a scale change and
fourth with both shape and scale change [34]. See Table 1 for comparison of studies of different authors
and for the difference in previous works and this work.
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Table 1. Previous studies on this topic.

Document Change-Point Detection BCPD Time Series(Bayesian Change-Point Detection)

Cabrieto et al. (2018) [4] Kernel change point detection, - -
correlation changes - -

Keshavarz et al. (2018) [5] Generalized likelihood ratio test, - -
One-dimensional Gaussian process - -

Kucharczyk et al. (2018) [6] Likelihood ratio test, - -
fractional Brownian motion - -

Lu et al. (2017) [8] Change-point detection, machine monitoring, - Time Series
Anomaly measure (AR model), Martingale test -

On-line change detection, - -
Hilgert et al. (2016) [11] autoregressive dynamic models, - -

CUSUM-like scheme - -

Górecki et al. (2017) [13] Change point detection, heteroscedastic, - Time series
Karhunen-Loeve expansions -

Bucchia and Wendler (2017) [14] Change point detection, bootstrap, -
Hilbert space valued random fields, - Time series

(Cramer–von Mises type test) -

Zhou et al. (2015) [16] Sequential change point detection, - -
linear quantile regression models - -

Lu and Chang (2016) [18] Detecting change points, - -
mean/variance shifts, FCML-CP algorithm - -

Liu et al. (2013) [10] Change point detection, - Time series
relative density ratio estimation -

Ruggieri and Antonellis (2016) [19] - Bayesian sequential change point detection -

Keshavarz and Huang (2014) [25] - Bayesian and Expectation Maximization methods, -
- multivariate change point detection -

Kurt et al. (2018) [27] - Bayesian change point model, -
- SIP-based DDoS attacks detection -

Wu et al. (2017) [28] - Post classification change detection, -
- iterative slow feature analysis, -
- Bayesian soft fusion -

Gupta and Baker (2017) [22] - Spatial event rates, change point, -
- Bayesian statistics, induced seismicity -

Marino et al. (2017) [30] - Change point, multiple biomarkers, -
- ovarian cancer -

Jeon et al. (2016) [32] - Abrupt change point detection, -
- annual maximum precipitation, fused lasso -

Bardwell and Fearnhead (2017) [23] - Bayesian Detection, Abnormal Segments Time series

Chen et al. (2017) [34] - Bayesian change point analysis, -
- extreme daily precipitation -

Bayesian approach and
This study Change point detection likelihood ratio test for Time series

change point detection

3. Methodological Part

3.1. Problem Definition

This research is primarily focused on formulation of a unique methodology for change point
detection of diverse data structures following any kind of distribution at any unknown time (k) at any
area across the globe. The existing procedures for change point detection are either very complicated
or no applicable to stochastic processes and random time series. That’s why, a more precise, well
defined and easily applicable approach for change point detection of stochastic processes and random
time series has been proposed. Second, analysis of these changes need to be conducted, whether or
not these change points are favorable. For this, a comparison of distribution parameters before and
after a change point has to be performed for evaluation of subjected change. Third, an alteration in
parameters expectations must be measured to define new policies for further improvements in the
current states. For anticipated goals, the Probabilistic method will be used to determine posterior
probabilities of data and the change point in that Bayesian model will be identified through likelihood
ratio test. This suggested model will be numerically validated by using real-time data of particulate
matter concentrations and particulate matter hazards in different areas of Seoul, South Korea, observed
from January 2004 to December 2013. The change point (k) for particulate matter (PM2.5 and PM10)
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daily concentrations, the parameters before the change point (µ1, µ2, ..., µn) and the parameters after the
change point (η1, η2, ..., ηn) are comprehensively analyzed. The central idea for using different regions
is their considerably different features, that is, environment, population densities and transportation
vehicle densities. Hence, this study can also be the basis for implementation of the recommended model
in different areas. Later, this probabilistic method is verified by the CUSUM approach. The results of
the CUSUM approach are compared with the probabilistic method.

1. The probabilistic method is based on probability distributions, which can be applicable to data
distribution. In this case, first define the data distributions and then apply proposed method to
attain the results. This methodology is better to apply for random data structures and time series.

2. The CUSUM approach is directly applicable to the raw data, which is good for deterministic data
structures.

3.2. Notations

The list of notations to represent the random variables and parameters are as follows.

Indices

i sequence data points in time series, where i ∈ 1, 2, ..., n
h replication number (multiple simulations are performed to get the converged value),

h ∈ 1, 2, ..., m
j position in the replication or chain, (Vhj be the jth observation from the hth replication),

j ∈ 1, 2, ..., n

Random variables

Y random process or stochastic process
y variable (Y) at any given point

yi variable (Y) at point i where i ∈ 1, 2, ..., n

Parameters

k change point in a random process
µ1 first parameter before change point k associated with the probability distribution

function of random variable Y
η1 first parameter after change point k associated with the probability distribution function

of random variable Y
µ2 second parameter before change point k associated with the probability distribution

function of random variable Y
η2 second parameter after change point k associated with the probability distribution

function of random variable Y
µn nth parameter before change point k associated with the probability distribution function

of random variable Y
ηn nth parameter after change point k associated with the probability distribution function

of random variable Y
µ mean before change point k for Normal distribution of random variable Y
η mean after change point k for Normal distribution of random variable Y

σ2 variance before change point k for Normal distribution of random variable Y
φ2 variance after change point k for Normal distribution of random variable Y
θ0 mean for Normal prior distribution p(µ)

τ0
2 variance for Normal prior distribution p(µ)

θk mean for Normal posterior distribution p(µ|σ2, y1, y2, y3, ....., yk)
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τk
2 variance for Normal posterior distribution p(µ|σ2, y1, y2, y3, ....., yk)

λ0 mean for Normal prior distribution p(η)
ω0

2 variance for Normal prior distribution p(η)
λn mean for Normal posterior distribution p(η|φ2, yk+1, yk+2, yk+3, ....., yn)

ωn
2 variance for Normal posterior distribution p(η|φ2, yk+1, yk+2, yk+3, ....., yn)

ȳ average of data values

Variables

p(µ) prior Normal distribution for mean before change point k
p(σ2) prior Normal distribution for variance before change point k
p(η) prior Normal distribution for mean after change point k

p(φ2) prior Normal distribution for variance after change point k
p(µ, σ2) joint prior probability before change point k
p(η, φ2) joint prior probability after change point k
p(µ|yi) posterior Normal distribution for mean before change point k
p(η|yi) posterior Normal distribution for mean after change point k

p(µ, σ2|yi) joint posterior probability before change point k
p(η, φ2|yi) joint posterior probability after change point k
p(yi|µ, σ2) likelihood or sampling model given (µ, σ2)

p(yi|η, φ2) likelihood or sampling model given (η, φ2)

k0 prior sample size for mean parameters (µ, η)

kk (prior sample size k0 + k)
kn (prior sample size k0 + (n− k))
ν0 prior sample size for variance parameters (σ2, φ2)

σ2
0 prior sample variance

νk (prior sample size ν0 + k)
νn (prior sample size ν0 + (n− k))
V mean of the chain or replications (average daily pollutant concentrations)

Vhj jth observation from the hth replication
Vh mean of hth replication
V mean of m replications
B between sequence variance representing the variance of replications with the mean

of m replications
S2

h variance for all replications
W within sequence variance, the mean variance for m replications

Var(V) overall estimate of the variance of V in the target distribution
Var(V)µ first parameter overall variance before change point k
Var(V)η first parameter overall variance after change point k

Var(V)σ2 second parameter overall variance before change point k
Var(V)φ2 second parameter overall variance after change point k

√
R estimated potential scale reduction for convergence√

Rµ first parameter convergence before change point k√
Rη first parameter convergence after change point k√

Rσ2 second parameter convergence before change point k√
Rφ2 second parameter convergence after change point k
√

Rk change point (k) convergence
Si cumulative sum
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3.3. Assumptions

The following assumptions were used for the proposed model:

1. Y represents the random data at given time t and this random data series is distributed at state
space y ∈ 1, 2, ..., n that can be any random value.

2. Y(0) = 0 means that no event occurred at time t = 0, while time series random data are observed
on intervals of equal length.

3. The random data structure follows a specific probability distribution function, in any interval of
length (t), resulting in a random variable with parameters (µ1, µ2, ..., µn).

