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Abstract: To improve accessibility, this article describes a static, four-legged walker that can be
constructed from materials and fasteners commonly available from hardware stores coupled by open-
source 3D-printed joints. The designs are described in detail, shared under an open-source license,
and fabricated with a low-cost open-source desktop 3D printer and hand tools. The resulting device
is loaded to failure to determine the maximum load that the design can safely support in both vertical
and horizontal failure modes. The experimental results showed that the average vertical failure load
capacity was 3680 ± 694.3 N, equivalent to 375.3 ± 70.8 kg of applied weight with the fractured
location at the wood dowel handlebars. The average horizontal load capacity was 315.6 ± 49.4 N,
equivalent to 32.2 ± 5.1 kg. The maximum weight capacity of a user of 187.1 ± 29.3 kg was obtained,
which indicates that the open-source walker design can withstand the weight requirements of all
genders with a 95% confidence interval that includes a safety factor of 1.8 when considering the
lowest deviation weight capacity. The design has a cost at the bottom of the range of commercial
walkers and reduces the mass compared to a commercial walker by 0.5 kg (19% reduction). It can be
concluded that this open-source walker design can aid accessibility in low-resource settings.

Keywords: mobility; mobility aid; adaptive aid; walker; 3D printing; additive manufacturing;
mechanical testing; open hardware; open-source hardware; frugal innovation

1. Introduction

More than 10% of the adult public live with mobility-related disabilities [1,2]. The
physical struggles of accomplishing many activities of daily living are exacerbated further
for those with limited financial resources, whether living in less developed countries or
seniors living in poverty [3]. There are adaptive mobility aids available on the market to
help (e.g., canes, walkers, rollators, wheelchairs, etc.). Unfortunately, not everyone has easy
access to the global market [4], financial support can vary considerably across jurisdictions,
and the additional monetary strain to purchase all the necessary adaptive aids can limit
an individual’s ability to remain independent. As an example, proprietary commercial
walkers range in price from CAD 66 to CAD 130 [5]. Those with mobility disabilities and
living on restricted fixed incomes would benefit financially from price relief for adaptive
aids. This is the case even for those with health insurance or living in a country with
universal medical coverage, as the device may not be covered by their health insurance and
may need to be paid out of pocket. Similarly, those without access to commercial mobility
aids would benefit from a means to have them manufactured locally.

The prevalence of mobility disabilities increases as people age and develop age-related
conditions such as arthritis, back problems, chronic conditions, and accidental injuries [6].
A substantial portion of the elderly population is known to be living in financial hardship,
with 10.3% of U.S. adults ages 65 and older living in poverty as of 2021 [7]. In addition, the
American population is aging and by 2060, approximately a quarter of Americans will be
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65 years or older [8]. This will exacerbate the current challenge and thus there is a clear
need for more cost-effective adaptive mobility aids.

An approach that is gaining momentum to reduce the cost of consumer goods is the
digital distributed manufacturing of components and products with CNC tools such as
3D printers [9–11]. Briefly, 3D printers have evolved from rapid prototypers into additive
manufacturing (AM) devices that can be operated by local businesses [12–14], chain stores
(e.g., shipping firms such as UPS or government-owned mail [15] and home improvement
retailers [16]), makerspaces [17–19], fablabs [20], and libraries [21–23]. A particularly
enriching approach is the do-it-together paradigm [24], where companies share open-
source designs and manufacture locally [25,26]. This widespread use of 3D printing is
already poised to disrupt global value chains [27].

The migration of open-source technical development originally modeled in soft-
ware [28] has also matured in hardware development: free and open-source hardware
(FOSH) development [29,30]. FOSH has been growing exponentially [31] in large part due
to FOSH development decreasing the costs of 3D printers [32]. This was made possible
by the open-source release of self-replicating rapid prototyper (RepRap) designs (e.g., 3D
printers that can 3D print now more than half of their own components) [33–35]. There
are millions of 3D printable FOSH designs [36], and as people can treat 3D printers as
a profitable investment for household-level distributed manufacturing [37,38], there is
evidence that this method is saving consumers millions of dollars per year [39].

The same open-hardware approach used for general consumer items can be applied
to adaptive aids. For example, using this model for adaptive arthritis aids has resulted
in financial savings averaging over 94% compared to those with commercially available
products [40]. Organizations such as Makers Making Change [41] have begun using this
model as they connect people with disabilities that need assistive technologies with makers,
to design and fabricate the aids [42]. Where such a model is perhaps most powerful is
when an open-source design can be customized for a particular person, which increases the
value for the person while possibly reducing the overall costs.

In a recent review of adaptive aids for disabilities [43], although there were several
open-source solutions for those in wheelchairs in the mobility disability section, there were
no good options for those that require walkers. Walkers can be categorized into three
main groups: standard static walkers, front-wheeled walkers, and rollators. Standard
static walkers provide the greatest weight bearing and require the user to completely
lift the device off the ground for each step. This could pose a challenge for those with
reduced upper body strength. Front-wheeled walkers overcome this problem and resemble
standard walkers with wheels attached at the bottom of the two front legs, allowing the
user to sustain a more natural gait pattern. Rollators have four wheels, a braking system,
and a seat component that is better suited for users that require less weight bearing [44].
Accordingly, there is a need to establish an initial walker design that can then be evolved
through open-source collaboration to address low-income mobility needs.

