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Abstract: In the fields of professional and amateur sports, players’ health, physical and physiological
conditions during exercise should be properly monitored and managed. The authors of this paper
previously proposed a real-time vital-sign monitoring system for players using a wireless multi-hop
sensor network that transmits their vital data. However, existing routing schemes based on the
received signal strength indicator or global positioning system do not work well, because of the high
speeds and the density of sensor nodes attached to players. To solve this problem, we proposed a
novel scheme, image-assisted routing (IAR), which estimates the locations of sensor nodes using
images captured from cameras mounted on unmanned aerial vehicles. However, it is not clear where
the best viewpoints are for aerial player detection. In this study, the authors investigated detection
accuracy from several viewpoints using an aerial-image dataset generated with computer graphics.
Experimental results show that the detection accuracy was best when the viewpoints were slightly
distant from just above the center of the field. In the best case, the detection accuracy was very good:
0.005524 miss rate at 0.01 false positive-per-image. These results are informative for player detection
using aerial images and can facilitate to realize IAR.

Keywords: player detection; aerial images; informed-filters

1. Introduction

A real-time vital monitoring system using wearable sensors with a wireless communication
function attached to players is being developed to enhance the efficiency of training and to manage
player conditions during exercise [1]. In this system, vitals (e.g., body temperature, heart rate,
and oxygen consumption) are obtained using a single vital sensor attached to waist of human. Data
are transmitted from all sensors and are received at a data collection server for analysis.

As is common practice, single-hop network, where all sensors are connected directly to the
server, seems to be effective for the data transmission. However, this approach relies on sensors’
performance (e.g., transmission power). The requirement leads to rapid energy consumption in
the sensors located at a distance from the server because they need to transmit in high power
levels. Moreover, the transmitted signals are attenuated when passing through the human body
or other obstruction.
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Instead, our system adopts multi-hop network, which is more appropriate for large-scale networks
where the server is located far from the sensors. In the network, each sensor behaves as a start or relay
node, and vital data are transmitted to a server, an end node, like a bucket brigade.

This network is helpful for avoiding the rapid energy consumption and the wave-shielding effect
of the human body. To construct an appropriate network, the accurate information about sensors’
locations is required. Received signal-strength (RSSI)- or global positioning system (GPS)-based
schemes are widely used for this purpose. However, RSSI value is easily affected by some interference
such as multipath fading and any obstacles, and GPS cannot accurately estimate the positions in
real-time. Therefore, these schemes cannot be applied to our system, because the system should be
available even when both the moving speed and the density of vital sensor nodes could be very high
in many kinds of sporting events (e.g., soccer, basketball, rugby, and hockey).

To solve this problem, therefore, we proposed a novel scheme, image-assisted routing (IAR), in a
previous study [2]. In this scheme, the locations of sensor nodes are estimated by finding the locations
of players wearing sensors using sports-scene images and image processing techniques. To obtain
images necessary for IAR, several cameras, mounted on unmanned aerial vehicles (UAV) or fixed
tripods, are placed around the playing field. Additionally, whereas IAR can be expected to be applied
to many sports, this paper focuses on and discusses field sports (i.e., soccer).

Tracab [3] is one of the practical systems that estimates players’ position and visualizes the
statistics of their performance during field games. However, the current positioning scheme used for
the system are very large and expensive because it employs patented image processing techniques
developed for military purposes. Therefore, this system can be equipped only at large stadiums,
although it is strongly required by club teams. To provide more reasonable system, we need to achieve
an accurate localization that does not require special technologies and huge computational resources.

To achieve the desired localization, players’ locations must be accurately estimated in sports
movies using visual-object detection technique. This is one of the most challenging tasks in the field
of computer vision. To solve this task, several kinds of schemes have been proposed [4–8]. Recently,
deep convolutional neural networks (CNN) have shown good accuracy for image classification. Thus,
they have begun to show good accuracy for visual-object detection. The most popular type is the
region-convolutional neural network (R-CNN). Several derivatives (e.g., Fast R-CNN [9] and Faster
R-CNN [10]) have been proposed to improve computational speeds and detection accuracy.

