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Abstract: Sensor applications for plant phenotyping can advance and strengthen crop breeding
programs. One of the powerful sensing options is the automated sensor system, which can be
customized and applied for plant science research. The system can provide high spatial and temporal
resolution data to delineate crop interaction with weather changes in a diverse environment. Such a
system can be integrated with the internet to enable the internet of things (IoT)-based sensor system
development for real-time crop monitoring and management. In this study, the Raspberry Pi-based
sensor (imaging) system was fabricated and integrated with a microclimate sensor to evaluate crop
growth in a spring wheat breeding trial for automated phenotyping applications. Such an in-field
sensor system will increase the reproducibility of measurements and improve the selection efficiency
by investigating dynamic crop responses as well as identifying key growth stages (e.g., heading),
assisting in the development of high-performing crop varieties. In the low-cost system developed
here-in, a Raspberry Pi computer and multiple cameras (RGB and multispectral) were the main
components. The system was programmed to automatically capture and manage the crop image data
at user-defined time points throughout the season. The acquired images were suitable for extracting
quantifiable plant traits, and the images were automatically processed through a Python script (an
open-source programming language) to extract vegetation indices, representing crop growth and
overall health. Ongoing efforts are conducted towards integrating the sensor system for real-time
data monitoring via the internet that will allow plant breeders to monitor multiple trials for timely
crop management and decision making.

Keywords: sensor; high-throughput phenotyping; internet of things; Raspberry Pi

1. Introduction

Plant growth and development are dynamic in nature, and phenotypes result from
the cumulative effect of genetic and environmental factors’ interactions through the entire
plant life cycle [1]. Plant breeders, agronomists, and farmers evaluate such crop phenotypic
traits to characterize different plant genotype/variety–environment interactions, estimate
key plant development stages and make crop selection/management decisions accordingly.
Thus, quantifying plant phenotypes associated with different plant genetics under diverse
environmental circumstances can improve the understanding of genotype-environment
interactions (G × E). In general, this concept is applied for plant variety selection in
standard crop breeding schemes [2,3].

Crop breeding is critical to enhance crop performance under climate change scenarios
and address food security needs for the growing global population, which is expected
to exceed nine billion by 2050 [4–6]. In the crop breeding programs, precise methods to
assess plant phenotypes associated with key performance traits, such as yield potential,
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disease resistance, and drought tolerance, are required. Besides, accurate measurements
are needed to ensure that plant varieties/cultivars with high performance are selected
before distribution to farmers [7,8]. Nevertheless, traditional field phenotyping in crop
breeding programs and genetics/genomics research can be laborious, time-consuming,
and subjective. It is also quite often with limited access to environmental data, which is
needed to integrate with phenotypic data for in-depth analysis [9,10].

Remote sensing platforms with image-based sensors for field-based high-throughput
phenotyping (HTP) are practical techniques for increasing phenotype evaluation efficiency
through automated or semi-automated data acquisition and analysis approaches [11–13].
The field-based HTP systems include phenotyping towers [14,15], field scanning plat-
forms [16,17], autonomous ground-based systems or modified agricultural vehicles [18–20],
systems such as unmanned aerial vehicles (UAVs), blimps and fixed-wing planes [21],
and, more recently, low-orbiting satellites [22]. These platforms noticeably strengthen a
crop breeding program’s capabilities to phenotype; however, these systems can be expen-
sive and may not allow continuous crop monitoring with efficient utilization of resources
(personnel, travel). Other common challenges encountered include operation skills, in-
adequate analysis tools, and restricted data collection frequency [23,24]. It is ideal for
developing HTP tools for field-based conditions with reasonable cost and versatility, which
are adaptable/expandable with third-party hardware and open-source software [24]. Such
systems should closely monitor plants and allow data collection (sensor and weather) at
high temporal resolution to provide high-precision phenotypic analysis to assess dynamic
crop responses to the environment.

Internet of Things (IoT)-based systems are becoming more available and affordable,
with automation and real-time decision-making capabilities in various fields, including
agriculture and plant phenotyping [25–27]. Moreover, IoT systems are operated through
open-source software, providing a broad range of interfacing solutions and options to
adapt and extend based on diverse experimental scenarios [28]. Raspberry Pi products
(https://www.raspberrypi.org (accessed on 10 January 2021) have broadened the IoT
applications. Raspberry Pi camera performance has been evaluated and shown to produce
high-quality imagery suitable for scientific and engineering applications [29–31]. For
example, such a system has been applied to investigate cassava bacterial blight interactions
in laboratory conditions [32], and normalized difference vegetation index (NDVI) extracted
from such system could be applied to evaluate crop health and development [33].

