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Abstract: The problem of localization of nodes of a wireless sensor network placed in differ-
ent physical media (anchor nodes above ground and sensor nodes underground) is addressed
in this article. We use time of arrival of signals transmitted between neighboring sensor nodes
and between satellite nodes and sensor nodes as the ranging measurement. The localization prob-
lem is formulated as a parameter estimation of the joint distribution of the time of arrival values.
The probability distribution of the time of arrival of a signal is derived based on rigorous statistical
analysis and its parameters are expressed in terms of the location coordinates of the sensor nodes.
Maximum likelihood estimates of the nodes’ location coordinates as parameters of the joint distri-
bution of the various time of arrival variables in the network are computed. Sensitivity analysis to
study the variation in the estimates with respect to error in measured soil complex permittivity and
magnetic permeability is presented to validate the model and methodology.

Keywords: sensor networks; localization; time of arrival; multi-path triangulation

1. Introduction

Miniaturization of wireless enabled compute devices, sensors, and further advances
in the field of automation and control have led to their adoption in agriculture. Information
and control technologies allow for the application of agricultural inputs such as irrigation,
fertilizers, pesticides, etc., as per the precise needs which minimize the impact on the
environment while maximizing the crop yield. Various factors determine the fertilizer
uptake in a farm-field such as variability in plant population, nitrogen mineralization
from organic matter, water stress, soil properties, pests, etc.—which also vary in space and
with time. While under-application affects crop yield, over-application of fertilizers can
lead to issues such as aquatic hypoxia and contamination of ground and surface water
resources. Production of nitrogen-based fertilizers also affects the environment due to its
high energy cost. Furthermore, analysis of data collected through soil sensing can help
us understand the process of carbon sequestration and its potential to control climate
change. Our group has been pursuing agriculture sensor design for soil [1–13] and plant
health [14–22], modeling for soil moisture/nutrients and plant growth dynamics [23,24],
and decision-making for irrigation and fertilization for over a decade [23,25].

Precision agriculture requires the collection of higher resolution spatio-temporal data
than are currently available by methods such as remote-sensing, laboratory tests, etc.
Sensor devices with wireless capabilities are a promising solution to the automation of the
data collection process at the required cadence. A densely scattered network of sensors
can measure and collect data on soil characteristics such as nitrate concentration, moisture
content, etc. Sensor nodes in such a network must be deployed below the ground so that
they do not interfere with the above-ground agricultural activities.
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Location information is a key for usefulness of the soil data sensed from various
locations in a large field. Location information can also enhance the functionality of other
layers of the application stack in a sensor network system as revealed in recent literature.
For example, location information can help make the routing layer more energy efficient
(a critical requirement in energy constrained devices) as seen in [26,27]. The routing strategy
for the wireless sensor network in our precision agriculture application, as seen in [28–30],
chooses the next hop node from neighboring nodes based on their geographical proximity
to the sink. Other layers of the sensor network stack, similarly, benefit from the availability
of sensor node location data [31]. There is a chance that the initial installation of the sensors
did not have the opportunity for a GPS fix, and also it is possible that the sensors get
displaced during the operation as in case of agriculture and farming operation, motivating
the need for on-demand sensor localization. The related works Section 1.1 provides a
discussion on the current state-of-art on sensor localization, mostly limited to a single
homogeneous media, as opposed to the more general multi-media setting of this paper.
One should note that the multi-media setting arises for example in agriculture, where the
sensor nodes are buried underground while the anchor nodes (also known as satellite
nodes) are located above ground. As illustrated in this paper, the multi-media setting also
gives rise to multi-path communication (direct versus reflected as in Figure 1), which we
also incorporate in our approach.

node−n

x
y

z

b a c

node−m

Figure 1. Soil-node to soil-node communication between nodes m and n: direct vs. reflected paths.

To the best of our knowledge, ours is the first sensor localization approach in a multi-
media and multi-path setting by using time of arrival measurements of the received signal.
This is in contrast to our earlier work that utilized received signal strength [32,33]. The lo-
calization results obtained are more accurate than those reported in our received signal
strength-based approach [32,33], supported by accurate clock synchronization. A prelim-
inary version of the present paper appeared as a conference paper in [34]. The current
version extends the conference version significantly by providing a comprehensive treat-
ment of introduction, related work, and brand new set of simulation and sensitivity results
such as the study of localization error as a function of the soil moisture content and
clock synchronization error. The implementation of the multi-media network simulation,
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the maximum likelihood estimation (MLE)-based localization, and parameter-sensitivity
computations are non-trivial.

The following are the key contributions of this article:

• We present a framework to 3D localize wireless nodes located in multiple physical
media (air and soil) that have multiple paths of communication through a lossy
medium (soil).