This article reports on the mechanical testing needed to develop a low-cost static
walker under the open-source model. A functional standard walker design is described,
fabricated, and tested. The resulting device is a static, four-legged, walker that can be
constructed from member materials and fasteners commonly available from hardware
stores coupled by open-source 3D-printed joints. The aggregate walker is loaded to failure
to determine the maximum load that the design can safely support in both vertical and
horizontal failure modes. The experimental results are evaluated to determine the potential
for distributed digital manufacturing to assist individuals living with mobility limitations
and conclusions are drawn.

2. Materials and Methods
2.1. Walker Design

Upon reviewing several commercially available walkers, the initial concept for an
open-source walker was designed with 3D-printed joints and standard wooden dowels
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using Onshape CAD software (Onshape 1.157, Cambridge, MA, USA). The Onshape file
is publicly shared [45] and the full design including the bill of materials (BOM), CAD,
STL and spreadsheets are available under a GNU GPL v3 license on the Open Science
Framework [46]. Solid, circular cross-sectional wooden dowels were chosen as the main
structural members for their sustainability characteristics, as well as their general availabil-
ity in standard sizes at hardware stores throughout North America. In addition, wood is a
renewable resource that can be recycled and composted. A study comparing the carbon
footprint of wood, and aluminum, a common structural member material for mobility aids,
in the context of window frames, shows that wood produced approximately four times
less carbon footprint than aluminum did [47]. Though strength will vary depending on
the exact hardwood (e.g., basswood, beech, maple, oak, etc.) or softwood (e.g., cedar, pine,
spruce, etc.) chosen [48], the initial design was constructed using relatively lower strength
basswood, to assess the design conservatively.

The open-source, four-legged, static walker 3D-rendered design is shown in Appendix A
and includes several features that were derived from reviewing commercially available
devices. The front of the walker employs a triangular bracing structure that angles inwards
from the front legs and meets centrally on the top bar. This provides structural rigidity,
while not interfering with a user’s legs if the walker is positioned in front of them during
a sit-to-stand movement. The sides of the walker also feature two horizontal members
to improve the rigidity of the device. Additionally, an A-frame design was selected to
improve the stability of the walker frame. To create this effect, the front and back legs of
the walker are angled 10◦ forward and backward, respectively, while the sides are angled
outward at 5◦.

In its tested form (Figure 1), the walker measures 0.860 m tall from the floor to the top
of the handles, 0.580 m wide from left to right at the handles, and 0.305 m deep from front
to back (or 0.622 m measured at the bottom of the legs). This initial version of the walker
was designed with the intention that the wooden dowels would be cut to length to fit an
individual, and as such, the walker size is not currently adjustable without replacing the
wooden dowels. The present embodiment was sized for an adult 1.65 m tall according to
the instructions provided in Appendix A. To ensure a smooth but snug fit of the 3D-printed
parts onto the wood dowels, a diameter tolerance of 0.6 mm was used for all connector and
support parts.
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Additionally, the walker features a three-piece foot design that connects a thermoplas-
tic polyurethane (TPU) base to the wooden dowels via a press-fit polyethylene terephthalate
glycol (PETG) body and #6 flathead screws. These dual material feet provide greater fric-
tional resistance to improve walker stability when used on smooth surfaces, such as wooden
or tiled floors. A convex cylindrical TPU handle can also be press-fit centrally on the top of
the walker sides to improve the grip and comfort for the user.

2.2. Overview of 3D Printing

All 3D-printed parts were created using either a Polymaker PETG filament [49] or
Ninja Flex TPU [50] printed on an open-source RepRap-class 3D printer: Prusa i3 Mk3S
(Prusa, Prague, Czech Republic) using a 0.8 mm nozzle. Table 1 lists the names and
quantities of the 3D-printed parts and Table 2 provides the slicing parameters of for the
PETG and TPU components. Due to the intricate shapes of the parts, each was oriented
strategically on the print bed to avoid aligning the print layers with the anticipated fracture
failure planes (Figure 2). A brim of 0.5 mm is recommended for parts with minimal surface
contact with the bed, while Support is required for both the Ang Mid Supports and the
Foot Body components due to extreme overhangs; see Figure 3 for 3D-printed parts with
support locations and brim. Finally, the handle was printed in a vertical orientation, as
shown in Figure 4.

Table 1. List of names and quantity of 3D-printed parts.

Name Number of Parts

Ang 3 Connector [L] 1
Any 3 Connector [R] 1
Ang 2 Connector [L] 1
Ang 2 Connector [R] 1
Ang Mid Support [L] 1
Ang Mid Support [R] 1

Middle Support 1
Ang Side Support [O] 3
Ang Side Support [�] 3

Foot Body 4
Foot Cushion 4
Foot Washer 4
Handle Grip 2

Table 2. Slicing parameters for PETG and TPU 85A filaments.