3.4. Formulation of Change Point Detection Model

The probability distribution function of a random variable Y with the parameters µ1, µ2, ..., µn at
any specific point y is given as follows

Y ∼ P(µ1, µ2, ..., µn) = f (y; µ1, µ2, ..., µn) = p(Y = y|µ1, µ2, ..., µn) for y ∈ 1, 2, ..., n

After defining the probability distribution function of random process Y. Now, divide the process
in two segments; first segment defines the process before change point and second segment defines
the process after change point. Let the change point in the random process Y be denoted by k and
(µ1, µ2, ..., µn) be the random variable parameters before change point k, while (η1, η2, ..., ηn) are the
random variable parameters after change point k.

yi ∼ P(µ1, µ2, ..., µn) = f (y; µ1, µ2, ..., µn) = p(Y = yi|µ1, µ2, ..., µn) for i = 1, 2, ...., k

yi ∼ P(η1, η2, ..., ηn) = f (y; η1, η2, ..., ηn) = p(Y = yi|η1, η2, ..., ηn) for i = k + 1, k + 2, ..., n

The joint probability function is the product of a marginal probability function. If random variable
Y = yi with parameters (µ1, µ2, ..., µn) is modeled, then the joint probability function of the sample
data will be as below:

p(Y = yi|µ1, µ2, ..., µn) =
k

∏
i=1

p(yi|µ1, µ2, ..., µn) for i ∈ 1, 2, ..., k

A class of prior densities is conjugate for the likelihood/sampling model p(yi|µ1) if the posterior
probability distribution is in the same class. Therefore, prior distribution p(µ1) and posterior
distribution p(µ1|yi) will follow the same conjugate prior distribution as the likelihood/sampling
model p(yi|µ1). However, the likelihood p(yi|µ1) follows a random distribution based on data.
The Bayes theorem can be used to determine the posterior probability p(µ1|yi) of individual
parameter µ1.

Posterior probability ∝ Prior probability× Likelihood

p(µ1|yi) ∝ p(µ1)p(yi|µ1)

Bayesian inference for multiple unknown parameters is not conceptually different from the
one-parameter case. For any joint prior distribution p(µ1, µ2, ..., µn), posterior inference proceeds using
Bayes’ rule:

p(µ1, µ2, ..., µn|yi) =
p(yi|µ1, µ2, ..., µn)p(µ1, µ2, ..., µn)

p(yi)
for i = 1, 2, ...., k

p(η1, η2, ..., ηn|yi) =
p(yi|η1, η2, ..., ηn)p(η1, η2, ..., ηn)

p(yi)
for i = k + 1, k + 2, ..., n
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The inference for this multi-parameter model can be broken down into multiple one-parameter
problems. First, make an inference for µ1 when remaining parameters (µ2, ..., µn) are known and use a
conjugate prior distribution for µ1. For any (conditional) prior probability p(µ1|µ2, ..., µn), the posterior
distribution will satisfy

p(µ1|y1, y2, y3, ....., yk, µ2, ..., µn) ∝ p(µ1|µ2, ..., µn)p(y1, y2, y3, ...., yk|µ1, µ2, ..., µn)

p(µ1|y1, y2, y3, ...., yk, µ2, ..., µn) =
p(µ1|µ2, ..., µn)p(y1, y2, y3, ...., yk|µ1, µ2, ..., µn)

p(y1, y2, y3, ...., yk|µ2, ..., µn)

The posterior parameters combine the prior parameters with terms from the data:

Posterior information = Prior information + Data information

Hence, the prior distribution and sampling model are as follows:

p(y1, y2, y3, ...., yk|µ1, µ2, ..., µn) ∼ P(µ1, µ2, ..., µn) for i = 1, 2, ...., k

p(yk+1, yk+2, yk+3, ...., yn|η1, η2, ..., ηn) ∼ P(η1, η2, ..., ηn) for i = k + 1, k + 2, ..., n

µ1, µ2, ..., µn ∼ Conjugate prior distribution
(
Prior hyperparameters

)
for i = 1, 2, ...., k

η1, η2, ..., ηn ∼ Conjugate prior distribution
(
Prior hyperparameters

)
for i = k + 1, k + 2, ..., n

Thus, the posterior inference for first parameter µ1 and η1 can be given by

p(µ1|y1, y2, y3, ...., yk, µ2, ..., µn) ∼ Conjugate posterior distribution
(
Posterior hyperparameters

)
for i = 1, 2, ...., k

p(η1|yk+1, yk+2, yk+3, ...., yn, η2, ..., ηn) ∼ Conjugate posterior distribution
(
Posterior hyperparameters

)
for i = k + 1, k + 2, ..., n

Just as the prior distribution for µ1 and µ2, ..., µn can be decomposed as p(µ1, µ2, ..., µn) =

p(µ1|µ2, ..., µn)p(µ2, ..., µn), the posterior distribution can be similarly decomposed:

p(µ1, µ2, ..., µn|y1, y2, y3, ...., yk) = p(µ1|y1, y2, y3, ...., yk, µ2, ..., µn)p(µ2, ..., µn|y1, y2, y3, ...., yk)

Similarly, p(η1, η2, ..., ηn|yk+1, yk+2, yk+3, ...., yn) after a change point can be given by

p(η1, η2, ..., ηn|yk+1, yk+2, yk+3, ...., yn) = p(η1|yk+1, yk+2, yk+3, ...., yn, η2, ..., ηn)

p(η2, ..., ηn|yk+1, yk+2, yk+3, ...., yn)

The conditional distribution of µ1 given µ2, ..., µn and the data (y1, y2, y3, ...., yn) was obtained
in previous sections. The posterior distribution of all other parameters µ2, ..., µn can be found by
estimating an integration over the unknown value of µ1:

p(µ2|y1, ....., yk) ∝ p(µ2)p(y1, ....., yk|µ2) = p(µ2)
∫

p(y1, ....., yk|µ1, µ2)p(µ1|µ2)dµ1(
µ2|y1, y2, y3, ...., yk

)
∼ Conjugate posterior distribution

(
Posterior hyperparameters

)
Similarly, p(η2|yk+1, yk+2, yk+3, ...., yn) after a change point can be given by(
η2|yk+1, yk+2, yk+3, ...., yn

)
∼ Conjugate posterior distribution

(
Posterior hyperparameters

)
The Bayesian inference for parameters µ3, ..., µn and η3, ..., ηn in the distribution can be determined

in the similar way as used for µ2 and η2.
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The likelihood function for change point detection can be determined as:

L
(

Y; Change point, Parameter1, Parameter2, ..., Parametern

)
=

[
exp

(
Change point

(
Expectation after change point - Expectation before change point

))
(

Expectation before change point
Expectation after change point

)
∑

Change point
i=1 yi

]
(1)

L
(

Y; k, (µ1, µ2, ..., µn), (η1, η2, ..., ηn)

)

=

[
exp
(

k
(

E
[
Y = yi|η1, η2, ..., ηn

]
− E

[
Y = yi|µ1, µ2, ..., µn

]))(E
[
Y = yi|µ1, µ2, ..., µn

]
E
[
Y = yi|η1, η2, ..., ηn

] )∑k
i=1 yi

]
(2)

The change point for random process Y is being detected by the likelihood ratio test (LRT).
The LRT begins with a comparison of the likelihood scores of the two models; one is null model and
other is alternative model. The test is based on the likelihood ratio, which states how many times more
likely the data are under one model than the other. This likelihood ratio compared to a critical value
used to decide whether to reject the null model.

f (Change point|Y, parameters before change point, parameters after change point
)

=
L
(
Y; Change point, parameters before change point, parameters after change point

)
∑n

j=1 L
(
Y; j, Change point, parameters before change point, parameters after change point

) (3)

The likelihood ratio test for change point k given the random variable Y and parameters before
and after change points is as follows:

f
(

k|Y, (µ1, µ2, ..., µn), (η1, η2, ..., ηn)
)
=

L
(
Y; k, (µ1, µ2, ..., µn), (η1, η2, ..., ηn)

)
∑n

j=1 L
(
Y; j, (µ1, µ2, ..., µn), (η1, η2, ..., ηn)

)
3.4.1. Multiple Change Points Detection

After detecting first change point k, now the data can be broken into two distinct segments,
one each side of the change point, 1 to k and k + 1 to n. Apply the same above mentioned procedure
on each segment separately to detect multiple change points in the random process Y.

3.4.2. Convergence of the Parameters

Only one simulation run cannot signify the real features of the resulting model. That’s why,
the Gelman-Rubin Convergence diagnostic is being used for the estimation of steady-state parameters
by running multiple number sequences of the chain. Lack of convergence can be detected by comparing
multiple sequences but cannot be detected by looking at a single sequence. Therefore, multiple
sequences of the chain are being run to estimate the actual characteristics of the target distribution,
Gelman and Rubin [35–37]. m replications of the simulation (m ≥ 10) are performed, each of length
n = 1000. If the target distribution is unimodal, then Cowles and Carlin recommend performance of at
least 10 chains [38]. The mean pollutant concentration is a parameter of interest and is denoted by V.