• We extend the MLE framework for time of arrival of a single path signal to the
multi-path case.

• We present our python-based implementation of the proposed localization schemes
with simulation results validating our methodology.

• We further validate our localization schemes with rigorous sensitivity analyses of the
location estimates with respect to errors in measurements of various soil parameters.

1.1. Related Works

Range-based localization using measurements of time of arrival (ToA), angle of arrival
(AoA) and received signal strength (RSS) has been well studied in literature. In [35], the
authors develop statistical models to characterize such measurements to develop a peer
to peer localization scheme for sensor nodes. In [36], authors use graph rigidity theory
to develop conditions for unique localizability of sensor nodes in a network where some
nodes’ locations are known. Nodes with unknown locations are localized based on a
relative coordinate system formed by a few chosen nodes in the network in [37].

In [38], authors present a range-free localization scheme for a sensor network in an
environment with obstacles or irregular coverage. In range-free approaches the localization
accuracy suffers as the density of nodes decreases and there are obstacles in the signal
propagation path. As an example of range-based localization, a detectable event (such
as a burst of light or sound) is generated using an event disseminator and nodes report
the detection of the events along with the timestamps to a central location server which
computes the position of the nodes based on prior knowledge of the event propagation
delays [39].

Range-based models for Ultra Wide Bandwidth (UWB) technology are used for coop-
erative localization techniques in [40] in which authors also present a localization algorithm
by mapping a statistical model for graphical inference onto the network topology. A hybrid
scheme using both range-based and range free methodology is presented in [41] which
presents a sequential Monte Carlo localization method for a sensor network with mobile
nodes using both range measurements and hop distance along with mobility information
about the nodes.

Thus, research on sensor node localization has been a focused interest for the good
part of the last two decades. However, most such significant advances have focused on ap-
plications where the nodes are assumed to be located in a homogeneous physical medium;
usually air wherein free space wave propagation models have been assumed. Only recently
have researchers started focusing on characterizing signal propagation in lossy dielectric
media. In [42], authors present a study of the effect of various types of materials (rocks,
minerals, etc.) found underground on magneto-inductive field propagation. They provide
attenuation figures for various common underground materials for quasi-static low fre-
quency magneto-inductive fields and propose guidelines for localization systems in terms
of channel path-loss, operational frequencies, and bandwidth. However, the analysis is
based on the assumption of near field propagation. The frequencies of interest (1 kHz,
100 kHz, and 1 MHz) are much lower than what we consider in the present work.

3D localization has also seen limited development. In [43], the authors propose an
underground 3D positioning network for similar frequencies of interest in scenarios such
as rescue missions in narrow and tortuous underground tunnels. The network of anchors
is incrementally deployed, with only the location of a limited number of anchor nodes
known at the time of deployment. The authors formulate a maximum likelihood estimate
(MLE) problem to estimate the range and bearing angle of communication. The positions of
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incrementally deployed anchor nodes is iteratively estimated which leads to accumulating
errors as the network depth increases. Our application is different in that the nodes in our
network are deployed in a relatively uniform medium, with relatively unchanged positions
for long periods of time. Moreover, the bulky triaxial coil antennae for magneto-inductive
communication are not suitable for the size limited sensor nodes in our application.

In [44], authors derive a multi-sensor data attenuation model using radio, acoustic,
and visible light signals and develop a model for real time mobile node tracking in an
indoor building. The authors propose a compartmental model based on fluid movement in
biological systems with interacting compartments. The model, having a higher number of
parameters, is better able to model the path loss compared to log and exponential models.
The problem is formulated as a least squares estimated problem by first linearizing the
Taylor’s series expansion of the compartmental model and solving it using Singular Value
Decomposition. The authors first propose a range free coarse estimator for initializing the
node location and thereafter a real time node tracking method is presented. The model
selectively combines the multi-sensor data based on the bandwidth utilization in the
wireless channel.

In [45], a neural network-based localization problem formulation is proposed using
Time Difference of Arrival (TDOA) as the ranging measurement. Two types of neural
network models—Back Propagation Network (BPN) and Radial Basis Function (RBF)—
are used. Most 3D localization for sensor nodes deployed underground has focused on
mines, pipes, and tunnels ([46–48]). In [49], authors characterize the link quality and
received signal strength for wireless sensor networks deployed for underground pipeline
monitoring to gain insight into protocol development for wireless underground sensor
networks (WUSNs).