However, it is shown that the detection accuracy with informed-filters [8] using only color features
is better than these schemes for player detection in soccer scenes [2,11]. However, informed-filters
is just a traditional object detection method built on handcrafted features. The computation speed
of the scheme based on informed-filters can be improved by parallel processing with a graphical
processing unit without degrading detection accuracy [12]. Therefore, informed-filters is more suitable
for embedded systems for IAR than schemes based on CNN in terms of detection accuracy and
computational resources for real-time processing.

The accuracy of the player detection scheme based on informed-filters using only color features
was evaluated using top-down view images generated from a computer graphics (CG)-based dataset
where the locations of players were determined from an actual soccer scene. However, in previous
studies [13–15], the relationship between camera locations and detection accuracy have not been
sufficiently investigated. However, it seems important for player detection using aerial images.

The goal of this paper is to extend our previous research and find the optimal camera locations for
player detection in aerial images obtained from UAVs. To achieve this goal, multi-viewpoints datasets
were created. They comprise frames captured from cameras placed in a three-dimensional virtual
soccer field. Then, we constructed classifiers for player detection, and evaluated detection accuracy
according to several viewpoints, using these datasets. Experimental criteria and results are shown
below, and we believe these results are informative for player detection using aerial images and can
facilitate to realize IAR.
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Detection accuracy according to multiple viewpoints. We evaluated the detection accuracy for
several viewpoints and find good one for player detection. Detection accuracy was best where the
viewpoints were slightly distant from just above the center of the field. However, the detection accuracy
was worse when the height of viewpoints were lower because of increasing occlusions.

Comparison with another object detection method. We compared our scheme, using
informed-filters, with YOLOv3 [16], a state-of-the-art scheme based on deep-learning in object detection.
Our scheme using outperformed the accuracy of this scheme. In particular, our scheme achieved very
low FPPI while YOLOv3 quite large.

Detection accuracy using multiple detectors specialized for only some viewpoints. A detector
constructed with training samples extracted from all viewpoints was used for the previous evaluation.
However, in this evaluation, viewpoints were divided into groups, and multiple detectors specialized
for only some viewpoints were constructed. We evaluated detection accuracy using the same evaluation
criteria as the previous experiment, and detection became better and more stable.

2. Datasets Used in Our Evaluation

This section details datasets used in our evaluation. Whereas we wished to create datasets
from multiple viewpoints, it would cost a lot to prepare one for a real image. Therefore, by the
three-dimensional computer graphics (3DCG) technology, we constructed novel datasets from an
actual soccer game and used it for training and evaluation.

2.1. True Locations Obtained from Actual Motion of Players

The motions of players from the dataset used in our experiment are identical to those from a
dataset created in our previous research [17]. The dataset was created using actual motions of players
in a soccer game obtained from 9000 image sequences captured by cameras located around a soccer
field (see Figures 1 and 2). To determine actual locations of players in a frame, rectangles representing
player locations in captured image sequences were marked manually. After marking all players in the
dataset, as shown in Figure 3, the vanishing points were obtained. Then, the equal division lines of
the field could be calculated from them. A two-dimensional (2D) location in the 2D image plane was
determined by the center of the bottom edge of a rectangle. Then, a location on the soccer field was
obtained via coordinate transform. Figure 4 shows the overview of the coordinate transform from an
image plane to a soccer field.

Figure 1. Camera locations.
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Figure 2. Example of captured image.

Figure 3. The soccer field in the captured image can be equally divided by lines drawn from two
vanishing points. The vanishing points were obtained by first considering the field is rectangular in
shape. By combining this vanishing point with the perspective technique, it was possible to divide the
field into an arbitrary number of divisions. However, it was not strict.

Figure 4. Overview of the coordinate transform. The coordinate system to the right is orthogonal, for
which the black dot is set as the origin. The short side of the soccer field is set as the x-axis. The long
side is set as the y-axis. Because coordinates are associated from both left and right spaces, if we know
the coordinates of the player in the left space, the coordinates in the right space can be easily obtained.

After the creation of the ground truth about player locations, a three-dimensional (3D) virtual
space representing players’ motions from the soccer game was created using Unity engine, where
Unity-chan, a virtual character having the 3D model shown in Figure 5, was adopted to represent
players on the soccer field. By using the virtual space, represented by the 3DCG technology, we could
easily obtain images captured from arbitrary viewpoints.
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Standing upright Walking

Figure 5. Example of a 3D model: Unity-chan.