Scalar summary V = Mean of the chain (average daily pollutant concentrations)

Let Vhj be the jth observation from the hth replication

Vhj = single observation for mean pollutant concentration per day
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where, replication number = h ∈ 1, 2, ..., m, observation number in a replication = j ∈ 1, 2, ..., n.
Mean of hth replication

Vh =
1
n

n

∑
j=1

Vhj

Mean of m replications

V =
1
m

m

∑
h=1

Vh

The between sequence variance represents the variance of a mean of m replications and is
calculated as follows:

B =
n

m− 1

m

∑
i=1

(Vh −V)2

Variance for all replications is calculated to determine the within-sequence variance

S2
i =

1
n− 1

n

∑
j=1

(Vhj −V)2

The within-sequence variance is the mean variance for k replications determined as given below:

W =
1
m

m

∑
i=1

S2
h

Finally, the within-sequence variance and between-sequence variance are combined to get an
overall estimate of the variance of V in the target distribution

Var(V) =
n− 1

n
W +

1
n

B

Convergence is identified by calculating

√
R =

√
Var(V)

W

This factor
√

R (estimated potential scale reduction) is the proportions among the upper and
lower bounds on the standard deviation of V that are used to compute the factor and Var(V) could be
reduced through a larger number of iterations. Further iterations of the chain must be performed if the
potential scale reduction is high. Run the replications for all scalar summaries until R is lower than
1.1 or 1.2.

3.5. Flowchart Algorithm

The flowchart for change point (k) detection, for any random process Y, is given as follows:
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Start or initalize model

Define time series or stochastic process Y and its probability distribution function
Y ∼ P(µ1, µ2, ..., µn) = f (y; µ1, µ2, ..., µn) = p(Y = y|µ1, µ2, ..., µn) f or y ∈ 1, 2, ..., n

Define change point k and divide the process in two segments

Define the parameters before (µ1, µ2, ..., µn) and after (η1, η2, ..., ηn) change point k

Develop conjugate model for each parametr of
probability distrtibution function f (y; µ1, µ2, ..., µn)

Estimate prior hyperparameters and posterior
hyperparameters for all parameters (µ1, µ2, ..., µn)

Apply Bayes’ theorem to determine the posterior
probabilities of all parameters and hyperparameters

p(µ1, µ2, ..., µn|yi) =
p(yi|µ1, µ2, ..., µn)p(µ1, µ2, ..., µn)

p(yi)
f or i = 1, 2, ...., k

p(η1, η2, ..., ηn|yi) =
p(yi|η1, η2, ..., ηn)p(η1, η2, ..., ηn)

p(yi)
f or i = k + 1, k + 2, ..., n

Determine the likelihood function for change point detection

Apply likelihood ratio test to detect the numerical value of change point k

Estimate the converged values of all parameters by
running multiple replications of the simuulation

End

3.6. Comparison Method for Change Point Detection

A change point analysis was performed using a combination of CUSUM (cumulative sum control
chart) and bootstrapping for comparative analysis.

3.6.1. The CUSUM Technique

The CUSUM is a sequential analysis technique typically used for monitoring change detection.
CUSUM charts are constructed by calculating and plotting a cumulative sum based on the data.
The cumulative sums are calculated as follows.
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1. First calculate the average.

ȳ =

(
y1 + y2 + y3+, ..., yn

n

)
2. Start the cumulative sum at zero by setting S0 = 0,
3. Calculate the other cumulative sums by adding the difference between the current value and the

average to the previous sum, that is,

Si = Si−1 +
(
yi − ȳ

)
The cumulative sum is not the sum of the values but it is the cumulative sum of the differences

in the values and averages. As the average is being deducted from each value, the final cumulative
sum must be zero. Some practice is required to interpret a CUSUM chart. If, during a certain period
of time, the overall average is less than the values. Then, the sum will steadily increase because the
values being added to cumulative sum will be positive. An upward trend in the CUSUM chart shows
a certain period of time, when overall average is less than the values. Similarly, a downward trend in
the chart shows that overall average is above than the values. A rapid change in the trend of CUSUM
specifies a shift or change in the average. Certain periods, when the CUSUM chart follows straight
line, it indicates no change in average.

3.6.2. Bootstrap Analysis

Bootstrap analysis can be performed to determine confidence level for apparent change.
The magnitude of change Sdi f f must be estimated before performing bootstrap analysis.

Sdi f f = Smax − Smin

Smax = max
i=0,1,2,...,

Si

Smin = min
i=0,1,2,...,

Si

Once the estimator of the magnitude of the change has been selected, the bootstrap analysis can
be performed. A single bootstrap is performed as follows.

1. Generate a bootstrap sample of n units, denoted y0
1, y0

2, y0
3, ...y0

n by randomly reordering the
original n values. This is called sampling without replacement.

2. Based on the bootstrap sample, calculate the bootstrap CUSUM, denoted S0
0, S0

1, S0
2, ...S0

n.
3. Calculate the maximum, minimum and difference of the bootstrap CUSUM, denoted

S0
max, S0

min and S0
di f f .

4. Determine whether the bootstrap difference S0
di f f is less than the original difference

Sdi f f respectively.

The idea behind bootstrapping is that the bootstrap samples represent random reordering of the
data that mimic the behavior of the CUSUM if no change has occurred. By performing a large number
of bootstrap samples, the variance in Sdi f f if no change took place can be estimated. The value can
be compared with the Sdi f f value calculated from the data in its original order to determine if this
value is consistent with the expectation under zero change, if bootstrap CUSUM charts tend to stay
closer to zero than the CUSUM of the data in its original order, a change likely occurred. A bootstrap
analysis consists of performing a large number of bootstraps and counting the number of bootstraps
for which S0

di f f is less than Sdi f f . Let N be the number of bootstrap samples performed and let X be
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the number of bootstraps for which S0
di f f < Sdi f f . Then, the confidence level that a change occurred

as a percentage is calculated as follows:

Confidence Level = 100
X
N

percentage

This is the solid proof to indicate that change does have occurred. Based on all possible reordering
of the data, one would prefer to estimate the distribution of S0

di f f instead of bootstrapping, which is not
possible usually. That’s why, for better estimation, number of bootstrap samples need to be increased.
Bootstrapping is a distribution free methodology with only one supposition of an independent error
structure. Change-point analysis and control charting, both are dependent on the mean-shift model.
Let y1, y2, y3, ..., yn represent the data in time order. The mean-shift model can be written as

yi = µi + εi

where, µi is the average at time i. Generally µi = µi−1 except for a small number of values of i called the
change-points. εi is the random error associated with the ith value and is assumed to be independent
with a mean of zero. Once a change has been detected, an estimate of the time at which the change
occurred can be made. One such estimator is the CUSUM estimator. Let m be such that

| Sm |= max
i=0,1,2,...,

| Si |

Here, Sm is the point furthest from zero in the CUSUM chart. The point m estimates the last point
before the change occurred. The point m + 1 estimates the first point after the change.

3.6.3. Mean and Variance Estimation

Once a change has been detected, the data can be broken into two segments, one on each side
of the change-point, 1 to m and m + 1 to n. Then, the two segments can be analyzed by determining
their parameters.

Mean = ȳ =

(
∑ yi

n

)

Variance = σ2 =

(
∑(yi −Mean)2

n

)
4. Computational Experiment

Section 4.1 described the numerical verification of the formulated mathematical model to
authenticate the validity of model. Real-time data of particulate matter daily concentrations for
four different sites of Seoul, South Korea were utilized for this investigation as given in Section 4.2.

4.1. Toy Model for Validation with Known Solution

As shown in Figures 1–3, an artificial data set of random data is generated which consists of two
segments with equal length of 50 data points. The samples are drawn from the Poisson distributions
Poisson(5) and Poisson(2.5), respectively. Thus, change point occurs at 50th data point.
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Figure 1. Artificial Data set for rate (Poisson Distribution).

Figure 2. Artificial Data set for Poisson Distribution before change point.

Figure 3. Artificial Data set for Poisson Distribution after change point.

In Table 2, the results for this artificial data set obtained through Probabilistic method have been
described. As shown in Figures 4–11, the following results were acquired by applying the method
explained in Section 3.4 to this artificial data set.
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Table 2. Change point (k) for artificial data set.