Applications exist with varying degrees of localization accuracy needed. A trade-off
is made among the localization hardware complexity, algorithm complexity, deployment
costs, and localization accuracy. In [50], authors study the effect of error inducing parame-
ters in localization. They derive the Cramer–Rao lower bound for multi-hop localization
systems by studying the effect of parameters such as measurement technology accuracy,
node density, beacon uncertainty, etc. on localization error.

Nature inspired swarm intelligence metaheuristic-based algorithms have also gar-
nered interest in the field of localization as in [51–55]. In [51], authors present a study of
the performance of nature inspired algorithms for localization such as Flower pollination
algorithm, firefly algorithm, gray wolf optimization, and particle swarm optimization in
terms of localization accuracy, number of nodes localized, and computation complexity.
In [52], authors present a localization scheme that employs received signal strength indica-
tor measurements for ranging using swarm intelligence firefly algorithm for optimization
to estimate node locations. Authors in [53–55] propose localization approaches using
elephant herding optimization, butterfly optimization, and hybridized moth search algo-
rithms. While these are creative approaches to solving the node localization problem, they
are also applied in the case where signal transmission happens through the medium of
air only.

Some research has targeted localization of sensor nodes in different physical media
such as underwater and underground mine deployed networks as in [56–58]. In [56],
authors propose a multi-hop node localization scheme for underwater wireless sensor net-
works while using AoA and distance measurements with weighted least squares method.
In [57], authors propose a method to improve localization in underground mines by
proposing an anchor selection process based on values of received signal strength indi-
cator. Authors in [58] propose a range free localization method for underwater acoustic
sensor networks.

Our previous work in [32,33] addresses the problem of sensor node localization for
nodes placed in multiple physical media using measurements of received signal strength.
We have developed a probabilistic model for path loss of the radio frequency signal as it
travels across the interface between two different physical media—air and soil. The model
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is parameterized in terms of the node locations and the localization problem is formulated
as a maximum likelihood estimation.

2. Materials and Methods

In our study, the time difference between the transmission of a beacon signal (an
unmodulated sinusoidal wave) at one node and its reception at another node is used to
estimate the distance between the nodes. This delay is estimated using a matched filter
at the receiving node, where a noise-free transmitted signal is available. The copy of the
transmitted signal is delayed in time by a certain amount and its correlation with the
received signal is measured for a certain observation time. The delay value at which the
output of the correlator is maximum gives an estimate of the propagation delay between
the transmitter and receiver. However, this estimate is uncertain owing to noise in the
received signal. Furthermore, multi-path interference may cause additional uncertainty in
the estimate. For background, we introduce the single-path case first.

2.1. MLE of ToA for a Single Path

We assume that the transmitted signal s(t) is corrupted by additive white Gaus-
sian noise n(t) upon reception at the receiver node as r(t), after a distance and medium
dependent attenuation A and delay τ:

r(t) = As(t− τ) + n(t). (1)

The auto-covariance function of the noise is E[n(t)n(t′)] = N0
2 δ(t− t′), where δ(·) is

the dirac-delta function and N0
2 is the noise power spectral density.

r(t) is observed over an interval [0, T] at the receiver node. To show that MLE based
on ToA reduces to a matched filter described above, we proceed by discretization and
then take the limit to get back to the continuous domain. Accordingly, let us consider
the observed data consisting of n + 1 equally spaced samples of r(t), at time instants
tk = k∆t, where t0 = 0, tn = n∆t = T, and k ∈ {0, 1, 2, . . . , n}. The individual samples rk
are Gaussian random variables with mean Ask and variance N0

2 δ[0] = N0
2 , where sk is a

sample of the signal s(t) at time tk − τ, defined as sk = s(tk − τ). The observed data-vector
r has a multivariate-Gaussian distribution, where the joint-pdf is driven by the noise pdf.
The covariance matrix Φ of r is (n + 1) by (n + 1), with {j, k}th element:

φjk =
N0

2
δ[j− k], (2)

where φjk is the covariance between rj and rk. The mean of r equals the samples of the
transmitted signal:

E[r] = As := A[s0 . . . sk . . . sn]
T , (3)

where T denotes the vector transpose operation. Thus, the joint-pdf of r is:

p(r|τ) = 1

(2π)
(n+1)

2 |Φ| 12
exp

{
−1
2

(r− As)TΦ−1(r− As)
}

, (4)

=
1

(πN0)
(n+1)

2

exp

{
−

n+1

∑
k=1

(rk − Ask)
2

N0

}
, (5)

where Equation (5) follows from (4) by using (2), and substituting φjk = N0
2 δ[j − k] for

additive white Gaussian noise.
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Noting that the squared terms r2
k and (Ask)

2 sum up to received and attenuated signal
powers, which are independent of the delay of communication, the log-likelihood function,
ignoring the terms that do not depend on τ, is given by:

log Λ(τ|r) =
n+1

∑
k=1

2rk Ask
N0

. (6)

Under the limit as ∆t→ 0 (and n→ ∞), Equation (6) becomes:

log Λ(τ|r(t)) =
∫ T

0

2
N0

r(t)As(t− τ)dt. (7)

Thus, the log-likelihood function reduces to the correlator function between r(t)
and s(t) given a certain delay between the two, which is the output of a matched filter.
Hence, τ̂ that maximizes this correlator function between the transmitted and received
signals turns out to be the maximum likelihood estimate of the delay τ.