2.2. Datasets Generated by the 3D Virtual Space for Several Viewpoints

The main purpose of this study was to evaluate detection accuracy according to several viewpoints
for aerial images obtained from a camera mounted on a UAV. Therefore, several kinds of datasets were
created from the 3DCG virtual space [17], changing locations and orientations of a camera in the space.
Locations of players in the obtained images were generated automatically.

Figure 6 provides the viewpoints used to generate 2D images from the 3DCG virtual space.
The height of the camera when located at just above the center of the soccer field was set to 50 m in
the virtual space. This location was indicated as Camera_00. The camera location moved on four
circumferences: red, green, blue, and orange. Here, the angle between nearest radii was set to 15◦,
and the camera orientation was set to the opposite radial direction.

Figure 6. Overview of camera locations.

Figure 7 shows examples of generated images as the datasets for evaluation in this study.
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Camera_00 Camera_02 Camera_05

Camera_09 Camera_12 Camera_19

Figure 7. Examples of datasets.

3. How to Construct a Detector Based on Informed-Filters

This section details how to construct a soccer player detector using only color features with
informed-filters to evaluate the detection accuracy according to several kinds of viewpoints. The rest
of this section describes training samples selection, template pool design, required for learning with
informed-filters, and a final strong classifier.

3.1. Training Samples

Datasets used for the evaluation comprise 2D image sequences according to several viewpoints
generated from the 3DCG virtual space, as shown in the previous section. To train a classifier as a
detector, positive and negative samples must be extracted from the images generated from the 3DCG
virtual space. Figure 8 shows examples of positive training samples, where players are located at the
center of cropped sub-images. The dataset we used was generated from the 3D virtual environment
using Unity. Thus, players’ locations in an image captured from a camera can be easily calculated.
Negative samples were randomly cropped. They did not include players in cropped sub-images,
as shown in Figure 9. The positives and negatives were extracted from 7200 frames, randomly selected
from 9000 frames in the dataset. The number of both is 30,000 samples.

Figure 8. Positive samples.

Figure 9. Negative samples.

During generation of positive samples from image sequences using the actual location of targets
obtained from the 3D virtual space, occlusions sometimes occurred when viewpoints moved drastically.
Such occluded samples were not included in the training and evaluation samples, because they were
not suitable for appropriate evaluation. After creating the training samples, a strong classifier was
constructed using the boosting algorithm with feature extraction and templates, as described below.
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3.2. Template Design for Informed-Filters

The training process of a detector by informed-filters is summarized in Figures 10 and 11.
Informed-filters [8] extracts effective features, owing to its well-designed template pool, using the
statistical shape information of objects to be detected, enabling accurate human detection.

To design such template pool, the overall procedure can be summarized as follows.

1. An average edge map is computed from cropped positive samples with canny a edge detector,
and is divided into cells of 1× 1 pixels.

2. An average edge map is roughly classified into three parts: head, upper body, and lower body.
3. Each cell is assigned +1, 0 or −1 to distinguish which cells belong to which parts. The result

of labeling is a labeled-edge map, as shown in Figure 10. The labeled-edge map represents a
statistical human shape with strong patterns. Moreover, regions near the head and shoulders are
uniquely human.

4. Templates are generated as a collection of cells from the labeled-edge map via an exhaustive
search. The size of the template is within a range from 1× 2 to 6× 8 cells.

Positive Samples

Average
Edge map

Labeled
Edge map

Figure 10. Generate edge map.

Figure 11. Template generation.



J. Funct. Morphol. Kinesiol. 2019, 4, 9 8 of 22

It is obvious that positive training samples were necessary for the template design described
above. However, a good template pool might not be obtained if inappropriate samples were used for
edge-map generation. Furthermore, the selection of positive samples for template design becomes
important because the appearance of players greatly differ when viewpoints change drastically.

To avoid this problem, a template pool for informed filters was generated as follows:

1. Divide all viewpoints into five groups according to shooting orientations.
2. Generate edge maps for each group.
3. Create template pools according to generated edge maps.
4. Merge all template pools obtained in the previous procedure to generate a large template pool.