Slicing Parameter PETG Value TPU 85A Value

Layer Height 0.6 mm 0.15
Wall Count 6 2

Infill Density 80% 30% (foot parts)
15% (handle)

Infill Pattern Gyroid Gyroid
Printing Temperature 225 ◦C 238 ◦C

Bed Temperature 85 ◦C 50 ◦C
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2.3. Wood Dowel Part Sizing

To ensure the walker is made to the proper fit for the user, measurements should
be taken and adjusted with the calculation procedures detailed below. The quantity of
each dowel part is specified in Table 3 along with a labeled diagram of the wood dowel
components and sample calculations in Appendices A and B, respectively.

a. Height of the walker: measure from the ground to the crease of the user’s wrist while
in an upright position with arms relaxed on the sides and wearing shoes.

b. Length of the walker leg dowels: Take the height of walker established above and
divide by Cosine(10◦). Subtract 15 mm for the thickness of the foot cushion and
30.75 mm for the top 3D dowel joint. The final value is the length at which four wood
dowels should be cut as the legs of the walker.

c. Width of the walker: Standard walkers have a width between 635–735 mm. However,
if the user requires going through more narrow entryways, some walkers can also be
between 560–610 mm [51]. For a more comfortable fit, it is recommended that the
walker is slightly larger than shoulder width or more if the user has a wider stride.

d. Length of the top front dowel to be cut: subtract 35.5 mm from the width of walker
value established above.

e. Depth of the walker: Proper depth allows the user’s hands to fit comfortably and
within the handle and is dependent of the handle length. Ensure the length is larger
than the width of the user’s fist, and the amount of extra handle grip is determined
by the preference of user.

f. Length of the handlebar dowel to be cut: add 82 mm to the length of the handle.
g. Length of the angled front dowel: Perform sine law by dividing the calculated length

of the top front dowel by 2, subtract 12 mm, multiply by Sine (95.296◦), and then
divide by Sine (27.404◦). Finally, subtract 75 mm.

h. Length of side dowels: These will be the last dowels cut as dimensions are dependent
on the slight variations during construction and therefore the walker would have
to be almost fully constructed. The length will be measured once the Ang Side
connectors are placed in the proper locations as specified in the assembly instructions
in Appendix B between steps 15, 16 and 17. The measurement is taken from one end
of the circular stress reliever to the other and then 9 mm will be added to that value.

Table 3 summarizes the wood dowel parts required to construct a personalized walker
along with the quantity.

Table 3. Wood dowel part names and quantity.

Name Number of Parts

Top Front 1
Handlebar 2

Leg 4
Angled Front 2

Top Side Support 2
Bottom Side Support 2

See Appendix B for detailed assembly instructions and images.

2.4. Walker Mechanical Testing

To ensure the walker assembly can safely withstand regular use, mechanical testing
was conducted to find the maximum load required to fracture the device in the vertical and
horizontal planes. The following methods were conceived to mimic and exceed the “static
strength of walking frame” testing described in Section 16.1 of ISO 11199-1 2021. This stan-
dard requires walkers to bear a purely vertical load of 1500 N without cracking or breaking
for a duration of 2 to 5 s [52]. To provide additional design insights regarding failure modes
and locations, our methods exceed this standard by testing the walkers to failure. For each
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test, 5 trials were recorded using a load cell (1210AF-1K-B 1000lb, Interface, Scottsdale, AZ,
USA), a potentiometer-style displacement gauge (TR100, Novotechnik, Southborough, MA,
USA) with a 100 mm range, and a custom LabVIEW control program (National Instruments,
Austin, TX, USA). For each of the following assessments, force–displacement curves were
recorded and analyzed in a spreadsheet to determine the maximum load the walker could
withstand before failure. Failure was defined as the point at which the applied force began
to decrease with continued displacement, which coincided with the fracturing of either
the wooden dowels or the 3D-printed components. In addition, each of the trials on the
force–displacement curve will indicate the stiffness in Newtons per millimeter (N/mm),
which is calculated by inserting a trendline to quantify the slope of the flat region of the
force-displacement curves.

For the vertical testing, a universal compressive and tensile testing machine (Tinius
Olsen, Horsham, PA, USA) capable of uniaxial compression was used to apply a manually
controlled vertical force to the walker and distributed across the center of the top handlebars.
The vertical load was applied at a rate of 0.18 ± 0.4 mm/s, and was captured with a
resolution of 100 N. The walker was placed freely within the testing machine with its TPU
feet in contact with the base of the test machine to mimic the static strength testing of ISO
11199-1 2021. None of the tested walkers experienced moving or sliding when load was
applied. The load application points were positioned to cover the areas of a typical span of
a fist to simulate the vertical component of force applied by the user pushing down onto
the walker with their hands, also in-keeping with the relevant ISO standard (shown in
Figure 5).
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To test horizontal failure, an Enerpac single-action manual hydraulic hand pump
(P39, Enerpac, Menomonee Falls, WI, USA) and a Simplex single-acting hydraulic cylinder
(R106, 2-ton capacity, Simplex, Broadview, IL, USA) were used to apply an expanding force
to the walker handlebar from the inside of the device until component failure occurred.
Again, load application was increased manually by a single technician at a measured rate
of 0.90 ± 0.31 mm/s. The walker was placed freely on the floor surface and allowed to
deflect horizontally. See Figure 6 for a layout of the testing equipment. This force was
intended to simulate the outward horizontal force components the walker may experience
from a normal user-applied load (shown as FH in Figure 7). For both vertical and horizontal
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testing, the force was controlled manually by a single operator to maintain consistency
across trials.
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2.5. Calculating Body Weight Capacity

To represent the vertical and horizontal failure modes in more meaningful terms, the
forces measured were translated into the amount of user-applied load the current design
is capable of supporting. To calculate this, the force exerted by the user’s arms is broken
down in its vertical (i.e., FV) and horizontal (i.e., FH) components. To carry this out, the
angle created between the forearm and horizontal plane was measured using ImageJ, an
open-source image processing software [53], while the user positioned their arms resting
on the walker (see Figure 7).

Through trigonometric relationships, the vertical and horizontal capacities of the
device can be related to user-applied load (i.e., LA) by assuming an even distribution across
the two handlebars and balancing the vertical forces (i.e., LA = 2FV). The arm force, FU, is
applied at an angle of θ from the horizontal plane, and is deconstructed into its vertical
and horizontal force components.