The mean of τ̂, denoted by τ̄, is determined by the distance between the sender
and receiver nodes and the propagation speed of the signal in the medium it travels.
The variance of τ̂, being an MLE, asymptotically, as the sample size increases, equals the
Cramer–Rao lower bound (CRLB) and is the inverse of the Fisher information matrix,
given by [59]:

σ2 =

[
E
{

∂

∂τ
[log Λ(τ|r(t))] ∂

∂τ
[log Λ(τ|r(t))]

}]−1
(8)

The next expression follows from the derivation given in ([59], pp. 264–265),

σ2 =

{
2A2

N0

∫ T

0

∂

∂τ
s(t− τ)

∂

∂τ
s(t− τ)dt

}−1

(9)

=

{
2A2

N0

∫ T

0
[s′(t)]2dt

}−1

(10)

=

{
2A2

N0

∫
(2π f )2|S( f )|2d f

}−1

(11)

=

{
8π2 p

N0
Tβ2

}−1
, (12)

=
{

8π2TBβ2SNR
}−1

(13)

where S( f ) is the Fourier transform of the signal s(t), and A2 is the signal power attenuation

due to propagation in the respective medium, so that p =
A2 ∫ |S( f )|2d f

T is received signal-

power, β =

√ ∫ T
0 f 2|S( f )|2d f∫ T

0 |S( f )|2d f
is a function of the signal, B is the bandwidth of the signal

and SNR = p
N0B is the signal to noise power ratio. Thus, we have established that the

variance of the time of arrival as estimated by the receiver’s matched filter, which is also the
maximum likelihood estimate, is given by Equation (12). Since the MLE is asymptotically
normal, the estimated time of arrival τ̂ can be approximated to be a Gaussian distributed
random variable:

pτ̂(τ) =
1√

2πσ2
e−

(τ−τ)2

2σ2 . (14)

2.2. Mean and Variance of Time of Arrival in Terms of Location Coordinates

In this section, we derive the relations that establish the dependence of τ and σ2 on the
location coordinates of the sensor nodes. In this way, the pdf of τ̂ can be parameterized in
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terms of the location coordinates in order to estimate the latter from the observed times of
arrival for signals transmitted between neighboring pairs of sensor nodes and between the
sensor nodes and the satellite nodes. We provide the derivations for both the multi-path
and multi-media cases in their respective sections.

2.2.1. Multi-Path Extension: Soil-to-Soil Communication

As shown in Figure 1, a signal transmitted by an underground sensor node arrives at
another underground sensor node via two paths; one along the direct line-of-sight path
and another along a path after reflection from the ground surface. The received signal in
time domain is given by:

r(t) = As(t− τ) + Ars(t− τr) + n(t), (15)

where A and Ar are the attenuations along the two paths and τ and τr are the propagation
delays along the two paths.

Following the steps in Section 2.1 for the received signal given by Equation (15), the
joint log-likelihood function for the parameter τ = [τ τr]T is given by:

log Λ(τ|r(t)) =
∫ T

0

2
N0

r(t){As(t− τ) + Ars(t− τr)}dt. (16)

The estimate of τ that maximizes Equation (16) is the maximum likelihood estimate.
Hence, the covariance matrix of the estimate is given by the inverse of the Fisher informa-
tion matrix. The (i, j)th element of the covariance matrix Σ2×2 is, then, given by:

σ2
ij =

[
E
{

∂

∂θi
[log Λ(τ|r(t))] ∂

∂θj
[log Λ(τ|r(t))]

}]−1

, (17)

where i, j ∈ {1, 2} corresponds to the line of sight and reflected paths; θ1 = τ and θ2 = τr.
Similar to the derivation of Equation (12), we have:

σ2
ij =

{
2Ai Aj

N0

∫ T

0

∂

∂θi
s(t− θi)

∂

∂θj
s(t− θj)dt

}−1

(18)

=

{
2Ai Aj

N0

∫ T

0
[s′(t)]2dt

}−1

(19)

=

{
2Ai Aj

N0

∫
(2π f )2|S( f )|2d f

}−1

(20)