This procedure tries to maintain unique characteristics according to shooting orientations in
the generation of a template pool. Figure 12 shows an average edge map and a labeled-edge map
according to shooting orientations. Using these shape models, we obtained 36,446 templates, as shown
in Figure 13.

After the generation of the large template pool, a strong classifier ws constructed. During the training
process, the boosting algorithm selected effective weak classifiers from the large template pool.

Camera_00 Camera_01-05 Camera_06-10 Camera_11-15 Camera_16-20

Figure 12. Average edge maps and labeled edge maps according to shooting orientations. Top and
bottom images represent average and labeled-edge maps, respectively.

Camera_00 Camera_01-05

Camera_06-10 Camera_11-15

Camera_16-20

Figure 13. Examples of templates used to construct a classifier for players.

4. Experiments to Find the Optimal Camera Viewpoints for Player Detection

We investigated a good viewpoint for player detection from a camera mounted on a UAV.
We performed three experiments on the 3DCG-based dataset. First, all viewpoints were evaluated
by each detection accuracy. Then, we also evaluated the accuracy with another scheme under the
same conditions as first experiment, and compared them. Finally, for the further improvement, we
constructed multiple detectors specialized for only some viewpoints and verified how the accuracy
was affected.
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In our experiments, we did not use the same frames for training and testing. For testing, each
viewpoint has 1800 frames generated from the same 1800 image sequences in the 3D virtual space.
To train the detector, the other 7200 frames for each viewpoint were used.

4.1. Detection Accuracy According to Camera Locations

This section presents the evaluation of the detection accuracy for several viewpoints to find a
good one for player detection from a camera mounted on a UAV. This experiment was a simple and
immediate method for our purpose.

4.1.1. Detection Procedure

Detection was performed using an exhaustive search with sliding windows, which extracted huge
numbers of sub-images from an input image to determine whether the extracted sub-image included
a detection target or not. During this process, scaled images were generated to find targets with
resolutions different from the size of the detection window. Because the size of detection targets did
not change drastically in aerial images, this evaluation used only three scales: ×1.0, ×1.05, and ×1.1.
The size of the stride for moving the sliding windows was one, meaning all locations of an input image
were evaluated.

For the evaluation, a detected sub-window was accepted as a true positive if Scoreoverlap, computed
by the following equation, was greater than 0.65:

Scoreoverlap =
BBGT ∩ BBDET

BBGT
, (1)

where BBGT and BBDET indicate a sub-window defined in ground truth and a detected
sub-window, respectively.

4.1.2. Experimental Results

Tables 1–5 show the evaluation results of detection accuracy. In these tables, miss rates at some
false positives-per-image (FPPI) are shown.

Table 1. Accuracy table @ Camera_00, informed-filters.

MR@Camera_00

FPPI = 1.0 0.000000
FPPI = 0.1 0.000000
FPPI = 0.01 0.006490
FPPI = 0.001 0.812667

Table 2. Accuracy table @ Cameras_01–05, informed-filters.

MR@Camera_01 MR@Camera_02 MR@Camera_03 MR@Camera_04 MR@Camera_05

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.01 0.006414 0.000000 0.008468 0.015025 0.031540
FPPI = 0.001 0.558980 0.007738 0.014591 0.033021 0.037637

Table 3. Accuracy table @ Cameras_06–10, informed-filters.

MR@Camera_06 MR@Camera_07 MR@Camera_08 MR@Camera_09 MR@Camera_10

FPPI = 1.0 0.000000 0.005433 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.005479 0.000000 0.000000 0.021780
FPPI = 0.01 0.000000 0.005484 0.006148 0.009432 0.027652
FPPI = 0.001 0.005678 0.005683 0.007467 0.012366 0.036157
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Table 4. Accuracy table @ Cameras_11–15, informed-filters.

MR@Camera_11 MR@Camera_12 MR@Camera_13 MR@Camera_14 MR@Camera_15

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.000000 0.000000 0.006938 0.017012
FPPI = 0.01 0.006399 0.005524 0.006243 0.012166 0.024646
FPPI = 0.001 0.007465 0.006269 0.012894 0.059582 0.039167

Table 5. Accuracy table @ Cameras_16–20, informed-filters.