Accordingly, the user-applied load limit for vertical component corresponding to
failure can be calculated from the vertical capacity as follows:

LAVert = 2FV = 2(
FTestVertical

2
) = FTestVertical [N] (1)

Similarly, from the horizontal component, the user-applied load limit can be deter-
mined by Equations (2) and (3):

FV = (FH)tanθ = (FTestHoriztonal)tan θ [N] (2)

LAHori = 2FV = 2(FTestHorizontal)tan θ [N] (3)

where, FTestVertical and FTestHorizontal are the measured vertical and horizontal capacities of
the walker, respectively.

3. Results
3.1. Orientation of User-Applied Load

Analysis of the frontal plane image of the sample user indicated that the angle be-
tween their forearm and the horizontal bar of the walker was 71◦ (Figure 7). Accordingly,
Equations (1)–(3) are for calculating the limits of user-applied load for vertical and horizon-
tal capacity testing.

3.2. Vertical Walker Testing

The failure load corresponding with the vertical capacity of the walker ranged between
2500 N and 4300 N with an average of 3680 ± 694.3 N (see Figure 8). These failure loads
were the result for vertical displacements ranging from 9.7–14.5 mm, or an average of
13.1 ± 1.94 mm. The load to failure of trial 3 was the lowest, and is expected to have
resulted from an imbalance of vertical load distribution across the walker handles, which
was noted at the time of testing. All the walkers’ failure points under vertical loading were
found to be at the handlebars (as shown in Figure 9) where the wood dowels fractured.
Additionally, three out of five of the walkers exhibited very slight surface cracks on other
wooden dowels located along the leg dowels. All 3D-printed parts remained intact. Using
Equation (1), the user-applied load associated with this vertical failure mode was calculated
to be 375.3 ± 70.8 kg.
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3.3. Horizontal Walker Testing

The failure load corresponding to the horizontal capacity of the walker ranged from
259 N to 384 N, with the average being 315.8 ± 49.4 N (see Figure 10). These failure loads
were the result for horizontal displacements ranging from 28.7–46.1 mm, or an average of
37.0 ± 7.15 mm. For the horizontal testing, failure consistently manifested at the Ang 3
Connector 3D-printed part, where it experienced splitting and cracking, as shown in
Figure 11. All wooden dowels and the rest of the 3D-printed parts remained unaffected.
Using Equation (2), the horizontal capacity of the user-applied load that would yield this
horizontal failure was calculated to be 32.2 ± 5.1 kg. It should be noted that Figure 10
from horizontal testing may appear to have a higher variability in results due to the much
smaller scale of the y axis relating to force in a range up to 400 N compared to that in
Figure 11 from vertical testing that displays data in a range up to 4500 N. The proportions
of standard deviations to their average values for both testing types, however, are similar
and in fact the variation in the vertical test is slightly higher.
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4. Discussion
4.1. Calculating Weight Capacity of Walker

The user-applied load limit was found to be much larger for vertical failure (3680 ± 694.3 N,
or 375.3 ± 70.8 kg) as opposed to horizontal failure (315.8 ± 49.4 N, or 32.3 ± 5.04 kg). This
indicates that the current design of the static walker is limited by a horizontal failure mode
that would result in the fracturing of the 3D-printed Ang 3 Connector to occur first. Should
additional load-bearing capacity be required, future iterations of the walker should begin
with redesigning this component.
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According to Statistics Canada, in 2009 the mean weight of Canadian men and women
was 86.4 kg and 72.1 kg, respectively [54]. These weights are far below the measured
failure load limit of the walker, with safety factors of 1.82 and 2.19 for men and women,
respectively. Furthermore, the current walker design would be expected to have a safety
factor of 2 for bearing all of the bodyweight of individuals that weigh 78.9 kg. It should be
noted that this failure load analysis is not without limitations. The vertical and horizontal
capacities of the walker were assessed by independently applying forces to the device in
each direction, and at relatively slow rates. It is possible that the combined loading of the
walker in three dimensions could yield an alternative failure mode with a lower limit. The
walker was also tested under an idealized use case, where the user was operating the device
with two hands and evenly applying load to both handlebars and all four legs in contact
with the ground. Again, deviations from these boundary conditions may yield alternative
failure modes and limits. Finally, the results indicated here are specific to the construction
described in Section 2. The walker’s dimensions, member material, and 3D-printed part
construction should all be expected to change the load limits of the static walker. Despite
these limitations, the safety factors described above are promising, and suggest that the
device should be capable of safely bearing the load of individuals whose bodyweight is
between the ranges of 78.9 to 93.55 kg during normal operating conditions.

Though the deflections reported for load-to-failure are large for both vertical and
horizontal failure modes (vertical: 13.1 ± 1.94 mm, horizontal: 37.0 ± 7.15 mm), it is
important to consider how much deflection is expected to occur under typical use conditions
to assess user comfort. A user-applied load corresponding to 100 kg of fully supported
bodyweight would be expected to yield vertical and horizontal testing loads of 981 N and
162 N according to Equations (1) and (3). From Figures 8 and 10, the corresponding vertical
and horizontal deflections are 4.42 ± 0.18 mm and 21.6 ± 4.83 mm, respectively. This
vertical deflection seems reasonable given that the walker uses soft TPU feet to dampen
impacts with the ground. The horizontal deflection may be of more concern; however, it is
important to consider that the walker is not typically exposed to full bodyweight, and this
displacement occurred without the influence of bodyweight-induced ground friction to
counteract leg expansion during the isolated horizontal testing. Future designs may wish
to consider the use of additional bracing to limit horizontal deflection.