Change Point (k) for Artificial Data Set

(Rate = θ) (Rate = λ) K
before change after change change point

5.0 2.5 50

Figure 4. Artificial Data set time series for Poisson Distribution.

Figure 5. Change point (k).
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Figure 6. Change point (k) frequency histogram.

Figure 7. Change point (k) density histogram.
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Figure 8. Rate before change point.

Figure 9. Rate before change point density histogram.
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Figure 10. Rate after change point.

Figure 11. Rate after change point density histogram.

4.2. Particulate Matter (PM2.5 and PM10) Change Points for Four Different Sites

Particulate matter (PM2.5 and PM10) concentrations are considered as Normally distributed.
A random variable Y is understood as Normally distributed with mean µ and variance σ2 > 0 if the
probability distribution function at any given point y in the sample space is given as follows:

Y ∼ Normal(µ, σ2) = f (y; µ, σ2) = (p(Y = y|µ, σ2)) =
1√

2πσ2
e−

(y− µ)2

2σ2 f or y ∈ 0, 1, 2, ..., n
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The distribution is symmetric about mean µ and σ2 represents the variance. The numerical details
for PM2.5 and PM10 concentrations are given in Tables 3 and 4, respectively.

Table 3. PM2.5 Normal distribution.

PM2.5 Normal Distribution

Area (µ) (σ2)
Mean Is the Location Variance Is Scale or Deviation

Guro 0.02675 0.01614

Nowon 0.02652 0.01551

Songpa 0.02638 0.01544

Yongsan 0.02649 0.01621

Table 4. PM10 Normal distribution.

PM10 Normal Distribution

Area (µ) (σ2)
Mean Is the Location Variance Is Scale or Deviation

Guro 0.05340 0.03644

Nowon 0.05036 0.03331

Songpa 0.05193 0.03811

Yongsan 0.05379 0.03958

Here, the results were acquired by applying the method explained in Section 3.4 to the particulate
matter (PM2.5 and PM10) concentrations for four different sites (Guro, Nowon, Songpa and Yongsan)
in Seoul, South Korea. The daily data observed from January 2004 to December 2013 were used to
compute the change point of both pollutants. However, the particulate matter (PM2.5 and PM10)
concentrations are shown in Figures 12–19.

Figure 12. Guro PM2.5 Data.
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Figure 13. Guro PM10 Data.

Figure 14. Nowon PM2.5 Data.

Figure 15. Nowon PM10 Data.
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Figure 16. Songpa PM2.5 Data.

Figure 17. Songpa PM10 Data.

Figure 18. Yongsan PM2.5 Data.

Figure 19. Yongsan PM10 Data.
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A change point for a process with different data structures is identified to know that a change has
occurred, the most likely period in which the change occurred and the parameter behavior before and
after the change point. If particulate matter (PM2.5 and PM10) concentrations are Normally distributed
and the change point for the random process is denoted by k, it is supposed that the data follow a
Normal distribution with mean = µ and variance = σ2 until the k point. After the k point, the data is
Normally distributed with parameters mean (η) and variance (φ2) and can be represented as

yi ∼ Normal(µ, σ2) = f (y; µ, σ2) = p(Y = yi|µ, σ2) for i = 1, 2, ...., k

yi ∼ Normal(η, φ2) = f (y; η, φ2) = p(Y = yi|η, φ2) for i = k + 1, k + 2, ..., n

Moreover, the notation ” ∼ ” means ‘is distributed as.′

If the proposed model is (Y1, Y2, Y3, ..., Yk|µ, σ2) ∼ Normal(µ, σ2), then the joint pdf (probability
density function) is given by

p(y1, y2, y3, ..., yk|µ, σ2) =
k

∏
i=1

p(yi|µ, σ2) =
k

∏
i=1

1√
2πσ2

e−
1
2

(
y−µ

σ

)2

=
(
2πσ2)− k

2 exp

[
1
2 ∑

(
yi − µ

σ

)2]

Expanding the quadratic term in the exponent, it can be seen that p(y1, y2, y3, ....., yk|µ, σ2) depends
on y1, y2, y3, ....., yk through

k

∑
i=1

(
yi − µ

σ

)2

= ∑
1
σ2 yi

2 − 2
µ

σ2 ∑ yi + k
µ2

σ2

It can be shown that (∑ yi
2, ∑ yi) make up a two-dimensional sufficient statistic. Knowing the

values of these quantities is equivalent to knowing the values of ȳ = ∑ yi
k and s2 = (yi−ȳ)2

k−1 and so
(ȳ, s2) are also sufficient statistic.

Inference for this two-parameter model can be broken down into two one-parameter problems.

4.2.1. Bayesian Inference for Mean When Variance Is Known

Firstly, make an inference for µ when σ2 is known and use a conjugate prior distribution for µ.
For any (conditional) prior probability p(µ|σ2), the posterior distribution will satisfy

p(µ|y1, y2, y3, ....., yk, σ2) ∝ p(µ|σ2)× e−
1

2σ2 ∑(yi−µ)2
∝ p(µ|σ2)× ec1(µ−c2)

A class of prior distributions is conjugate for a likelihood or sampling model p(y1, y2, y3.....yk|µ, σ2)

if the resulting posterior distribution is also in the similar class. The above calculations indicate that,
if p(µ|σ2) is to be conjugate, it must include quadratic terms like ec1(µ−c2)

2
. The simplest such class of

probability densities on R is the Normal family of densities, suggesting that if p(µ|σ2) is Normal and
y1, y2, y3.....yk are Normal(µ, σ2), then p(µ|y1, ....., yk, σ2) is also a Normal density.

Hence, the Bayesian model for parameter mean before change point µ can be given by

p(y1, y2, y3, ...., yk|µ, σ2) ∼ Normal(µ, σ2)

µ ∼ Normal(θ0, τ2
0 )

p(µ|σ2, y1, y2, y3, ...., yk) ∼ Normal(θk, τ2
k )

θ0 = mean o f k0 prior observations
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Consider the particular case in which τ2
0 = σ2

k0

p(µ, σ2) = p(µ|σ2)p(σ2) = dnorm
(

µ, θ0, τ0 =
σ√
k0

)
× p(σ2)

The parameters θ0 and k0 can be interpreted as the mean and sample size, respectively, from a set
of prior observations.

Similarly, the Bayesian model for the parameter mean after change point η can be given by

p(yk+1, yk+2, yk+3, ...., yn|η, φ2) ∼ Normal(η, φ2)

η ∼ Normal(λ0, ω2
0)

p(η|φ2, yk+1, yk+2, yk+3, ...., yn) ∼ Normal(λn, ω2
n)

ω2
0 =

φ2

k0

ω2
n =

1
1

ω2
0
+ (n−k)

φ2

λ0 = mean o f prior observations

λn =
k0

k0 + (n− k)
λ0 +

(n− k)
k0 + (n− k)

ȳ

4.2.2. Bayesian Inference for Variance (σ2, φ2)

For σ2, a family of prior distributions is required with support on (0, ∞). One such family of
distributions is the Gamma family; unfortunately, this family is not conjugate for the Normal variance.
However, the Gamma family does turn out to be a conjugate class of densities for 1

σ2 (the precision).
When using such a prior distribution, σ2 has an Inverse-Gamma distribution. For interpret ability later,
instead of using a1 and b1, this prior distribution of σ2 can be parameterized as:

Precision =
1
σ2 ∼ Gamma(a1, b1) ∼ Gamma

(
ν0

2
,

ν0σ2
0

2

)

Variance be f ore change point = σ2 ∼ Inverse− Gamma(a1, b1) ∼ Gamma
(

ν0

2
,

ν0σ2
0

2

)

Variance a f ter change point = φ2 ∼ Inverse− Gamma(a2, b2) ∼ Gamma
(

ν0

2
,

ν0φ2
0

2

)

The prior parameters (σ2
0 , ν0) can be interpreted as the sample variance and sample size of prior

observations, respectively, for posterior inference, the prior distributions and sampling model are
as follows:

1
σ2 ∼ Gamma

(
ν0

2
,

ν0σ2
0

2

)

(µ|σ2) ∼ Normal
(

θ0,
σ2

0
k0

)
(y1, y2, y3, ...., yk|µ, σ2) ∼ Normal(µ, σ2)
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After a change point, the prior distributions and sampling model are

1
φ2 ∼ Gamma

(
ν0

2
,

ν0φ2
0

2

)

(η|φ2) ∼ Normal
(

λ0,
φ2

0
k0

)
(yk+1, yk+2, yk+3, ...., yn|η, φ2) ∼ Normal(η, φ2)