MR@Camera_16 MR@Camera_17 MR@Camera_18 MR@Camera_19 MR@Camera_20

FPPI = 1.0 0.000000 0.000000 0.000000 0.006879 0.000000
FPPI = 0.1 0.000000 0.000000 0.000000 0.006982 0.015134
FPPI = 0.01 0.000000 0.000000 0.005956 0.008233 0.020135
FPPI = 0.001 0.006808 0.005627 0.009709 0.043803 0.039258

These results show that very accurate detection can be achieved at all viewpoints. The best
accuracy was obtained by Camera_17. The primary method of improving detection accuracy was
increasing the visual cues according to the increase of the projected area of detection targets, which
became the smallest at Camera_00. However, the detection accuracy became worse when the height of
viewpoints was too low, because heavy occlusions may be caused at such viewpoints.

4.1.3. Discussion

Figure 14 shows the heat map, representing the detection accuracy at all viewpoints, defined in
Figure 6 when FPPI was 0.001. In this figure, the deep-red color indicates a lower miss rate (higher
accuracy), and the miss rate becomes greater if the red components become lower. Regions colored
with gray were not used in the evaluation, because detection accuracy became worse if the height
of viewpoints was too low because of occlusion caused by other targets. Two regions representing
Camera_00 and Camera_01 are white. The detection accuracy was quite bad in these regions. However,
we found that these cameras achieved good accuracy similar to the other cameras when FPPI was 0.01
or larger (Tables 1–5). This fact indicates that the training of detector was incomplete, and accuracy
suddenly changed between 0.001 and 0.01. To further improve the performance, collecting more
training data or resampling the dataset for balancing positives and negatives can be applied to increase
the stability of learning.

Figure 14. Heat map.



J. Funct. Morphol. Kinesiol. 2019, 4, 9 11 of 22

4.2. ACCURACY COMPARISON WITH YOU-LOOK-ONLY-ONCE (YOLO)

Next, we evaluated the detection accuracy by YOLO [18,19] using the same dataset, to compare
the accuracy. YOLO is one of the most famous and accurate object detectors based on deep learning.
In the evaluation, the latest implementation (i.e., YOLOv3 [16]) was adopted.

4.2.1. Object Detection Using YOLO

Many object schemes adopt exhaustive searches based on sliding windows, where huge
sub-windows of several sizes and locations are densely sampled from an input image to detect
objects at all locations with several sizes. However, these traditional schemes require a classification for
each sub-window. It may lead to huge computational costs, depending on resolution of input image.

YOLO is a new real-time object detection method based on regression. Instead of using the sliding
windows, YOLO divides the image into S× S grid and predicts each grid with regression. A fixed
number of bounding boxes are given to grid cells, and each grid cell predicts confidence scores for
those boxes. The confidence scores are used to calculate how probability the grid cell contain an object
and how accurate the bounding boxes is.

4.2.2. How to Train YOLOv3

In this evaluation, a detector was trained for 50K iterations on the same datasets used in previous
experiments. The resolution of input images was set to 416× 416 and the batch size was set to 64.

4.2.3. Experimental Results

Tables 6–10 show miss rates for several FPPIs. We found that there were mostly no value in these
tables except for Table 6. The “nan” in the table indicates that FPPIs, calculated in the evaluation
process, could not reach the specified FPPIs (i.e., 1.0, 0.1, 0.01, and 0.001), because there were many
false positives.

Table 6. Accuracy table @ Camera_00, YOLOv3.

MR@Camera_00

FPPI = 1.0 0.031323
FPPI = 0.1 nan
FPPI = 0.01 nan
FPPI = 0.001 nan

Table 7. Accuracy table @ Cameras_01–05, YOLOv3.

MR@Camera_01 MR@Camera_02 MR@Camera_03 MR@Camera_04 MR@Camera_05

FPPI = 1.0 nan nan nan nan nan
FPPI = 0.1 nan nan nan nan nan
FPPI = 0.01 nan nan nan nan nan
FPPI = 0.001 nan nan nan nan nan

Table 8. Accuracy table @ Cameras_06–10, YOLOv3.