4.2. Benefits of the Open-Source Walker

The open-source walker has several benefits. First, it can be customized for the user, so
that the additional mass and unneeded complexity of a multi-height walker is eliminated.
This results in substantial mass savings with typical walkers weighing 2.7 kg compared
to this open-source design, which weighs 2.2 kg [55]. A 19% reduction in weight can
have significant impacts on the users since static walkers require frequent use of upper
body strength to lift the device each time it is moved. This reduced weight is particularly
beneficial for those with limited strength, mobility, and balance. Device weight calculations
are presented in Appendix C. Second, the open-source walker has potential for an aesthetic
benefit, as users can customize the walker both with paint or stain on the wood as well as
the color, texture and design on the 3D-printed parts. Additionally, the total cost of the
open-source walker as designed and tested here is CAD 86.97 using commercial PETG/TPU
and CAD 65.52 using Recyclebot PETG/TPU in contrast with the price of CAD 66–130 of
standard commercial walkers. The range of the open-source walker’s cost is overall lower
than that of current walker purchasing options. The cost, bill of materials, and comparisons
between purchasing in the U.S. or Canada is shown in Appendix C.

The largest benefit of an open-source walker design may be its accessibility. Different
geographical locations within countries and around the world experience inequalities in
access to assistive devices as a result of limited supply chains, lack of government funding,
and high costs, especially low- and middle-income countries. The supply of assistive
devices is often limited by insufficient transportation or delivery services. These physical
barriers make it difficult for people residing in more remote areas to access assistive devices.
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The benefit of having an open-source walker is its ability to be designed digitally anywhere
in the world, then manufactured locally using locally available materials to overcome
supply shortages. The ability to 3D print replacement parts can also extend the functional
life of the devices. Additionally, providing a cost-effective solution makes it more affordable
for people who must pay out of pocket for healthcare needs [56]. It is important for assistive
devices to have an inclusive design without the need for extra modifications to ensure
proper use and the comfort of the users. This can be achieved by customizable designs,
such as that of the current static walker, which can be constructed to match the user’s size
and personal preferences [57].

4.3. Risks and Limitations

The basswood material used was intentionally chosen due to its softer and weaker
performance to yield more conservative testing results. Any alternative materials, however,
should be assessed for comparable deflection and failure under load prior to use to ensure
safety and structural integrity. Though most standard walkers have height adjustments,
this feature was not included in the initial open-source walker design. Since the walker is
constructed to specific measurements of the user, it is customized to them and should not
require additional adjustments for a proper fit.

The ability to easily change diameters of the 3D-printed parts using parametric vari-
ables can enhance the tolerance with the wooden dowels and increase the range of material
compatibility to provide more stable and consistent connections. Tolerance errors are still
possible due to diameter variations in the dowels during the production process. Precau-
tions should be taken by measuring each dowel diameter and reflecting those measurements
in the CAD files prior to printing.

As the 3D-printed components are load-bearing, it is imperative that they are ap-
propriately dense and free of defects. There are several approaches that can be used to
ensure this. First, following Tanikella et al. [58], the parts can be inspected post-print by
comparing theoretical mass for each component to the actual mass to ensure that the infill
is appropriately dense as well as inspecting the outer surface for visible defects. Another
approach is to monitor the print with computer vision following Petsiuk and collabora-
tors [59–61] to either detect errors in real-time and/or create a virtual 3D internal scan of the
print to ensure printing integrity. This can be accomplished with any low-cost web camera
attached to the 3D printer. Mechanical strengths of fused filament fabrication (FFF) parts
made from commercial filaments have been well characterized in the literature [58,62], so
manufacturers should refer to that if using a different polymer. PETG has been extensively
studied for tensile strength and failure [63], strain rate sensitivity [64], microstructure
impacts on mechanical properties [65], infill density [66], its role in composites, [67], and
machine parameters on strength and hardness [67]. There is also variance expected based
on the infill pattern selected [68–71]. Finally, it should be pointed out that there is some
mechanical strength variance observed with the color of the filament due to the various
colorants [72].

Another possible risk to consider is that the testing was conducted in a laboratory
setting while typical walker usage would occur in less controlled environments such as the
outdoors that introduce untested external factors. These factors include weather, terrain
roughness, and other inconsistencies in the interaction of the user and the walker.

4.4. Future Work

Improvements to the current open-source walker design can enhance portability for
added convenience and strength to increase weight capacity. Portability can be achieved by
implementing a rigid 3D-printed folding mechanism at various joints to make storing in
cars or at home easier. Higher strength can be achieved by squaring the handlebars with the
top front dowel to improve the horizontal failure load, which currently limits the walker’s
load-bearing capacity. This may also be achieved through wall thickness adjustments, as
well as increasing the infill density and number of perimeters printed.
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Standard static walkers are one of many different assistive devices for mobility aid that
can benefit from this open-source design approach. One natural extension of the current
static walker design lies in developing cost-effective, open-source, 3D-printable rollator
designs. Rollators are mobility devices similar to a standard walker, but which include four
wheels, a braking system, and a seating component for rest. Rollators can be prescribed
for improving postural stability as a result of muscular weakness and imbalance [73]. A
possible redesign of the rollator should explore the ability to easily interchange wheels to
accommodate numerous environments such as travelling in the winter where ice formed on
sidewalks currently limits the range of locations and time of year the device can be safely
used. In addition, 3D-printed features such as beverage holders or a basket can provide
more utility to the user.