In general, the Raspberry Pi RGB camera is used to extract plant features such as size,
plant height, leaf counting, and color [34,35], as well as to detect plant phenology [36]
and disease [37,38]. The applications of a multispectral camera (such as a camera with
no infrared, commonly referred to as a NoIR camera) are sparse. The NoIR camera
provides more information on plant health status, where the healthy plants absorb more
visible light and reflect more near-infrared in general [39]. This allows the extraction of
vegetation indices, such as NDVI, in addition to others, allowing better scope to extract
more crop traits [40]. Moreover, this plant property also allows other benefits such as easier
segmentation of the plants of interest from a background (e.g., weeds, soil, etc.). Thus, the
integration of the RGB camera with the NoIR camera offers broader scope for plant science
research, as explored in this study.

The overall research goal in the presented work was to develop a Raspberry Pi-based
sensor system for automated in-field phenotyping and acquire high-frequency data to
support crop breeding programs. Two camera systems (RGB and NoIR) were integrated to
allow the extraction of vegetation indices that represent the crop vigor and health status
of wheat. The imaging system was integrated with a weather station for microclimate
monitoring to evaluate the dynamics of crop growth and development in a wheat breeding
trial. The low-cost sensor system was developed using open-source hardware products
such as Raspberry Pi. Open-source software, such as Python 3 and OpenCV, were utilized
to automatically control the system’s operation and extraction of the digital plant traits
(vegetation indices).

https://www.raspberrypi.org
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2. System Development
2.1. System Hardware

The sensor system’s main hardware was from StereoPi (Virt2real ltd., Moscow, Rus-
sia) [41], as shown in Figure 1. The StereoPi is a carrier board for a Raspberry Pi compute
module 3+ lite with Cortex-A53 (ARMv8) 64-bit at 1.2 GHz processor and 1 GB RAM as
a microprocessor to control the sensor system in this study (Raspberry Pi Foundation,
Cambridge, England, United Kingdom). The module is flexible for developers to leverage
the Raspberry Pi hardware and software stack in their customized system. The module
was connected to two Raspberry Pi cameras, version 2 RGB and NoIR (no infrared filter
above CMOS sensor), via camera serial interface ports on the StereoPi board. These camera
sensors are based on the image sensor Sony IMX219PQ CMOS 8 megapixel (Sony Corpo-
ration, Tokyo, Japan), and the active pixel count of the camera is 3280 × 2464. The Witty
Pi 3 board (UUGear, Prague, Czech Republic), connected via StereoPi general-purpose
input/output (GPIO) pins, provides a real-time clock with an accuracy of ±2 ppm. In this
study, the system was powered by a 4000 mAh Voltaic V15 USB battery (Voltaic Systems,
Brooklyn, NY, United States), and it has an “Always On” mode. This mode will never turn
off the battery while consuming only ~3 mA and supplying it to the sensor system. The
battery and the Witty Pi 3 capabilities allowed the camera to automatically power ON–
OFF in custom–duty cycles to control the data collection schedule and save the system’s
energy consumption.
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An enclosure for the camera was designed using the 3D Builder software (a free
software operating on Windows Operating System, Microsoft Corporation, Albuquerque,
NM, United States) and fabricated via a 3D printer with acrylonitrile butadiene styrene
plastic filament (Ultimaker, Geldermalsen, The Netherlands). The system’s complete set-up
(Figure 1b) was made up of the following four parts: main body, top, front, and back,
assembled with M2 bolts.

2.2. Programming Code for System Operation

The Linux-based operating system Raspbian Buster was run on the sensor system,
and the open-source Python 3 (Python Core Team 2015) was utilized as the primary
programming language to command the board and the sensor system to capture images at
a user-defined time point. Picamera was an essential Python library to create a time-lapse
imaging algorithm to capture images in this study. Initially, the program was coded to
automatically adjust white balance, image resolution, frame rate, exposure mode, and
shutter speed associated with variable in-field lighting conditions. The program next
controlled the camera to take a picture shot with a 30 s delay between each shot, thus
capturing a total of 15 shots per time point. Therefore, from the StereoPi board function,
the system could capture two images (from RGB and NoIR camera) simultaneously at a
single shot, and the two images were captured on one screen. As the real-time clock of the
Witty Pi 3 was synchronized with the sensor system, a timestamp for each captured image
was recorded and saved as a file name on a secure digital (SD) card.