MR@Camera_06 MR@Camera_07 MR@Camera_08 MR@Camera_09 MR@Camera_10

FPPI = 1.0 nan nan nan nan nan
FPPI = 0.1 nan nan nan nan nan
FPPI = 0.01 nan nan nan nan nan
FPPI = 0.001 nan nan nan nan nan
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Table 9. Accuracy table @ Cameras_11–15, YOLOv3.

MR@Camera_11 MR@Camera_12 MR@Camera_13 MR@Camera_14 MR@Camera_15

FPPI = 1.0 nan nan nan nan nan
FPPI = 0.1 nan nan nan nan nan
FPPI = 0.01 nan nan nan nan nan
FPPI = 0.001 nan nan nan nan nan

Table 10. Accuracy table @ Cameras_16–20, YOLOv3.

MR@Camera_16 MR@Camera_17 MR@Camera_18 MR@Camera_19 MR@Camera_20

FPPI = 1.0 nan nan nan nan nan
FPPI = 0.1 nan nan nan nan nan
FPPI = 0.01 nan nan nan nan nan
FPPI = 0.001 nan nan nan nan nan

Using the results in the tables, a detection error tradeoff (DET) curve, representing false positive
rates versus miss rates, was plotted to show the detection performance at several classification
thresholds to evaluate miss rates more densely. The DET graphs in Figures 15–19 and Figures 20–24
show that the miss rates of our scheme using informed-filters was much better than YOLOv3,
a state-of-the-art scheme.
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Figure 15. DET curves @ Camera_00, informed-filters.
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Figure 16. DET curves @ Cameras_01–05, informed-filters.
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Figure 17. DET curves @ Cameras_06–10, informed-filters.
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Figure 18. DET curves @ Cameras_11–15, informed-filters.
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Figure 19. DET curves @ Cameras_16–20, informed-filters.
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Figure 20. DET curve @ Camera_00, YOLOv3.
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Figure 21. DET curves @ Cameras_01–05, YOLOv3.
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Figure 22. DET curves @ Cameras_06–10, YOLOv3.
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Figure 23. DET curves @ Cameras_11–15, YOLOv3.
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Figure 24. DET curves @ Cameras_16–20, YOLOv3.

4.2.4. Discussion

As shown in Tables 6–10, these results were caused by the weak point of YOLO: it cannot
well-detect small targets. Whereas YOLOv3 adopts feature-pyramid networks [20] to improve the
detection performance for small targets, the performance of YOLOv3 was still insufficient to detect
such targets. This problem can be resolved if the grid becomes finer. However, it increases required
computational power.

Moreover, most elements in the tables were “nan”, indicating that FPPI by YOLOv3 were quite
large for all cameras, because the grid-based detection scheme did not work well when the size of
detection target was small compared to the size of an input image. However, informed-filters showed
good accuracy with very low false positives. The experimental results show that a carefully trained
detector, without deep learning, could achieve good detection accuracy.

Notwithstanding the advantage of detection accuracy, informed-filters had another merit: low
required computational power. YOLOv3 can achieve fast computation, but requires massive GPUs
that cannot be implemented in a real-time system mounted on UAVs. Therefore, the detection scheme
based on informed-filters is more appropriate for our target application.

4.3. Detection Accuracy by Informed-Filters When Detectors Are Constructed Using Only Samples Extracted
from Particular Views

A detector was constructed using only training samples extracted from all views. However,
the appearance of targets changes drastically when a view changes. Thus, we constructed detectors
specialized for only some viewpoints, and we evaluated the detection accuracy changes compared to
the detector constructed, using all views.

4.3.1. Experimental Setup

Before the evaluation, all views were divided into five groups: Camera_00, Cameras_01–05,
Cameras_06–10, Cameras_11–15, Cameras_16–20, and detectors were trained in each. In this
experiment, the same dataset and evaluation criteria as the previous experiment were adopted.
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4.3.2. Experimental Results

Tables 11–15 show four miss rates at the specified FPPIs for views explained in the previous
subsection. Figures 25–29 show DET curves corresponding to constructed detectors. In the tables,
a similar trend with the results of using all views was observed. However, accuracy was improved
for some views, whereas miss rates were exceedingly bad in the previous experiment: Camera_00,
Camera_01, and viewpoints with a low height.