4.2.3. Joint Inference for Mean and Variance

Just as the prior distribution for µ and σ2 can be decomposed as p(µ, σ2) = p(µ|σ2)p(σ2),
the posterior distribution can be similarly decomposed:

p(µ, σ2|y1, y2, y3, ...., yk) = p(µ|σ2, y1, y2, y3, ...., yk)p(σ2|y1, y2, y3, ...., yk)

p(η, φ2|yk+1, yk+2, yk+3, ...., yn) = p(η|φ2, yk+1, yk+2, yk+3, ...., yn)p(φ2|yk+1, yk+2, yk+3, ...., yn)

The conditional distribution of µ given σ2 and the data (y1, y2, y3, ...., yk) has already
been obtained:

p(µ|σ2, y1, y2, y3, ...., yk) ∼ Normal(θk, τ2
k ) ∼ Normal(θk,

σ2

kk
)

where kk = k0 + k and θk =
(

k0
k0+k θ0 +

k
k0+k ȳ

)
=
(

k0θ0+kȳ
kk

)
Therefore, if θ0 is the mean of k0 prior observations, then E(µ|σ2, y1, ....., yk) is the sample mean

of the current and prior observations and Var(µ|σ2, y1, ....., yk) is σ2 divided by the total number of
observations, both prior and current.

p(η|φ2, yk+1, yk+2, yk+3, ...., yn) ∼ Normal(λn, ω2
n) ∼ Normal(λn,

φ2

kn
)

where kn = k0 + (n− k) and λn =
(

k0
k0+(n−k)λ0 +

(n−k)
k0+(n−k) ȳ

)
=
(

k0λ0+(n−k)ȳ
kn

)
The posterior distribution of σ2 can be found by estimating an integration over the unknown

value of µ:

p(σ2|y1, ....., yk) ∝ p(σ2)p(y1, ....., yk|σ2) = p(σ2)
∫

p(y1, ....., yk|µ, σ2)p(µ|σ2)dµ

(
1
σ2 |y1, ....., yk

)
∼ Gamma

(
νk
2

,
νkσ2

k
2

)
where νk = ν0 + k and σ2

k = 1
νk

[
ν0σ2

0 + (k − 1)s2 + k0k
kk
(ȳ − θ0)

2
]

It has been shown that variance

before change point (σ2) and variance after change point (φ2) follow an Inverse-Gamma distribution.
Prior and posterior distributions for variance parameters are given as follows:

σ2 ∼ Inverse− Gamma
(

ν0

2
,

ν0σ2
0

2

)
(

σ2|y1, y2, y3, ...., yk

)
∼ Inverse− Gamma

(
νk
2 , νkσ2

k
2

)
∼ Inverse− Gamma

(
ν0 + k

2
,
(ν0 + k)

2
1

(ν0 + k)

[
ν0σ2

0 + (k− 1)s2 +
k0k
kk

(ȳ− θ0)
2
])

∼ Inverse− Gamma
(

ν0 + k
2

,
1
2

[
ν0σ2

0 + (k− 1)s2 +
k0k

k0 + k
(ȳ− θ0)

2
])

(4)
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Similarly, the variance after change point (φ2) is given as

φ2 ∼ Inverse− Gamma
(

ν0

2
,

ν0φ2
0

2

)
(

φ2|yk+1, yk+2, yk+3, ...., yn

)
∼ Inverse− Gamma

(
νn
2 , νnφ2

n
2

)
∼ Inverse− Gamma

(
ν0 + (n− k)

2
,
(ν0 + (n− k))

2
1

(ν0 + (n− k))[
ν0φ2

0 + ((n− k)− 1)s2 +
k0(n− k)

kn
(ȳ− λ0)

2
])

∼ Inverse− Gamma
(

ν0 + (n− k)
2

,
1
2

[
ν0φ2

0 + ((n− k)− 1)s2 +
k0(n− k)

k0 + (n− k)
(ȳ− λ0)

2
])

(5)

4.2.4. Improper Priors

Since k0 and ν0 are prior sample sizes, the smaller are these parameters, the more objective will be
the estimates. The posterior distribution as k0 and ν0 get smaller and smaller;

θk =
k0θ0 + kȳ

k0 + k

σ2
k =

1
(ν0 + k)

[
ν0σ2

0 + (k− 1)s2 +
k0k
kk

(ȳ− θ0)
2
]

Thus, k0, ν0 → 0
θk → ȳ

and

σ2
k →

[
(k− 1)

k
s2
]
=

[
1
k ∑(yi − ȳ)2

]
Improper priors has led to the following posterior distribution for variance:(

1
σ2 |y1, y2, y3, ...., yk

)
∼ Gamma

(
k
2

,
1
2

[ k

∑
i=1

(yi − ȳ)2
])

(
1

φ2 |yk+1, yk+2, yk+3, ...., yn

)
∼ Gamma

(
n− k

2
,

1
2

[ n

∑
i=k+1

(yi − ȳ)2
])

Similarly, the posterior distribution for mean is given as

(
µ|σ2, y1, y2, y3, ...., yk

)
∼ Normal

(
1
k

k

∑
i=1

yi,
σ2

k

)
(
η|φ2, yk+1, yk+2, yk+3, ...., yn

)
∼ Normal

(
1

n− k

n

∑
i=k+1

yi,
φ2

n− k

)

4.2.5. Likelihood Ratio Test and Likelihood Function

As the expected value of a Normal distribution is the mean. The following likelihood ratio test
needs to be applied for change point detection:

f (k|y, µ, η, σ2, φ2) =
L(Y; k, µ, η)

∑n
j=1 L(Y; j, µ, η)



Inventions 2019, 4, 42 26 of 41

The likelihood function for the expected value of a Normal distribution is determined as

L
(
Y; k, µ, η

)
= exp

(
k
(
η − µ

))(µ

η

)∑k
i=1 yi

For the probabilistic method, MATLAB was used for change point detection of particulate matter
(PM2.5 and PM10) data during the study period 2004–2013 for four different sites (Guro, Nowon,
Songpa and Yongsan) in Seoul, South Korea. Ten replications of each simulation were performed with
1100 observations in each replication. The first 100 observations are discarded as a burn-in period.
Replication of the mean Vi of the remaining 1000 observations was performed for each replication,
as shown in Tables 5 and 6. Mean (V) ofthe replication mean was used to get the converged values
of parameters.
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Table 5. PM2.5 Converged values of parameters (Probabilistic Method)

PM2.5 Converged Values of Parameters (Probabilistic Method)

Guro Nowon

Replication (µ) (η) (σ2) (φ2) K (µ) (η) (σ2) (φ2) K
mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

mean mean mean mean mean mean mean mean mean mean

V1 0.0293 0.0246 3.98× 10−30 1.41× 10−30 1229.02 0.0296 0.0235 1.17× 10−30 5.16× 10−31 1497.30
V2 0.0292 0.0246 4.37× 10−30 1.28× 10−30 1261.72 0.0296 0.0235 1.16× 10−30 5.17× 10−31 1529.49
V3 0.0294 0.0246 4.14× 10−30 1.46× 10−30 1199.08 0.0296 0.0236 1.16× 10−30 5.62× 10−31 1475.20
V4 0.0294 0.0246 4.00× 10−30 1.40× 10−30 1214.48 0.0295 0.0236 1.12× 10−30 5.46× 10−31 1485.39
V5 0.0292 0.0246 4.40× 10−30 1.34× 10−30 1232.26 0.0295 0.0235 1.16× 10−30 5.23× 10−31 1527.50
V6 0.0294 0.0246 3.75× 10−30 1.48× 10−30 1202.37 0.0295 0.0236 1.09× 10−30 5.75× 10−31 1478.39
V7 0.0293 0.0247 3.20× 10−30 1.45× 10−30 1236.93 0.0294 0.0236 1.11× 10−30 5.72× 10−31 1497.28
V8 0.0292 0.0246 4.36× 10−30 1.32× 10−30 1248.80 0.0295 0.0235 1.14× 10−30 4.95× 10−31 1524.84
V9 0.0293 0.0245 4.13× 10−30 1.33× 10−30 1253.42 0.0295 0.0235 1.12× 10−30 5.32× 10−31 1525.16
V10 0.0294 0.0247 4.07× 10−30 1.49× 10−30 1206.30 0.0294 0.0236 1.13× 10−30 5.98× 10−31 1487.82

(V)
Mean of 10 0.0293 0.0246 4.14× 10−30 1.39× 10−30 1228.44 0.0295 0.0235 1.14× 10−30 5.44× 10−31 1502.84
replications