=

{
8π2
√

pi
√pj

N0
Tβ2

}−1

, (21)

=
{

8π2TBβ2
√

SNRi

√
SNRj

}−1
, (22)

where SNRi =
pi

N0B and SNRj =
pj

N0B are the signal to noise power ratios for the two paths i
and j. The expression for the received power for signal transmission in a lossy medium
is discussed in the Appendix A in Equations (A1)–(A6). Accordingly, following (A6),
we have:

p1 = pmn = η(dmn)
−ks e−2αsdmn (23)

p2 = pr
mn = η(dmn)

−ks e−2αsdmn ρ, (24)

where the multiplicative constant reflection coefficient, ρ, reflected path is given by:
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R =

(√
µa/ε′a −

√
µs/ε′s√

µa/ε′a +
√

µs/ε′s

)2

, (25)

where ε′ and µ are the real part of permittivity and permeability with ’a’ and ’s’ denoting
air and soil media, respectively.

For sender–receiver pair (m, n), the mean value τ̄mn = [τ̄mn τ̄r
mn]

T is determined by
the propagation distances and the speed of the signal:

τmn =
dmn

cs
, (26)

τr
mn =

d(r)mn
cs

, (27)

where the line of sight propagation distance dmn and the reflected path propagation distance
d(r)mn are as shown in Figure 1 and the speed of light in soil cs is given by:

cs =
1√

µsε′s
2 (
√

1 + ( σs
ωε′s

)2 + 1)
, (28)

where ε′s, µs and σs are, respectively, the real part of permittivity, permeability, and the
conductivity of soil.

Following the same argument as in Section 2.1, τ̂ is asymptotically distributed as a
bivariate Gaussian random variable with the pdf:

pτ̂mn(τmn) =
1

(2π)|Σmn|1/2 exp
{
−1

2
(τmn − τ̄mn)

TΣ−1
mn

(τmn − τ̄mn)}. (29)

2.2.2. Multi-Media Extension: Air-to-Soil Communication

For signal propagation between a satellite node m and a sensor node n, the propagation
medium is partly air and partly soil, see Figure 2, where d(a)

mn and d(s)mn, the propagation
distances in air and soil, respectively, are computed as the solutions of the following
two equations:

d(a)
mn√

(d(a)
mn)2 − z2

m

√
(d(s)mn)2 − z2

n

d(s)mn

(
=

sin θ(a)

sin θ(s)

)
=

λ(a)

λ(s)
(30)

√
(d(a)

mn)2 − z2
m +

√
(d(s)mn)2 − z2

n =
√
(xm − xn)2 + (ym − yn)2, (31)

where λ(a) and λ(s) represent the wavelengths in air and soil, respectively. The above result
follows from the application of the Snell’s law of refraction. Note that a satellite node is
allowed to be anywhere above ground (an not necessarily on the ground), i.e., zm ≥ 0
(as opposed to zm = 0 necessarily).

As a result of the high refractive index of the soil compared to the air, the signal
travels almost vertically downwards in the soil so as to minimize its sojourn time in the
soil (this fact is also demonstrated by the small value of the Brewster’s angle for the soil-air
interface [60]). Accordingly, we can obtain the following approximations:

d(s)mn ≈ zn, (32)

d(a)
mn ≈

√
(xm − xn)2 + (ym − yn)2 + z2

m. (33)
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Therefore, we obtain an expression for the mean value of the propagation delay
between the satellite and sensor nodes:

τmn =
d(a)

mn
ca

+
d(s)mn
cs

, (34)

where ca ≈ c is the signal speed in air that approximately equals the speed of light in
vacuum, and cs is given by Equation (28).

node−m

x
y

z

node−n

Figure 2. Air-node to soil-node communication between two nodes m and n.

The variance in terms of the location coordinates, following Equation (12) is given by:

σ2
mn =

{
8π2 p(as)

mn
N0

Tβ2

}−1

=
{

8π2TBβ2SNRmn

}−1
, (35)

where p(as)
mn , the average received power for air-to-soil communication, is derived in terms

of the location coordinates of the satellite node m and sensor node n,

p(as)
mn = η(d(a)

mn)
−k(a)

(d(s)mn)
−k(s) e−2α(s)d(s)mn T, (36)

where T = 1− R is the transmission coefficient (R is given by Equation (25)).

2.3. MLE-Based Localization

Now we formulate a maximum likelihood problem to estimate the location coordinates
of the nodes given the measurements of the times of arrivals at the nodes from their
neighboring underground as well as above-ground satellite nodes.