The largest influence on the overall cost is purchasing wooden dowels, which account
for over 50% of the total expense. It is possible to explore alternatives to the sourcing of
wooden dowels beyond hardware stores such as using recycled or scrap wood dowels for
walker members that do not experience high load bearing (i.e., side supports). A drawback
can be the inconsistency of wood and quality that can affect the performance which may
pose a safety risk if the recycled or scrap material has not been well inspected and tested. A
potential method for reducing the cost further is by 3D printing using recycled filaments
for both the joints and members of the walker to replace the wood dowels using an infinite
belt printer. Infinite belt printers are continuous 3D printers capable of printing extremely
long parts by moving along a conveyer belt print bed [74]. Similarly, a large format printer
could be used if it is accessible.

Additionally, the cost of filament can be substantially reduced with the application
of RepRapable Recyclebot, an open-source 3D-printable extruder device for converting
waste plastic into filament [75]. The main costs associated with this method include the
electricity required to power the device, which is currently about CAD 0.04 for 0.24 kiloWatt
hours per kilogram of Recyclebot filament produced, but varies regionally. Both PETG and
TPU filaments can be made this way from virgin sources of plastic or failed and recycled
3D prints. This significantly reduces the cost of hard thermoplastic filament from CAD
21.50 to CAD 0.04 to build the open-source walker. When coupled with the fabrication of
the wood members as well, this provides a substantive cost reduction and is an area of
promising future work. Recycled PETG and TPU filament spools that run on a Recyclebot
reduce the plastic costs to a few pennies per kilogram. If both the 3D-printed parts and
the wood are replaced with recycled polymers, the cost can be reduced to about CAD 5
(for the screws). Finally, many of the screws could be eliminated by 3D printing the joints
such that they attach directly to the 3D-printed dowels and are fixed by other modes (e.g.,
Japanese woodwork joints, etc.). When changing the material of the structural members
from basswood to PETG or another hard thermoplastic, the material properties will change,
so the design should be retested to ensure structural integrity is not compromised. One
strategy related to overall device optimization may be to limit material changes to 3D-
printed components that are not associated with current device failure modes. Again
though, any changes should be assessed to ensure that the alterations do not cause a new
failure mode to become more dominant, limiting the structural durability otherwise.

Regarding the validation on safety and performance of this open-source walker de-
sign, further investigation into the Canadian regulation of assistive devices governed by
various institutions such as the Canadian Standards Association (CSA) [76] overseeing
design requirements and test methods, the International Organization for Standardization
(ISO) [52] overseeing performance and safety, and Health Canada [77] should be evaluated.
For the United States, the commercialization of a 3D-printed walker must comply with the
regulations of the Food and Drug Administration (FDA) [78].

Further testing on the load bearing of the open-source walker can expand into clin-
ical trials involving the evaluation of medical device performance with human use and
interaction; though clinical trials are not required for Class I medical devices such as stan-
dard static walkers. Results from these trials can affirm the safety of the user in real-life
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applications. The authors suggest future work include biomechanical assessments to first
determine the common load magnitudes and orientations from optical tracking and force
plate testing with a clinical user group, followed by a load-to-failure investigation under
the force orientation identified from that test. Additionally, the open-source community
can identify areas of design improvements. Future work is needed to investigate the dura-
bility and lifetime of the open-source walker including tests against changes in relative
humidity, UV aging as well as the impacts of protective measures such as stains, treatments,
and painting.

Another aspect of this research that deserves further attention is the energy savings
and business implications of distributed manufacturing in this way. It is well-known that
the current industry is incredibly inefficient and great efforts have been made to reduce
energy consumption using a sustainable inventory model that uses variable production
rates, improved service, partial outsourcing planning, and defective production, restores
reworkable items, and disposes of non-reworkable items [79]. Briefly, 3D printing has been
proposed as a method to reach carbon neutrality by radically subverting many sources of
energy waste [80]. It is already well-established using life cycle analyses [81,82] that reveal
that distributed manufacturing using 3D printing tends to be more sustainable because of a
host of advantages (e.g., no packaging, no transportation-related costs, etc.) [83]. Another
approach to overcoming some of the supply chain disruptions that cause unreliable manu-
facturing is to implement a novel transportation policy [84]. In distributed manufacturing,
the entire conventional business model and supply chain is no longer valid as producing
consumers (i.e., prosumers) could manufacture high-end medical products for themselves
as this paper has demonstrated. The impacts of management in conventional firms could
be existential if the trend of DIY manufacturing continues to increase [39] in both volume
and sophistication.

5. Conclusions

The prevalence of mobility disabilities due to age-related conditions and injuries is
increasing the demand for assistive devices. The limited supply and financial resources
for users living in poverty or less-developed countries pose a challenge to the accessibility
of these devices. To address this, digital distributed manufacturing and open-source
hardware were used to create a cost-effective, accessible, and ultimately more sustainable
standard static walker constructed using basswood dowels, 3D-printed PETG joints and
TPU parts, and commonly available screw fasteners. It has been made clear that with
proper measurements, the walker can be customized to any user and eliminate the need for
height adjustment. Mechanical testing was conducted using a universal compressive and
tensile testing machine, hydraulic cylinder, and hydraulic hand pump to find the maximum
load required to fracture the device in the vertical and horizontal planes. The experimental
findings show that the average vertical failure load capacity was 3680 ± 694.3 N, equivalent
to 375.3 ± 70.8 kg of user-applied load, while the average horizontal load capacity was
315.6 ± 49.4 N, equivalent to 32.2 ± 5.1 kg of user-applied load. The maximum supported
weight capacity of a user of 187.1 ± 29.3 kg was obtained. The expected safety factor for
this walker design is 1.8 times the mean weight of Canadian men (86.4 kg).