Songpa Yongsan

Replication (µ) (η) (σ2) (φ2) K (µ) (η) (σ2) (φ2) K
mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

mean mean mean mean mean mean mean mean mean mean

V1 0.0280 0.0245 1.01× 10−30 1.89× 10−30 1788.62 0.0302 0.0248 1.12× 10−30 3.26× 10−30 1563.53
V2 0.0281 0.0245 9.82× 10−31 1.71× 10−30 1753.39 0.0302 0.0248 1.09× 10−30 3.25× 10−30 1534.23
V3 0.0282 0.0245 9.45× 10−31 1.92× 10−30 1709.28 0.0308 0.0249 1.00× 10−30 3.33× 10−30 1457.41
V4 0.0281 0.0246 1.05× 10−30 1.94× 10−30 1725.05 0.0308 0.0249 9.87× 10−31 3.19× 10−30 1482.48
V5 0.0281 0.0245 9.19× 10−31 1.97× 10−30 1774.62 0.0303 0.0249 9.59× 10−31 2.95× 10−30 1543.11
V6 0.0282 0.0246 9.35× 10−31 2.16× 10−30 1702.20 0.0308 0.0249 9.76× 10−31 3.27× 10−30 1476.89
V7 0.0282 0.0247 9.58× 10−31 1.90× 10−30 1732.44 0.0313 0.0249 9.10× 10−31 3.24× 10−30 1458.11
V8 0.0280 0.0246 1.01× 10−30 1.80× 10−30 1768.74 0.0303 0.0248 1.10× 10−30 3.30× 10−30 1552.81
V9 0.0281 0.0245 1.02× 10−30 1.96× 10−30 1785.43 0.0304 0.0248 1.02× 10−30 3.04× 10−30 1545.42
V10 0.0282 0.0245 9.74× 10−31 2.06× 10−30 1718.40 0.0316 0.0249 9.77× 10−31 3.38× 10−30 1397.51

(V)
Mean of 10 0.0281 0.0246 9.80× 10−31 1.93× 10−30 1745.82 0.0307 0.0248 1.01× 10−30 3.22× 10−30 1501.15
replications
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Table 6. PM10 Converged values of parameters (Probabilistic Method)

PM10 Converged values of parameters (Probabilistic Method)

Guro Nowon

Replication (µ) (η) (σ2) (φ2) K (µ) (η) (σ2) (φ2) K
mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

mean mean mean mean mean mean mean mean mean mean

V1 0.0580 0.0472 9.96× 10−30 5.48× 10−29 1951.13 0.0571 0.0439 1.08× 10−29 4.40× 10−30 1815.41
V2 0.0578 0.0468 5.59× 10−29 8.24× 10−30 2074.00 0.0566 0.0436 1.10× 10−29 3.79× 10−30 1903.76
V3 0.0579 0.0471 5.29× 10−29 9.69× 10−30 1985.46 0.0572 0.0439 1.07× 10−29 4.80× 10−30 1817.89
V4 0.0579 0.0470 5.51× 10−29 9.20× 10−30 2021.47 0.0571 0.0437 1.15× 10−29 4.10× 10−30 1865.10
V5 0.0578 0.0469 5.64× 10−29 8.29× 10−30 2063.70 0.0562 0.0434 1.19× 10−29 3.50× 10−30 1967.87
V6 0.0580 0.0470 5.52× 10−29 9.02× 10−30 2015.71 0.0575 0.0439 1.07× 10−29 4.49× 10−30 1826.11
V7 0.0580 0.0470 5.37× 10−29 8.90× 10−30 2018.96 0.0571 0.0438 1.12× 10−29 4.18× 10−30 1848.09
V8 0.0578 0.0469 5.32× 10−29 8.72× 10−30 2057.58 0.0565 0.0436 1.13× 10−29 4.04× 10−30 1914.57
V9 0.0578 0.0467 5.88× 10−29 8.17× 10−30 2076.96 0.0571 0.0435 1.12× 10−29 3.99× 10−30 1883.78
V10 0.0580 0.0471 5.46× 10−29 9.72× 10−30 1986.92 0.0581 0.0440 1.03× 10−29 5.14× 10−30 1762.35

(V)
Mean of 10 0.0579 0.0470 5.06× 10−29 1.35× 10−29 2025.19 0.0571 0.0437 1.11× 10−29 4.24× 10−30 1860.49
replications

Songpa Yongsan

Replication (µ) (η) (σ2) (φ2) K (µ) (η) (σ2) (φ2) K
mean Replication Replication Replication Replication Replication Replication Replication Replication Replication Replication

mean mean mean mean mean mean mean mean mean mean

V1 0.0578 0.0438 6.63× 10−29 5.39× 10−30 1965.25 0.0597 0.0457 4.48× 10−29 5.65× 10−30 2006.82
V2 0.0576 0.0435 7.07× 10−29 4.35× 10−30 2034.64 0.0596 0.0453 4.45× 10−29 5.33× 10−30 2055.41
V3 0.0576 0.0437 6.84× 10−29 5.13× 10−30 1997.23 0.0599 0.0457 4.41× 10−29 6.31× 10−30 1968.12
V4 0.0577 0.0436 6.93× 10−29 4.90× 10−30 2019.75 0.0598 0.0455 4.55× 10−29 5.70× 10−30 2000.97
V5 0.0575 0.0435 7.30× 10−29 3.16× 10−30 2068.54 0.0595 0.0454 4.56× 10−29 5.35× 10−30 2064.62
V6 0.0575 0.0437 7.14× 10−29 6.09× 10−30 2019.05 0.0598 0.0456 4.37× 10−29 6.30× 10−30 1996.19
V7 0.0576 0.0436 7.13× 10−29 5.60× 10−30 2030.35 0.0597 0.0455 4.62× 10−29 5.96× 10−30 2022.05
V8 0.0575 0.0434 7.25× 10−29 4.71× 10−30 2055.77 0.0596 0.0454 4.44× 10−29 5.38× 10−30 2042.75
V9 0.0574 0.0435 7.42× 10−29 4.98× 10−30 2062.38 0.0596 0.0453 4.75× 10−29 5.64× 10−30 2055.56
V10 0.0575 0.0437 7.07× 10−29 6.89× 10−30 2002.31 0.0599 0.0456 4.43× 10−29 6.34× 10−30 1982.16

(V)
Mean of 10 0.0576 0.0436 7.08× 10−29 5.12× 10−30 2025.53 0.0597 0.0455 4.51× 10−29 5.80× 10−30 2019.46
replications
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Moreover, the CUSUM charts of particulate matter (PM2.5 and PM10) concentrations are shown
in Figures 20–27 for the four different sites Guro, Nowon, Songpa and Yongsan in Seoul, South Korea.

Figure 20. CUSUM chart for Guro PM2.5.

Figure 21. CUSUM chart for Guro PM10.

Figure 22. CUSUM chart for Nowon PM2.5.
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Figure 23. CUSUM chart for Nowon PM10.

Figure 24. CUSUM chart for Songpa PM2.5.

Figure 25. CUSUM chart for Songpa PM10.
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Figure 26. CUSUM chart for Yongsan PM2.5.

Figure 27. CUSUM chart for Yongsan PM10.

In addition, the bootstraps analysis of CUSUM charts are shown in Figures 28–35.

Figure 28. CUSUM chart for Guro PM2.5 plus 10 bootstraps.
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Figure 29. CUSUM chart for Guro PM10 plus 10 bootstraps.

Figure 30. CUSUM chart for Nowon PM2.5 plus 10 bootstraps.

Figure 31. CUSUM chart for Nowon PM10 plus 10 bootstraps.
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Figure 32. CUSUM chart for Songpa PM2.5 plus 10 bootstraps.

Figure 33. CUSUM chart for Songpa PM10 plus 10 bootstraps.

Figure 34. CUSUM chart for Yongsan PM2.5 plus 10 bootstraps.



Inventions 2019, 4, 42 34 of 41

Figure 35. CUSUM chart for Yongsan PM10 plus 10 bootstraps.

The value of k is uniform over y1....., yn.

5. Results

Summarized forms of particulate matter (PM2.5 and PM10) change point (k), the parameters
before a change point (mean = µ, variance = σ2) and the parameters after a change point
(mean = η, variance = φ2) during the study period 2004–2013 for four different sites (Guro, Nowon,
Songpa and Yongsan) in Seoul, South Korea are given in Tables 7–10, respectively. The results were
computed using the numerical example of the mathematical model given in Section 4. At airkorea
official website, the annual Particulate Matter trend in Seoul is being exhibited in Figure 36,
which shows a decreasing trend during (2004–2013). These particulate matters concentrations are
given in µg/m3 [39].