Let Nss and Nas denote the set of soil-to-soil and air-to-soil node pairs that commu-
nicate to gather the time of arrival data for soil-to-soil signal propagation and air-to-soil
propagation, respectively. The log-likelihood of the time of arrival distribution parameters
for all the sender-receiver pairs (m, n) ∈ Nss ∪ Nas can be expressed as follows:

L(Θ|T) = − ∑
(m,n)∈Nas

{
ln(σmn) +

(τmn − τmn)
2

2σ2
τ̂mn

}

− ∑
(m,n)∈Nss

{
1
2

ln |Σmn|+
1
2
(τmn − τ̄mn)

TΣ−1
mn

(τmn − τ̄mn)}, (37)
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where T represents the time of arrival data {τmn|(m, n) ∈ Nas, τmn = [τmn τr
mn]

T |(m, n) ∈
Nss} between all pairs of nodes that communicate with each other to gather localization
data. σmn, τmn, Σmn, and τ̄mn = [τ̄mn τ̄r

mn]
T were expressed in terms of the location

coordinates of the sensor nodes and the known location coordinates of the satellite nodes
in Sections 2.2.1 and 2.2.2 for the different signal propagation scenarios in our application.
Thus, the maximum likelihood estimates of the location coordinates are obtained as the
values that maximize the log likelihood function given by Equation (37).

2.4. Software Implementation

The software used in this study is available at https://www.github.com/herman-ai/
toalocalization (accessed on 26 November 2020). The software consists of python code files
to perform localization, and also included is the code for sensitivity analysis. Readers may
consult the included README file in the repository for detailed instructions on how to
reproduce our results.

For the software implementation of our localization methodology, we built a simula-
tion of the model that computes the ToA values of signals exchanged between different
nodes, and this involved drawing from probability distributions derived through our
simulation framework. However, note that in deployment, scheduling of the various trans-
missions were performed to ensure no collisions among the different signals. For drawing
from the distribution of a ToA, we used the random module from the numpy package of
Python. Next, during the optimization phase, we initialized the node locations to random
values within the constraints of the field boundaries and using the observed values of the
ToA (as sampled in the first phase of the simulations) minimized the maximum likelihood
function as derived in (37) to estimate the true values of the nodes’ coordinates. For this
purpose, we used the optimize module from the scipy package of Python.

3. Results

We validated our localization models and evaluate its performance using simulations.
Our simulated sensor field consists of 25 sensor nodes spread evenly in a 100 m2 square field.
The depth of the nodes is also randomly chosen between 0 and 0.5 m. Soil moisture content
affects the soil complex permittivity which governs the signal propagation. Our simulations
are based on assumption of clay loam soil with a clay content of 20%. We used the
computed values of real and imaginary parts of the permittivity for this soil type from [61]
for various values of soil moisture content as given in Table 1. Table 2 details the remaining
parameters used in the simulations. Note the theoretical approach developed in the
paper is independent of the parameters used including the working frequency value
(433 MHz), one that we selected since it lies in the open communication band and only
as a proof-of-concept. The relative permeability of soil is assumed to be 1, a reasonable
value for soils not containing significant amount of iron [62]. Thermal noise is assumed to
be −110 dBm based on standard receiver sensitivity [63]. The underground transmission
range is approximately 34 m in dry soil at a transmission power level of 30 dBm, yielding
to an average of 3 neighbors per sensor node, whereas the air-to-soil transmission range is
approximately 1000 m, as computed using the average received signal strength expressions
given in Equations (23), (24) and (36).

Table 1. Real and imaginary parts of relative permittivity of soil for different moisture contents.

Fractional Volume of Water ε′s ε′′s

0% 2.36 0.0966
10% 5.086 0.441
30% 16.410 2.368
40% 24.485 3.857

https://www.github.com/herman-ai/toalocalization
https://www.github.com/herman-ai/toalocalization
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Table 2. Parameters used in the simulations for localization.

Parameter Symbol Value

Transmit power (Satellite node) P(a) 38 dBm
Transmit power (Sensor node) P(s) 10 dBm

Thermal noise N0 −110 dBm
Path loss factor (air) ka 2
Path loss factor (soil) ks 2

Relative permeability (soil) µs 1.0084
Frequency f 433 MHz

Wavelength λ 0.7 m
Bandwidth B 1 Hz

Signal duration TS 1 ms

We followed a hierarchical estimation methodology for estimating the location coor-
dinates in our scheme. First, we applied the air-to-soil model on the signals transmitted
between the satellite nodes and the underground nodes to arrive at crude level location
estimates. As the second stage, we applied the combined air-to-soil and soil-to-soil models,
adding data from the signals exchanged among neighboring underground nodes to further
refine the estimates.