The camera system was scheduled to power ON–OFF automatically through the
power management software from Witty Pi 3. Similarly, the time-lapse imaging script was
run automatically once the operating system began using the Linux crontab scheduling
system. In this study, the camera was controlled to capture images using the time-lapse
script at the following four time points each day: 7.30, 10.30, 13.30, and 16.30 h. Therefore,
for the one cycle at each time point, the sensor system was set to power ON for warming
up the system before running the script for 15 min and power OFF after running the script
for 15 min to assure all operations finished, as described in Figure 2. All the critical settings,
such as imaging settings, the number of captured images, and the camera operation
schedule, can be adjusted by the user based on their research objectives.
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2.3. Weather Station and Reference Panel

The weather station ATMOS 41 (Meter Inc., Pullman, WA, USA) following ISO 22522
standards (ISO, 2007, p. 22522) and CR1000 dataloggers (Campbell Scientific, Logan, UT,
USA) were utilized in the study to collect environmental data such as air temperature
(resolution: 0.1 ◦C, accuracy: ±0.6 ◦C), solar radiation (resolution: 1 W/m2, accuracy:
±5%), and wind speed (resolution: 0.01 m/s, accuracy: ±3%). The weather station could
operate with the power supplied from an external 12 VDC battery. In regard to the reference
panel, the panel units were customized using tiles with the following three different colors:
light brown, dark grey, and light grey. Spectroradiometer SVC HR-1024i, equipped with
the leaf clip probe LC-RP PRO (Spectra Vista, Poughkeepsie, NY, USA) with a 350–2500 nm
wavelength range, can be applied to measure the reflectance value of the panel units [42].
The reflectance data should be calculated for the wavelengths between 400 and 900 nm,
covering the camera wavebands’ spectral region.

2.4. Field Installation

Five sensor systems with five reference panels, and the weather station, were installed
in spring wheat field trials located near Pullman, WA (GPS: 46◦41′49.9” N, 117◦08′59.1” W)
in the 2020 growing season. The field was planted in a randomized complete block design
(RCBD) with 12 varieties, three replicates, and the plot size was 1.5 × 6.0 m, as shown in
Figure 3a.
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The sensors were installed facing toward the west side, and the cameras were set at
1.7 m above ground level (AGL) and 1.9 m away from the targeted plot boundary (Figure 4),
and oriented 50–60◦ downward from a vertical plane to focus on the wheat plot for the
growth stages from heading to maturity. In this study, the camera was adjusted to capture
two targeted plots at the left and right sides of the reference panels. The distance between
the reference panel stand and the camera stand was ~4.2 m (nearly the center of the two
targeted plots). Additionally, the weather station was installed at 1.8 m AGL at the center
of the field. The cameras, reference panels, and the weather station, were mounted on the
aluminum pipes.
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Figure 4. Sensor system and associated components. (a) Complete sensor set-up, (b) the weather
station installed at 1.8 m AGL, (c) the sensor system installed at 1.7 m AGL, (d) the reference panel
installed at 1.0 m AGL, and (e) the sensor system angle (50–60◦ downward) installed at a distance of
4.2 m between the sensor system and the reference panel and 1.9 m between the sensor system and
targeted plot boundary.

2.5. Digital Trait Extraction Programming Code

Based on the captured images, each image’s digital trait was extracted using OpenCV,
the open-source computer vision library (http://opencv.org/, accessed on 10 January
2021). The image processing script was coded to create and extract the NDVI values of the
targeted plant area on images from the NoIR sensor using Equation (1) [33]. The absence
of the infrared filter results in each pixel’s red channel detecting both red and infrared
radiation; thus, the red band can be applied as a near-infrared band to calculate NDVI.

NDVI =
(1.664× Blue)
(0.953× Red)

− 1 (1)

where,

NDVI = normalized difference vegetation index
Blue = blue band of the image from the NoIR camera
Red = red band of the image from the NoIR camera

In regard to the image processing steps, firstly, the code performs the separation of
the RGB and NoIR images, and only the NoIR image was used to calculate the NDVI.

http://opencv.org/
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With two camera systems, there is a possibility to extract several vegetation indices from
both the RGB and NoIR camera bands, as well as plant height (stereo vision technique).
Before beginning the NDVI calculation, the reflectance panel’s average pixel value was
standardized (radiometric image correction was applied if necessary) on the red (near-
infrared band in the NoIR camera) and blue bands. The NDVI was created following
Equation (1) and, after that, plot segmentation (two targeted plots) was performed. The
regions of interest (ROI) in this study were fixed. Lastly, the summary statistics of the
NDVI data based on the ROI from each image were extracted, as described in Figure 5.
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3. System Evaluation
3.1. Camera Operations

The affordable hardware and open-source software for the sensor system in this study
could successfully generate the multi-band image (RGB and NoIR image) with a high
temporal resolution (targeted at four times a day for around one month of data collection).
The sample raw data from two cameras are as shown in Figure 6. The resolution for a
received image was 2560 × 1248 pixels; thus, each RGB or NoIR image resolution was
1280 × 1248 pixels individually. In addition, Figure 6 also presented the consistency of
the sensor’s operation system and the camera efficiency in field research under different
environmental conditions.
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Figure 6. Images from a sample sensor system on 18 July 2020 consisting of the images from RGB
and NoIR cameras in one screen captured at (a) 7.30, (b) 10.30, (c) 13.30, and (d) 16.30 h.