Figure 36. Annual Particulate Matter trend in Seoul (airkorea).

5.1. PM2.5 Change Point (k) through Probabilistic Method

In Table 7, the results obtained through Probabilistic method have been described. Where, (k) is
the predicted change point varies for different areas. The results indicate the reduction of PM2.5

concentrations after change point (k). While, (µ) represents the mean concentrations before change
point (k) and (η) be the mean concentrations after change point (k). The variance before change point
(σ2) and variance after change point (φ2) have been determined through Inverse-Gamma distribution
with conjugate hyper-parameters.
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Table 7. PM2.5 Change point (k) for Normal distribution, parameters before the change point
(mean = µ, variance = σ2), and parameters after the change point (mean = η, variance = φ2).

Probabilistic Method for Change Point Detection (Normal Distribution)

Parameters Guro Nowon Songpa Yongsan

Mean be f ore change point = µ (mg/m3) 0.02931 0.02950 0.02812 0.03066

Mean a f ter change point = η (mg/m3) 0.02461 0.02354 0.02456 0.02485

Variance be f ore change point = σ2 4.14015× 10−30 1.13558× 10−30 9.79587× 10−31 1.01342× 10−30

Variance a f ter change point = φ2 1.39483× 10−30 5.43837× 10−31 1.93175× 10−30 3.22178× 10−30

Change point = k 1228.44 1502.84 1745.82 1501.15

Convergence f or µ =
√

Rµ 1.00032 1.00020 1.00086 1.00285

Overall estimate o f variance f or µ = Var(V)µ 0.000004 0.000003 0.000002 0.000033

Convergence f or η =
√

Rη 0.99986 1.00009 1.00012 0.99999

Overall estimate o f variance f or η = Var(V)η 0.000002 0.000002 0.000002 0.000001

Convergence f or σ2 =
√

Rσ2 1.000105 0.999798 0.999982 1.000099

Overall estimate o f variance f or σ2 = Var(V)2
σ 3.41× 10−59 1.31× 10−60 1.73× 10−60 3.81× 10−60

Convergence f or φ2 =
√

Rφ2 1.000165 1.000371 0.999849 0.999884

Overall estimate o f variance f or φ2 = Var(V)2
φ 4.31× 10−60 5.96× 10−61 2.28× 10−59 2.33× 10−59

Convergence f or k =
√

Rk 0.99985 0.99995 1.00011 1.00098

Overall estimate o f variance f or k = Var(V)k 698111.33 521067.70 853426.78 1008921.72

5.2. PM2.5 Last Point before Change (k) and First Point after Change (k + 1) through CUSUM Approach

Table 8 represents the results obtained for PM2.5 through CUSUM approach. Where, (k) is the
last point before change and (k + 1) be the first point after change point. So, the change point leis
somewhere between (k) and (k + 1). This method also shows the reduction of PM2.5 concentrations
after change point as (µ) represents the mean concentration before change point and (η) be the
pollutant concentrations after change point. The variance before change point (σ2) and variance after

change point (φ2) have been determined through formulae
(

σ2 = ∑(Xi−Mean)2

n

)
.

Table 8. PM2.5 Last point before change (k) and first point after change (k + 1) through the CUSUM
approach (Normal distribution).

CUSUM Approach for Change Point Detection (Normal Distribution)

Area (Mean = µ) (Mean = η) (σ2) (φ2) K k + 1 | Sm | Smax Smin Sdi f f Confidence
Seoul, before change after change Variance Variance Last point First point Most extreme Highest point Lowest point Magnitude level

South Korea (mg/m3) (mg/m3) before change after change before change after change point in CUSUM in CUSUM of change %

Guro 0.02894 0.02301 0.00029642 0.00017677 1570 1571 3.428 3.428 −0.143 3.572 100 %
Nowon 0.03084 0.02242 0.00027245 0.00017550 1474 1475 6.370 6.370 −0.486 6.856 100 %
Songpa 0.02928 0.02420 0.00028241 0.00019390 1455 1456 4.218 4.218 −0.223 4.441 100 %
Yongsan 0.02884 0.02412 0.00032178 0.00019152 1738 1739 4.076 4.076 −0.167 4.243 100 %

5.3. PM10 Change Point (k) through Probabilistic Method

Table 9 explains the results obtained for PM10 through Probabilistic method. Hence, the expected
change point is (k) that differs for different areas. These results show the reduction of PM10

concentrations after change point (k). While, (µ) be the PM10 concentrations before change point (k)
and (η) represents PM10 concentrations after change point (k). The variance before change point (σ2)

and variance after change point (φ2) have been determined through Inverse-Gamma distribution with
conjugate hyper-parameters.
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Table 9. PM10 Change point (k) for Normal distribution, parameters before the change point
(mean = µ, variance = σ2), and parameters after the change point (mean = η, variance = φ2).

Probabilistic Method for Change Point Detection (Normal Distribution)

Parameters Guro Nowon Songpa Yongsan

Mean be f ore change point = µ (mg/m3) 0.05789 0.05706 0.05758 0.05970

Mean a f ter change point = η (mg/m3) 0.04696 0.04372 0.04361 0.04550

Variance be f ore change point = σ2 5.05815× 10−29 1.10597× 10−29 7.07826× 10−29 4.50556× 10−29

Variance a f ter change point = φ2 1.34766× 10−29 4.24382× 10−30 5.12048× 10−30 5.79728× 10−30

Change point = k 2025.19 1860.49 2025.53 2019.46

Convergence f or µ =
√

Rµ 1.00046 1.00417 1.00059 1.00053

Overall estimate o f variance f or µ = Var(V)µ 0.00001 0.00003 0.00001 0.00001

Convergence f or η =
√

Rη 0.99980 1.00165 1.00057 1.00038

Overall estimate o f variance f or η = Var(V)η 0.00004 0.00001 0.00001 0.00001

Convergence f or σ2 =
√

Rσ2 1.038910 1.000918 1.000627 1.000106

Overall estimate o f variance f or σ2 = Var(V)2
σ 2.78× 10−57 7.15× 10−59 2.41× 10−57 1.08× 10−57

Convergence f or φ2 =
√

Rφ2 1.221403 1.001116 1.000223 1.000568

Overall estimate o f variance f or φ2 = Var(V)2
φ 6.40× 10−58 7.18× 10−59 6.97× 10−58 7.71× 10−59

Convergence f or k =
√

Rk 1.00095 1.00245 1.00078 1.00059

Overall estimate o f variance f or k = Var(V)k 625170.52 599959.50 404584.27 522327.71

5.4. PM10 Last Point before Change (k) and First Point after Change (k + 1) through CUSUM Approach

The results obtained for PM10 through CUSUM approach have been described in Table 10.
Where, the last point before change is (k) and the first point after change point is (k + 1). Therefore,
the change point leis anywhere between (k) and (k + 1). This method also depicts the reduction of
PM10 concentrations after change point. (µ) represents the PM10 concentrations before change point
and (η) be the PM10 concentrations after change point.The variance before change point (σ2) and

variance after change point (φ2) have been determined through formulae
(

σ2 = ∑(Xi−Mean)2

n

)
.

Table 10. PM10 Last point before change (k) and first point after change (k + 1) through the CUSUM
approach (Normal distribution).

CUSUM Approach for Change Point Detection (Normal Distribution)

Area (Mean = µ) (Mean = η) (σ2) (φ2) K k + 1 | Sm | Smax Smin Sdi f f Confidence
Seoul, before change after change Variance Variance Last point First point Most extreme Highest point Lowest point Magnitude level

South Korea (mg/m3) (mg/m3) before change after change before change after change point in CUSUM in CUSUM of change %

Guro 0.05914 0.04721 0.00166718 0.00088748 1836 1837 10.538 10.538 −0.118 10.656 100 %
Nowon 0.05743 0.04153 0.00139338 0.00061631 1952 1953 13.949 13.949 −0.194 14.143 100 %
Songpa 0.06106 0.04484 0.00217706 0.00077376 1515 1516 13.838 13.838 −0.126 13.963 100 %
Yongsan 0.06105 0.04617 0.00216982 0.00082027 1795 1796 13.046 13.046 −0.108 13.154 100 %

6. Discussion

6.1. Guro (Seoul, South Korea)

Guro is located in the southwestern part of Seoul, having an essential location as a transport link
for railroads and land routes. The largest digital industrial complex in Korea is located in Guro. Thus,
the policies of the Ministry of Environment in South Korea have decreased the particulate matters
(PM2.5 and PM10) concentrations and occurrences of polluted days in Guro.