Table 3 compares the errors in the location estimates obtained using the proposed
approach based on time of arrival with the approach based on received signal strength
proposed in [33] for various soil moisture concentrations. It is apparent that time of
arrival-based localization results in up to two orders of magnitudes improvement in the
localization error.

Table 3. Comparison of achieved localization accuracy.

TOA RSS

Moisture content xy z xy z

0% 7.598× 10−2 2.164× 10−3 3.455× 10−1 3.329× 10−1

10% 1.049× 10−1 2.148× 10−3 3.568× 10−1 3.355× 10−1

20% 2.185× 10−1 2.616× 10−3 3.848× 10−1 3.368× 10−1

30% 3.661× 10−1 3.908× 10−3 4.225× 10−1 3.341× 10−1

We used a minimal setup of our network to perform variance analysis of our location
estimates: five sensor nodes deployed randomly within a square field of size 10 m × 10 m
within the radio communication ranges of each other and four satellite nodes so that
we can closely capture the real world deployment scenario where each sensor node has
3–4 neighboring sensor nodes. Then, we computed the mean sample standard deviation of
the location estimate of the sensor nodes.

Figure 3 shows the variation of localization error in the X–Y plane and Z-direction for
the location estimate of each sensor node with the moisture content of the soil. With the
increase in the soil moisture content, the attenuation in the RF signal increases reducing
the SNR which causes an increase in the variance of the time of arrival. In addition, note
that as the soil moisture content increases the range of transmission of the localization
signal decreases reducing the number of neighboring nodes that a sensor node can hear
from and improve upon its location estimate. Thus, the localization accuracy decreases
with the increase in the moisture content of the soil. Nevertheless, the accuracy in such
cases can be increased by increasing the transmission range of more densely scattering the
sensor nodes.
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Figure 3. Localization error with respect to moisture content.

The localization accuracy using time of arrival-based ranging requires an added
provision of clock synchronization among all the nodes in the network. Indeed, the clock
synchronization is built into our network as it is also needed for scheduling [28,29]. Thus,
boundedness of clock drifts can be guaranteed by resynchronizing the sensor nodes ahead
of collecting the localization data. We studied the effect of the drift in sensors’ clocks in
Figure 4. The X-axis represents the maximum drift in the sensors’ clocks from true time in
either direction. We used a uniform random number generator to simulate the clock drifts,
and as seen in Figure 4, the clock drift increases the localization error increases linearly.
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Figure 4. Localization error with respect to clock drifts.

Figure 5 shows the localization error as a function of the sampling duration. As the
sampling duration increases, the accuracy of the time of arrival estimate increases as
per Equations (21) and (35). Accordingly, the accuracy of the estimates of the location
coordinates increases as confirmed by Figure 5.
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Figure 5. Localization error with respect to signal sampling duration.

3.1. Sensitivity Analysis

Here we quantify the error induced in the location estimates due to uncertainty in
various parameters of the localization models. The parameters of interest for our sensitivity
analysis are soil permittivity and permeability. Errors in measurement of these parameters
negatively impact the accuracy of the location estimates. We studied the change in the
mean of the location estimates per unit shift in the measured values of µs, ε′s and ε′′s from
their true values as shown in Tables 1 and 2.

Figures 6–8 present the sensitivities of the estimates to ε′s, ε′′s , and µs, respectively.
Figure 6 shows that localization error is most sensitive to the estimate of the real part of
soil permittivity. A shift of up to 40% in the estimate of εreal is tolerable to maintain the
localization error within 1 m for dry soil. Figure 7 shows that the localization estimate is
relatively insensitive to the imaginary part of the soil permittivity for lower soil moisture
content. This is due to the fact that for dry soil the real part of the soil permittivity
dominates the imaginary part; in other words, the effect of soil conductivity is ignorable.
Figure 8 shows that the localization estimate is also relatively less sensitive to the drift
in the estimate of the magnetic permeability of soil. A 40% drift in the permeability only
causes an error of 40% in the localization estimate.
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Figure 6. Sensitivity of time of arrival-based localization with respect to ε′s.
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Figure 7. Sensitivity of time of arrival-based localization with respect to ε′′s .
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Figure 8. Sensitivity of time of arrival-based localization with respect to µs.

4. Discussion

Our simulation results demonstrate that our technique is scalable and reliable. Al-
though the results are presented for a field size of 10 m × 10 m, the technique is equally
applicable to larger fields. This is because the complexity of the optimization problem used
to solve for the location estimates only depends on the number of immediate neighbors
and the anchor nodes in the field, both of which are upper bounded by a fixed number.