The sensor system was installed in the field, starting from 7 July to 31 July 2020;
however, the first week of installation was for testing the system and evaluating the factors
that affected the image quality. The issues were resolved to establish the standard operating
procedure to capture images using the sensor system. In this study, the challenges were
the power for operating the cameras in the field, and after adjusting the automated setting
for the power ON–OFF system as well as the operation of the time-lapse imaging script,
the camera could operate for a maximum of five days without the need to re-charge. The
system for storing images will be vital to consider as well because the data were stored on
the SD card (32 GB) in the 2020 season, resulting in the operator having to manually access
the data and charge the power to the system every five days. Thus, the power generating
from the solar cell and cloud-based system or local database system for the 2021 season
will be developed and integrated into the sensor system.
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3.2. Image Analysis

The image processing algorithm analyzed the data offline using the Python 3 pro-
gramming language, mainly utilizing the OpenCV library. The first step was to separate
the RGB and NoIR images such that the same image resolution, as set in the time-lapse
image acquisition algorithm, was used to get the individual images. Thus, the NoIR images
were imported to create the NDVI images by splitting each band, and Equation (1) was
used to calculate the NDVI image from the two bands. The plot segmentation process was
semi-automated. Upon manual selection of four points of targeted plots (performed only
on the first image), the point coordinates were applied to the remaining images from the
same sensor. The statistical data, as described in Figure 5 from the targeted plot area, were
extracted using the NumPy library (https://numpy.org/, accessed on 10 January 2021),
and then the Pandas library (https://pandas.pydata.org/, accessed on 10 January 2021)
was utilized to export the data in a comma-separated values (CSV) file format.

Figure 7 shows the sample mean NDVI data from the image processing script and the
average field trial temperature at three time points within a day for a period of about one
month. Overall, the trend of the NDVI data gradually declined along the period of data
collection, as the sensor systems were installed starting at the mid to late heading stages
of wheat and the data collection ceased at the ripening stage; thus, the trend of the NDVI
curve related to the growth cycle of wheat represents maturity and senescence.
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Image processing for extracting digital traits was challenging as environmental factors,
such as wind direction and speed, moved the sensor system position. This factor created
a challenge in plot segmentation and ROI defining; thus, the process will be further
automated using reference regions/objects in the future. Similarly, the different light
intensity and quality of the camera sensor also impact the digital traits. Another aspect
to consider is that the image viewpoint in this study was not from nadir, resulting in the
wheat fields’ rectangular shape distorted within the images to a trapezoid. In the future,
the geometric transformation (e.g., skew correction methods) will be applied before image
processing and for a better comparison of the acquired UAV data.

The sensor system can provide multiple images, and image processing algorithms
can be adapted to extract several traits. For instance, different vegetation indices can
be estimated that represent canopy vigor and crop health (stress/disease). In addition,
plant growth rate (plant height) and different stages of crop growth and development
(emergence, heading, senescence) can also be estimated. Integrating the environmental data
with the crop information (growth, development, disease, etc.) through the growing season
can provide valuable data for genotype- environment studies, in order to understand
the genetic variability of growth dynamics. These will assist in robust, accurate, and
data-driven germplasm selection.

4. Discussion

Sensor applications for phenotyping (i.e., phenomics) continue to advance, primarily
motivated by the necessity to boost genetic improvements in crops/plants for resource
optimization, gains in yield, and overall quality. The development of sensors provides
opportunities for researchers to assess precise phenotypes with a high temporal resolution,
which can be associated with key performance and quality traits assisting in informed
variety selection/development [43–45]. Moreover, high temporal resolution data allows
scientists to define dynamic crop responses to the environment (genotype × environment
interactions) to assess genotype performance.