This improvement of detection accuracy, when detectors were trained using only samples obtained
from appropriate views became remarkable at lower FPPI. Sudden changes of detection accuracy
caused by detectors were reduced (for example, Camera_14).

Table 11. Accuracy table @ Camera_00, informed-filters, some viewpoints.

MR@Camera_00

FPPI = 1.0 0.000000
FPPI = 0.1 0.000000
FPPI = 0.01 0.000000
FPPI = 0.001 0.737169

Table 12. Accuracy table @ Cameras_01–05, informed-filters, some viewpoints.

MR@Camera_01 MR@Camera_02 MR@Camera_03 MR@Camera_04 MR@Camera_05

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.01 0.000000 0.000000 0.006818 0.012108 0.028662
FPPI = 0.001 0.385389 0.006091 0.008546 0.014050 0.036182

Table 13. Accuracy table @ Cameras_06–10, informed-filters, some viewpoints.

MR@Camera_06 MR@Camera_07 MR@Camera_08 MR@Camera_09 MR@Camera_10

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.000000 0.000000 0.000000 0.018324
FPPI = 0.01 0.006900 0.005680 0.006053 0.008847 0.021843
FPPI = 0.001 0.007918 0.005801 0.006270 0.012433 0.031384

Table 14. Accuracy table @ Cameras_11–15, informed-filters, some viewpoints.

MR@Camera_11 MR@Camera_12 MR@Camera_13 MR@Camera_14 MR@Camera_15

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.007914 0.000000 0.000000 0.000000 0.016500
FPPI = 0.01 0.008600 0.006971 0.006742 0.008397 0.023712
FPPI = 0.001 0.012590 0.008344 0.008309 0.009631 0.043875

Table 15. Accuracy table @ Cameras_16–20, informed-filters, some viewpoints.

MR@Camera_16 MR@Camera_17 MR@Camera_18 MR@Camera_19 MR@Camera_20

FPPI = 1.0 0.000000 0.000000 0.000000 0.000000 0.000000
FPPI = 0.1 0.000000 0.006160 0.005368 0.006952 0.014206
FPPI = 0.01 0.008388 0.006904 0.005902 0.008081 0.017039
FPPI = 0.001 0.009280 0.008454 0.006228 0.013950 0.020981
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Figure 25. DET curves @ Camera_00, informed-filters, some viewpoints.
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Figure 26. DET curves @ Cameras_01–05, informed-filters, some viewpoints.
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Figure 27. DET curves @ Cameras_06–10, informed-filters, some viewpoints.
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Figure 28. DET curves @ Cameras_11–15, informed-filters, some viewpoints.
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Figure 29. DET curves @ Cameras_16–20, informed-filters, some viewpoints.

4.3.3. Discussion

These results indicate that multiple detectors at different views should be adopted to achieve
better detection instead of only a single detector, which uses all samples extracted from several views.
Regarding cases where the miss rate was originally low, there were very slight changes.

As a result, more stable detection was achieved using the whole multiple detector. However,
dramatic accuracy improvement cannot be expected.

5. Conclusions

This paper evaluated the detection accuracy of players from many viewpoints to find the best UAV
locations for capturing aerial images. For the evaluation, several kinds of 2D images with annotations
about player locations were generated from the 3D virtual soccer field using orientations and locations
of a UAV camera. To train a strong classifier, a large template pool was created from several template
pools, one of which was generated from viewpoints whose shooting orientation was the same.

Experimental results using the generated 2D images show that the detection accuracy becomes
best when a camera is located at a viewpoint slightly distant from just above the center of the field.
Additionally, it is possible to perform more stable detection, if viewpoints are divided into groups
appropriately, and if multiple detectors are constructed for each group.

Author Contributions: Conceptualization, T.O., R.M., H.Y., and S.H.; methodology, T.O. and R.M.; analysis,
T.O. and R.M.; writing-original draft preparation, T.O. and R.M.; writing-review and editing, T.O.; project
administration, R.M., H.Y., and S.H.

Funding: The research results have been partly achieved by “Research and development of Innovative Network
Technologies to Create the Future”, the Commissioned Research of National Institute of Information and
Communications Technology (NICT), JAPAN.