Note to further minimize the effect of synchronization drift between the nodes’ clocks
one could further use round trip propagation time instead of time of arrival. In such a
scheme, for example, Node A would send a pulse first to initiate the time of arrival data
collection from Node B, which would respons immediately with another pulse back to
Node A. Node A would measure the round trip time which would include delays due
to transceiver circuitry and computational logic (and is relatively insensitive to the drift
between the nodes’ clocks). Time of arrival estimate between these two nodes would equal
half of the round trip time thus measured minus the hardware/software processing delay
which can be estimated for the given hardware and software design.

Our experimental results showed the scalability of our MLE-based approach to practi-
cal sized sensor fields. For other application domains, where scalability may become an
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issue, other approaches may be explored. For example, to speed up the computation of
the estimates at the expense of their accuracy one can formulate estimation as a method-
of-moments problem. Such alternative formulations of the problem can be studied for
analyzing the trade-off between the computational cost versus accuracy.

5. Conclusions

In this paper, we presented our study of sensor node localization for a wireless sensor
network with anchor nodes placed above ground and sensor nodes deployed below ground
surface. We presented our methodology of 3D localization of sensor node locations to
compute their horizontal X and Y positions along with their depth Z under the ground
surface. We used time of arrival of the signal between neighboring underground sensor
nodes and between overground satellite nodes and sensor nodes for estimating the inter-
node distances. Nodes located above ground, called satellite nodes, serve as anchor nodes
in the scheme. We validated the localization model using simulations with realistic values
of physical properties of the soil media with reasonable fluctuations due to moisture
content. Location estimation errors in soil physical properties were also quantified using
sensitivity analyses.

We developed a statistical model for the variation of the time of arrival of a radio
frequency signal propagating along multiple physical media. The measured time of arrival
is found to be Gaussian distributed with mean as a function of internode distances, and
the variance a function of signal shape, duration, bandwidth, and SNR. Node localization
is posed as a maximum likelihood estimation problem. Time of arrival measurements
provided an accurate ranging solution for localization. In our previous work reported
in [32,33] we tackled the 3D localization problem for multiple media using measurements
of received signal strength as the ranging method. To the best of our knowledge, this is
the first work (in conjunction with our prior work in [33]) for sensor node localization
where nodes are located in different physical media, and accordingly the models have also
been developed for the range measurements across multiple media. The improvement in
localization accuracy as compared to those in [32,33] needs the added provision of clock
synchronization, which is in-built in our framework and maintained by the routing and
MAC layers in our design [30]. The shift in the detected time of arrival due to computation
delays can be bounded by hardware and software design.

Future work requires field experiments to calibrate the parameters of the localization
model, and indeed conducting a field-work is in the scope of future work for both sensor
operation as well as its network operation validation. The current work lays the theoretical
foundation and provides its proof-of-concept.
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Abbreviations
The following abbreviations are used in this manuscript:

MLE Maximum Likelihood Estimation
RSS Received Signal Strength
ToA Time of Arrival
AoA Angle of Arrival
UWB Ultra Wide Band
TDoA Time Difference of Arrival
WUSN Wireless Underground Sensor Networks
CRLB Cramer–Rao Lower Bound
SNR Signal to Noise Ratio

Appendix A. Mean Received Power in Terms of Locations

It is known that the mean signal power pmn = eµmn decays with distance along a single
path within a single lossless medium following the power law [64]:

pmn(d) = ηd−k (A1)

where d is the distance between the two nodes m and n, η is a constant and k is the path
loss exponent, both of which are functions of the medium. For example, in free space:

k = 2 and η =
pmGmGnλ2

(4π)2 , (A2)

where pm is the sender power, Gm and Gn are the sender and receiver antenna gains, and λ
is the wavelength. For simulation purposes, we use η = pmλ2/(4π)2 (i.e., Gm = Gn = 1)
and k = 2. A lossy dielectric medium such as soil has additional attenuation due to
conductivity losses [64]. The wave propagation equation for such a medium is given by:

E(r, t) = E0e−αr cos(ωt− βr), (A3)

where E is the electric field at time t at a distance r from the source which transmits at
amplitude E0. The complex propagation constant of such a lossy dielectric medium is
α + jβ, where:

α = ω

√√√√√µε′

2

√1 +
(

ε′′

ε′

)2
− 1

, (A4)

and

β = ω

√√√√√µε′

2

√1 +
(

ε′′

ε′

)2
+ 1

, (A5)

where µ is the permeability, and ε′ and ε′′ are the real and imaginary parts of the complex
permittivity of the medium.

Hence, in the more general setting where α 6= 0, Equation (A1) takes the form:

pmn(d) = ηd−ke−2αd. (A6)
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