The open-source walker has several advantages. One advantage of this device is the
mass reduction of 19% (or 0.5 kg) compared to that of commercial walkers. Any difference
in weight is significant when put into the perspective of a user with diminished strength,
as static walkers require repetitive lifting when the user is in motion. Additionally, the
present design is expected to cost between CAD 87 and CAD 65 on the high end, which is
in line with the least expensive commercial walkers. Further reduction in the cost of an
open-source walker design is possible with future work using waste plastic to substitute
both commercial 3D printing filament as well as the structural wood components which
could reduce the costs to less than 10% of the present cost. These savings can increase the
affordability of vital assistive aid devices around the globe and bridge the accessibility gap
between the low- to middle-income regions and for those who do not receive insurance
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reimbursement for these devices. The social implications of this device in particular and
the larger potential of open-source distributed manufacturing are substantial as they allow
those with low economic resources to generate wealth and value for themselves.
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Appendix A. Open-Source Walker Labeled Diagram and Sample Calculations for Fit

The labeled diagram of the design for all the major components is shown in Figure A1.
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Sample Calculations for Proper Fit

Height of walker: measured height of 860 mm from the user’s wrist to the ground.

https://osf.io/v3njw/
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Length of walker leg dowels to be cut:

Measured Hight
cos 10◦

− 15 − 30.75 =
860

cos 10◦
− 15 − 30.75 = 780 mm

Width of walker: desired overall width is 580 mm.
Length of top front dowel to be cut:

Desired Overall Width − 35.5 = 580 − 35.5 = 545 mm

Depth of walker: desired length of handle is 150 mm.
Length of handlebar dowel to be cut:

Desired Handle length + 82 = 150 + 82 = 232 mm

Length of angled front dowel:

(sin 95.296◦)
(

Length of Top Front Dowel
2 − 12

)
sin 27.404

− 75 =
(sin 95.296◦)

(
545

2 − 12
)

sin 27.404
− 75 = 488 mm

Length of top side and bottom side support dowels to be cut:

Measured Value From Ends Of Stress Relievers On Angled Side Support Parts+
9 mm = 410 + 9 = 419 mm

Appendix B. Calculations for User Weight Capacity

LAVert = 2FV = 2
(

FTestVertical
2

)
= FTestVertical [N] (A1)

LAVert = 2FV = 2
(

3680 ± 694.3
2

)
= 3680 ± 694.3 [N] or 375.3 ± 70.8 [kg]

LAVert = 2FV = 2(FTestHorizontal)tan θ [N] (A2)

LAhori = 2FV = 2(315.8 ± 49.4)tan 71◦ = 1834.3 ± 286.9 [N] or 187.1 ± 29.3 [kg]

Appendix C. Assembly of Walker

Method for foot assembly:

(1) Insert the Foot Washer flush into the Foot Body. It should fit snug.
(2) Slide the Foot Cushion into the bottom of the Foot Body and exert a good amount

of force to press it into the tight space. A helpful tip is to press with the palm which
allows the full arm to exert force. See Figure A2.
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Method for walker assembly:

(1) Measure and mark the center of the Top Front dowel. Then, mark half the length of
the middle support part on either side of the first mark.

(2) Align the middle support through the dowel with the marks and secure it using
screws and a drill.

(3) Measure and draw a center line along the length of the handlebar dowel (lateral area).
(4) Secure the Ang 2 Connector [L] into the side without the letter and Ang 3 Connector

[L] onto either ends of the handlebar with both stress relievers (slit with a circle
attached) centered to the line. See Figure A3 to ensure Ang 3 Connector is in the
correct direction by refereeing to the orientation of the letter.
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(5) Secure a leg dowel onto the Ang 2 Connector [L].
(6) Slide two Ang Side Supports [O] onto the leg dowel with the stress relievers pointing

to the right and the [O] symbol positioned at the top. See Figure A4.
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Figure A4. First half of leg assembly.

(7) Secure a leg dowel onto the Ang 3 Connector [L] on the end with the stress relieves
pointing in the same direction.

(8) Slide one Ang Side Support [�] onto the leg dowel with the stress relievers pointing
to the right and the [�] symbol positioned at the top. Following that by sliding the
Ang Mid Support [L]. See Figure A5.
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(11) Secure both angled front dowels onto the middle support and lay the walker upside 
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cautious when carrying this out as the fit will be tight, and ensure the dowel sits fully 
into the connectors. Secure it once it is in place. See Figure A7. 

Figure A5. Second half of leg assembly.

(9) Repeat steps 3–8 for the right side and where you used the [O] part will now be [�].
(10) Insert (do not secure) the last connection of Ang 3 Connectors onto either ends of

the top front dowel. By this step, the overall frame of the walker is constructed. See
Figure A6.
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Figure A6. Connected both left and right sides.

(11) Secure both angled front dowels onto the middle support and lay the walker upside
down on a flat surface so the top front dowel side is resting on the ground.

(12) Slide one of the Ang Mid Support into the other end of the angled front dowel. Be
cautious when carrying this out as the fit will be tight, and ensure the dowel sits fully
into the connectors. Secure it once it is in place. See Figure A7.
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(13) Repeat step 12 for the remaining side. 
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Figure A8. Connected bottom side connector. 