Conflicts of Interest: The authors declare no conflict of interest.



J. Funct. Morphol. Kinesiol. 2019, 4, 9 22 of 22

References

1. Hara, S.; Yomo, H.; Miyamoto, R.; Kawamoto, Y.; Okuhata, H.; Kawabata, T.; Nakamura, H. Challenges
in Real-Time Vital Signs Monitoring for Persons during Exercises. Int. J. Wirel. Inf. Netw. 2017, 24, 91–108.
[CrossRef]

2. Miyamoto, R.; Oki, T. Soccer Player Detection with Only Color Features Selected Using Informed Haar-like
Features. In Advanced Concepts for Intelligent Vision Systems; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2016; Volume 10016, pp. 238–249.

3. ChyronHego. TRACAB Optical Tracking. 2003. Available online: http://chyronhego.com/sports-data/
tracab (accessed on 21 September 2016).

4. Zhang, S.; Benenson, R.; Schiele, B. CityPersons: A Diverse Dataset for Pedestrian Detection. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 4457–4465.

5. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761. [CrossRef] [PubMed]

6. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

7. Zhang, S.; Benenson, R.; Schiele, B. Filtered Channel Features for Pedestrian Detection. In Proceedings of
the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1751–1760.

8. Zhang, S.; Bauckhage, C.; Cremers, A. Informed Haar-Like Features Improve Pedestrian Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA, 23–28 June 2014; pp. 947–954.

9. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

11. Nakamura, Y.; Nakamura, T.; Oki, T.; Miyamoto, R. Comparison of Various Approaches for Object Detection.
In Proceedings of the Fall Meeting of Federation of Imaging Societies, Kyoto, Japan, 1 December 2017;
pp. 94–98.

12. Oki, T.; Miyamoto, R. Efficient GPU Implementation of Informed-Filters for Fast Computation. In Image and
Video Technology; Springer: Cham, Switzerland, 2017; pp. 302–313.

13. Manafifard, M.; Ebadi, H.; Moghaddam, H.A. A survey on player tracking in soccer videos. Comput. Vis.
Image Underst. 2017, 159, 19–46. [CrossRef]

14. Gerke, S.; Singh, S.; Linnemann, A.; Ndjiki-Nya, P. Unsupervised color classifier training for soccer
player detection. In Proceedings of the Visual Communications and Image Processing, Kuching, Malaysia,
17–20 November 2013; pp. 1–5.

15. Direkoglu, C.; Sah, M.; O’Connor, N. Player detection in field sports. Mach. Vis. Appl. 2018, 29, 187–206.
[CrossRef]

16. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
17. Miyamoto, R.; Yokokawa, H.; Oki, T.; Yomo, H.; Hara, S. Human Detection in Top-View Images Using Only

Color Features. J. Inst. Image Electron. Eng. Jpn. 2017, 46, 559–567. (In Japanese)
18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

19. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2017, arXiv:1612.08242.
20. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object

Detection. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10776-017-0339-2
http://chyronhego.com/sports-data/tracab
http://chyronhego.com/sports-data/tracab
http://dx.doi.org/10.1109/TPAMI.2011.155
http://www.ncbi.nlm.nih.gov/pubmed/21808091
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/j.cviu.2017.02.002
http://dx.doi.org/10.1007/s00138-017-0893-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Datasets Used in Our Evaluation
	True Locations Obtained from Actual Motion of Players
	Datasets Generated by the 3D Virtual Space for Several Viewpoints

	How to Construct a Detector Based on Informed-Filters
	Training Samples
	Template Design for Informed-Filters

	Experiments to Find the Optimal Camera Viewpoints for Player Detection
	Detection Accuracy According to Camera Locations
	Detection Procedure
	Experimental Results
	Discussion

	Accuracy Comparison with You-Look-Only-Once (YOLO)  
	Object Detection Using YOLO
	How to Train YOLOv3
	Experimental Results
	Discussion

	Detection Accuracy by Informed-Filters When Detectors Are Constructed Using Only Samples Extracted from Particular Views
	Experimental Setup
	Experimental Results
	Discussion


	Conclusions
	References