In this study, open-source hardware and software platforms were utilized to develop
an automated sensor system capable of capturing phenotypic data. The study specifically
explored the utilization of the Raspberry Pi board as the main processing unit, integrated
with a stereo camera board such as the StereoPi, to combine two Raspberry cameras (RGB
and NoIR). There are several Arduino and Raspberry Pi options, in addition to those used
in this study. For example, the Compute Module 4 IO board from Raspberry Pi can combine
multiple cameras. Similarly, in this study, ATMOS 41 was selected as the main weather
sensor based on the standardization and accuracy of the sensor to precisely analyze G × E
interactions. Other soil sensors can also be integrated with the data loggers to capture more
information. The integration of sensors to units such as Microsoft’s FarmBeats system is
also an option [46]. The sensor system in this study can operate for up to 5 days without
the re-charging of the battery. Integration with the solar panel would extend this capacity
and potentially make the data collection process sustainable. In the current form, the
capabilities can also be improved by limiting the images per time point and the number of
time points, which would reduce the battery usage time.

In regard to the NDVI, the feature was extracted as it associates with crop biomass
and yield [47]. It is also known to be a key trait associated with phenotyping applications
in wheat breeding programs [48–50]. Therefore, the NDVI assessment can be used as
a reference index for the dynamic monitoring of wheat growth. Researchers have used
multiple sensing platforms over the growing season to capture NDVI data, including
satellite [51], UAV [52], and proximal sensors [53]. In general, the NDVI value is low
during the stem elongation/jointing stage, which reaches its maximum at around the
booting/heading state. The NDVI values start to decrease slightly at the flowering/anthesis
stage until the grain-filling and the ripening stage. Nevertheless, the NDVI estimates are
influenced by many factors, such as measurement time, sensors, environmental conditions,
and wheat varieties among others [54]. In this study, a similar profile of NDVI data
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(Figure 7) was observed with a decrease in NDVI values from the mid to late heading
stages (13 July 2020), reaching flowering about one week later (20 July 2020), and finally, the
NDVI values decreasing up to the grain-filling and maturity stages (27 July 2020). Besides,
with two camera systems, more digital crop traits can be extracted for multivariate data
analysis and understanding genotype and environment interactions.

In terms of data management in this study, an onboard data storage system was de-
signed. There were two separate SD cards on the system; one installed with the Raspbian im-
age and other operating systems to control the sensor system, and another with the univer-
sal serial bus (USB) card reader placed on the Stereo Pi board to store the images captured
from the sensor system. With the 32 GB USB card used in this study, the estimated data size
would be about 300 MB/day (~5 MB/image × 15 images/timepoint × 4 timepoints/day);
therefore, the card could be used for up to approximately 100 days (that covers all crit-
ical stages of crop growth in spring wheat). However, storing the data at the site can
be risky due to potential losses (e.g., sensor errors), and a backup plan is needed. This
could be potentially resolved by incorporating internet capabilities. Another aspect of
data management is data processing. Rapid data processing protocols are needed for the
automated data processing and analysis. This could be performed over nighttime, through
edge computing, with the implementation of the image processing algorithm onboard to
quantify the NDVI value on the ROI. The values can be transmitted to end-users/local
database/cloud system for further processing or sharing (web-based interface). Image
quality is also an important aspect affecting the data quality, which can be affected by
sensor specifications and environmental factors such as wind and rainfall.

For incorporating internet capabilities, Wi-Fi modem/router with a subscriber identity
module (SIM) card slot will be installed in the field, which allows users to manage the
sensor through virtual network computing (VNC) or secure shell (SSH) for manipulating
and organizing the data remotely. Cloud computing can also be explored with such
implementation. Given the functionality of the sensor system, integration with the internet
to enable IoT capabilities would allow not only the dynamic sampling of crop growth and
microclimate data, but also the real-time monitoring of crop growth.

5. Summary

The major capabilities of the sensor system are as described below:

(1) The low-cost sensor systems with dual cameras assembled from broadly available
hardware operating on open-source software enabling tasks for continuous crop moni-
toring, especially for in-field crop evaluation, which is essential for field phenotyping;

(2) Camera operation script and automated trait analysis script integrated into the sen-
sor system are open-source and expandable software based on community-driven
numeric and scientific libraries, which are freely available and easily accessible.

Overall, the sensor system’s outputs had satisfactory performance in producing high-
frequency data in field-based phenotyping environments. The system can give researchers
access to an affordable option for high-throughput and accurate phenotyping in the absence
of personnel, allowing the conservation of resources (time for travel and data acquisition in
remote locations). Likewise, this system can improve the reproducibility of experiments and
reliability of in-field phenotyping data as it can build large data sets. It also can uniquely
provide the dynamic sampling of crop growth and development alongside microclimate
data. Our ongoing efforts will also explore internet connection to convert the system with
IoT capabilities and allow real-time monitoring and cloud computing.
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