(16) Move the top Ang Side Connectors down from the top by 150 mm. Insert the top side 
support into one of the connectors. try to align both connectors in parallel and slowly 
move them towards the top of the walker so the top side dowel starts to fit into the 
other connector. Keep moving them incrementally until the dowel is fully in (see Fig-
ure A9). 

Figure A7. Connected first angled support.

(13) Repeat step 12 for the remaining side.
(14) Secure the Ang 3 Connectors onto the top front dowel.
(15) Position the walker right side up. Secure the bottom side support dowel into the fixed

Ang Mid Support part. Unsecure the Ang 2 Connector to add room and slowly move
the corresponding Ang Side Support into the dowel. Be cautious as forcing it in place
poses a risk of breaking the parts. Once fully in place, all the parts on that one side
can be secured. See Figure A8.
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Figure A8. Connected bottom side connector.

(16) Move the top Ang Side Connectors down from the top by 150 mm. Insert the top
side support into one of the connectors. try to align both connectors in parallel and
slowly move them towards the top of the walker so the top side dowel starts to fit
into the other connector. Keep moving them incrementally until the dowel is fully in
(see Figure A9).
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CAD 65.52–86.97 depending on the use of recyclable or commercial filament with the ma-
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filament cost of CAD 0.05–36.63, and that of the screws of CAD 5.05. Table A4 shows the 
cost comparison of the open-source walker with materials sourced from United States ver-
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(17) Repeat steps 15–16 for the other side.
(18) Secure all four feet onto ends of the leg dowels (Figure A10).
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Appendix D. Cost Calculations

The price of the wood dowels is summarized in Table A1, that of screws is summarized
in Table A2, and of that of 3D-printed parts is summarized in Table A3, along with the
weights of each part. The total cost of constructing one open-source walker equates to CAD
65.52–86.97 depending on the use of recyclable or commercial filament with the majority of
costs originating from purchasing wood dowels at CAD 45.29, followed by the filament
cost of CAD 0.05–36.63, and that of the screws of CAD 5.05. Table A4 shows the cost
comparison of the open-source walker with materials sourced from United States versus
Canada, in USD.
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Table A1. Wood dowel diameter size with its corresponding weight and price.

Diameter Size Quantity Total Used Length
(m)

Total Weight of Length
(kg)

Total Cost
(CAD$)

19.19 * 2 2.27 0.41 13.65
22.4 ** 5 4.12 0.95 31.64

Total 6.39 1.36 45.28
* Dowels were purchased at CAD 6.49 + HST per 1.22 m with a net weight of 0.18 kg. ** Dowels were purchased
at CAD 8.29 + HST per 1.22 m with a net weight of 0.23 kg.

Table A2. Screw weight and price.

Screws Quantity Weight (g) Price (CAD)

M6 1/2 inch * 82 65.6 5.05
* Weight of each screw was 0.80 g.

Table A3. 3D-printed parts weight, price, and time calculations using PETG and TPU 85A.

PETG Parts * Quantity Weight/Part (g) Total Weight (g) Cost (CAD) Time

Ang 3 Connector [L] 1 77.22 77.22 1.87 1 h 37 min
Any 3 Connector [R] 1 77.21 77.21 1.87 1 h 37 min
Ang 2 Connector [L] 1 65.22 65.22 1.58 1 h 18 min
Ang 2 Connector [R] 1 65.22 65.22 1.58 1 h 18 min
Ang Mid Support [L] 1 78.91 78.91 1.91 1 h 45 min
Ang Mid Support [R] 1 78.90 78.9 1.91 1 h 45 min
Middle Support 1 73.33 73.33 1.77 1 h 32 min

Ang Side Support [O] 3 45.24 135.72 3.28 2 h 48 min
Ang Side Support [�] 3 45.33 135.99 3.29 2 h 51 min
Foot Body 4 25.24 100.96 2.44 2 h 20 min

Total 888.68 21.50 18 h 51min

TPU Parts **
Foot Cushion 4 9.53 38.12 3.10 3 h 12 min
Foot Washer 4 1.18 4.72 0.38 24 min
Handle Grip 2 71.56 143.12 11.64 12 h 16 min

Total 185.96 15.13 15 h 52 min

Total of All 1074.64 36.63 34 h 43 min

* Cost is calculated based on a 1 kg Polymaker PETG Filament spool priced at CAD 21.41 + HST. ** Cost is
calculated based on a 0.5 kg NinjaFlex TPU 85A Filament spool priced at CAD 36.00 + HST.

Table A4. Cost comparison of the open walker with materials sourced from United States ver-
sus Canada, in USD, along with a comparison of using commercial PETG versus Recyclebot
PETG filament.

Material United States (USD) Canada (USD) Canada (CAD)

Screws 8.2 3.69 5.05
19.19 mm (3/4in) Wood Dowel 12.96 9.96 13.65
22.4 mm (7/8in) Wood Dowel 83.1 23.09 31.64
Commercial PETG 19.58 15.69 21.50

Recycled PETG 0.03 0.03 0.04
Commercial TPU 11.04 11.04 15.13

Recycled TPU 0.01 0.01 0.01

Total Commercial PETG/TPU Cost 134.88 63.47 86.97

Total Recyclable PETG/TPU Cost 115.34 36.78 65.52
* Cost of materials from Canada were taken from the above tables and converted to USD using a 1.37 CAD–USD
exchange rate.
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