6.1.1. Probabilistic Method

Table 7 presents the reduction of 16.02% in particulate matter PM2.5 concentration in Guro,
from (mean (µ) = 0.02931 mg/m3) to (mean (η) = 0.02461 mg/m3) and a change point (k = 1228).
This point occurred on 13th July, 2010 during 7 years data from March 2007–December 2013. Therefore,



Inventions 2019, 4, 42 37 of 41

the expected pollutant concentration before 13th July, 2010 was 0.02931, which changed to 0.02461 after
13th July, 2010. On the other hand, variance (σ2 = 4.14015× 10−30) changed to (φ2 = 1.39483× 10−30).
Similarly, Table 9 indicates 18.88% reduction in PM10 concentration from (mean (µ) = 0.05789 mg/m3)
to (mean (η) = 0.04696 mg/m3) with a change point k = 2025.19. This change point occurred 19th
October, 2009 in the period of 2004–2013 and involved a change in variance from (σ2 = 5.05815× 10−29)

to (φ2 = 1.34766× 10−29).

6.1.2. CUSUM Approach

CUSUM Approach also indicates a reduction in PM2.5 and PM10 concentrations from (µ) to (η)
after change. As for Guro, Tables 8 and 10 depict the change of PM2.5 and PM10 concentrations through
CUSUM approach respectively, change point for PM2.5 concentrations lies in-between point 1570 (k)
and 1571 (k + 1) and it occurred between point 1836 (k) and 1837 (k + 1) for PM10 concentrations.

6.2. Nowon (Seoul, South Korea)

Nowon is positioned at the northeastern part of Seoul and has the highest population density in
Seoul, with 619,509 persons living in 35.44 km2. The area is surrounded by mountains and forests on
the northeast. The policies of the Ministry of Environment in Nowon have improved the particulate
matter (PM2.5 and PM10) concentrations from (µ, σ2) to (η, φ2). Improvement in the reduction of
pollutant concentrations varies which is more than Guro.

6.2.1. Probabilistic Method

For Nowon, Tables 7 and 9 depict the change points (k = 1502.84) and (k = 1860.49) for
PM2.5 and PM10 concentrations respectively. The change point (k = 1502.84) for PM2.5 occurred
10th August 2009 for the period March 2005–December 2013. The parameters (µ = 0.02950 mg/m3,
σ2 = 1.13558× 10−30) and (η = 0.02354 mg/m3, φ2 = 5.483837× 10−31) indicate a 20.21% reduction in
PM2.5 expected value after the change point, while there was minor change in the variance parameter.
similarly, the change point (k = 1860.49) for PM10 occurred on 18th April, 2009 for the period
2004–2013 and a 23.38% reduction in pollutant expectation was observed from (µ = 0.05706 mg/m3) to
(η = 0.04372 mg/m3) with a change in variance from (σ2 = 1.10597× 10−29) to (φ2 = 4.24382× 10−30).

6.2.2. CUSUM Approach

Moreover, CUSUM Approach also validates the reduction of PM concentrations and polluted
days. In case of Nowon, Tables 8 and 10 depict the change of PM2.5 and PM10 concentrations through
CUSUM approach respectively, change point for PM2.5 concentrations lies in-between point 1474 (k)
and 1475 (k + 1) and it occurred between point 1952 (k) and 1953 (k + 1) for PM10 concentrations.

6.3. Songpa (Seoul, South Korea)

Songpa is situated at the southeastern part of Seoul, with the largest population of 647000 residents.
As per Ministry of Environment policies in Songpa, there was a significant reduction for pollutant
concentrations (µ, σ2) to (η, φ2).

6.3.1. Probabilistic Method

For Songpa, Table 7 shows that change point (k) for PM2.5 pollutant concentration was
1745.82, which occurred on 23rd March 2009. The reduction in PM2.5 expectation was 12.65% from
(µ = 0.02812 mg/m3) to (η = 0.02456 mg/m3) while variance (σ2 = 9.79587 × 10−31) changed to
(φ2 = 1.93175× 10−30). Correspondingly, in Table 9, a 24.26% improvement in the mean of PM10

concentration was from (µ = 0.05758 mg/m3) to (η = 0.04361 mg/m3) after the change point
(k = 2025.53), which occurred on 1st January 2010, while variance changed from (σ2 = 7.0782× 10−29)

to (φ2 = 5.12048× 10−30).
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6.3.2. CUSUM Approach

As per CUSUM Approach, there is a decrease in PM concentrations. Tables 8 and 10 depict the
change of PM2.5 and PM10 concentrations through CUSUM approach respectively, change point for
PM2.5 concentrations lies in-between point 1455 (k) and 1456 (k + 1) and it occurred between point
1515 (k) and 1516 (k + 1) for PM10 concentrations.

6.4. Yongsan (Seoul, South Korea)

Yongsan is the center of Seoul, in which almost 250,000 people reside. Prominent locations in
Yongsan includes Yongsan station, an electronics market and Itaewon commercial area with heavy
traffic and transportation. Consequently, the policies of the Ministry of Environment in Yongsan have
affected the particulate matter (PM2.5 and PM10) concentrations, producing a remarkable decrease
from (µ, σ2) to (η, φ2).

6.4.1. Probabilistic Method

Similarly, Yongsan, Tables 7 and 9 show that particulate matter (PM2.5 and PM10) concentrations
were changed from (µ, σ2) to (η, φ2) after change point (k). The change point (k = 1501.15) for PM2.5

concentration occurred with a reduction of 18.97% from (µ = 0.03066 mg/m3) to (η = 0.02485 mg/m3)
and a change in variance from (σ2 = 1.01342 × 10−30) to (φ2 = 3.22178× 10−30). This change
point k occurred on 19th August, 2008. Correspondingly, the change point (k = 2019.46) for PM10

concentration produced a 23.79% reduction in the expected value from (µ = 0.05970 mg/m3)
to (η = 0.04550 mg/m3). The change observed for variance was (σ2 = 4.50556 × 10−29) to
(φ2 = 5.79728× 10−30) and change point k occurred on 24th November, 2009.

6.4.2. CUSUM Approach

The CUSUM Approach is directly applied on the raw data, which should be better for
deterministic data structures. It also shows a reduction in pollutant concentrations. In case of Yongsan,
Tables 8 and 10 depict the change of PM2.5 and PM10 concentrations through CUSUM approach
respectively, change point for PM2.5 concentrations lies in-between point 1738 (k) and 1739 (k + 1) and
it occurred between point 1795 (k) and 1796 (k + 1) for PM10 concentrations.

6.5. Managerial Insights

1. This model presents a suitable technique for change point detection of diversely distributed data
structures for all kind of stochastic processes.

2. By detecting change points in different areas, such as climate change detection, human activity
analysis and medical condition monitoring and also analyzing the parameters before and after
change points, the results of legislation efforts can be understood and it can be determined
whether these change points are favorable.

3. A comparison of parameters before and after a change point evaluates the performance from
previous status to current status, which can also be helpful for future prediction with the
current strategies.

4. This study of change point detection also defines the current levels of an area under study, which
is helpful for designing new policies for further improvements.

5. This research provides guidance for defining new goals if previously defined goals have been
achieved and indicates if the standards need to be revised to overcome upcoming challenges.

7. Conclusions

The key motivation of this research work was to explicate an appropriate change point detection
model for diversely distributed data structures. This probabilistic method is being verified by the
CUSUM approach and the results of the CUSUM approach are compared with the proposed method.
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This methodology is based on probability distributions and better to apply for random data structures
and time series. But the CUSUM approach is directly applicable to the raw data, which is good for
deterministic data structures. The model is applicable to various stochastic processes because different
data structures follow different probability distributions. The parameter expectations before and
after a change point were also estimated to measure the effectiveness and performance of policies
applied. To verify the model, four major locations (Guro, Nowon, Songpa and Yongsan) in Seoul,
South Korea were chosen as study areas considering their different characteristics, such as climate
zone, environment, population and population density. The results were calculated and conclusions
were drawn with the application of model on real-time data sets in all cases. The parameters before
and after the change point of particulate matter concentrations indicated a reduction in pollutant
concentrations over a 10-year period. At airkorea official website, the annual Particulate Matter trend
in Seoul is being exhibited in Figure 36, which also shows a similar kind of decreasing trend during
(2004–2013). The overall outcomes of this study indicate the effectiveness of policies applied to reduce
the pollutant concentrations over time. Thus, further reduction in PM concentrations is required to
achieve the set standards. This study can be further extended by locating change segments through
multiple change points.
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