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Abstract: Among several analytical models to describe the behavior of reinforced concrete (RC)
and longitudinally prestressed concrete (LPC) beams under torsion, the Modified Variable Angle
Truss Model (MVATM) is particularly efficient to capture the behavioral states of the member until
failure and agree well with experimental results. This article aims to extend the MVATM to cover
transversally prestressed concrete (TPC) beams under torsion. The changes in the formulation and
calculation procedure of the original VATM, in order to include the influence of transversal prestress,
are presented. The extended MAVTM is then used to compute the global response of LPC and TPC
beams under torsion with similar total prestress reinforcement ratios, namely the torque–twist curves.
The obtained predictions are then compared and discussed. It is shown that for the ultimate loading,
transversal prestress constitutes also an effective solution to improve the behavior of the beams
under torsion. However, transversal prestress is less effective to delay the cracked state. Finally,
it is also shown that when prestress is distributed in both longitudinal and transversal direction,
the global response of the beams under torsion is further improved, namely the resistance torque and
the torsional stiffness in the cracked state.
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1. Introduction

Several theoretical models have been developed to predict the behavior of Reinforced Concrete
(RC) beams under torsion. Among those models, the Space Truss Analogy (STA), originally proposed
by Rausch in 1929 [1], has a high historical value and is the base model of the European Model Code
since 1978 and also the ACI Code since 1995. Successive developments of the original STA have
been proposed by several authors, such as Andersen in 1935 [2], Cowan in 1950 [3], Lampert and
Thurlimann in 1969 [4], Elfgren in 1972 [5] and Collins and Mitchell in 1980 [6], among others.

Among the referred developments of the STA, the Variable Angle Truss Model (VATM) proposed
by Hsu and Mo in 1985 [7,8] has been widely used by researchers. VATM was the first model
which aimed to unify the treatment of RC and Longitudinally Prestressed Concrete (LPC) beams.
Some simplified versions of the VATM were proposed later by other authors, namely Rahal and Collins
in 1996 [9], Bhatti and Almughrabi in 1996 [10] and Wang and Hsu in 1997 [11]. However, these models
only allow computing the ultimate torsional strength of the beams and usually do not incorporate the
influence of prestress.

The original VATM is able to predict the behavioral state of RC and LPC beams throughout the
entire loading history, although good results are observed only for high loading levels [7,8]. This is
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because VATM assumes that the response of the beam starts from the cracked state and also because it
neglects the influence of the concrete core for plain beams.

To solve this issue, Jeng and Hsu in 2009 [12], Jeng et al. in 2010 [13] and Jeng in 2015 [14] proposed
the Softened Membrane Model for Torsion (SMMT) to model RC and LPC beams. This model predicts
well the entire torque (T)–twist (θ) curve of the beams. Since SMMT constitutes an extension of the
Softened Membrane Model (SMM) for RC membrane elements under shear [15], the mathematical
treatment and the solution procedure is somehow complex. When compared with VATM, this latter
provides a simpler physical understanding of how a cracked RC or LPC beam behaves under torsion.

For this reason, Bernardo et al. in 2012 [16] and in 2015 [17] proposed new developments of
the original VATM, namely the Modified VATM (MVATM) and the Generalized Softened VATM
(GSVATM). These models are also able to predict well the entire T–θ curves of RC and LPC beams
under torsion [18–20].

Nowadays it is well known that prestress, if rationally applied, increases the resistance to θ cracking
and also the stiffness of concrete beams, including for beams under shear or torsion. This is because
prestress generates a compressive stress state which, in combination with the shear stress due to the
torsional moment, results in a biaxial stress state (shear + compression). This biaxial stress state delays
the concrete cracking. Furthermore, since the tensile strength of concrete does not increase in the same
proportion as compressive strength increases, it is not possible to reach the full potential of concrete in
structures for which resistance is governed by tensile stresses due often to shear or torsion. Therefore,
prestress can also increase the torsional strength and allow for a larger area of the concrete cross section
to be effective. For these reasons, longitudinal prestress is a current technique used in beams under high
torsional loads, such as in girders of curved bridges [21]. Transversal prestress is also sometimes used
in box girders to solve problems related with high shear stress in the vertical walls due to shear forces.
In such members, high torsional moments can simultaneously exist, which increases even more the shear
stress in the walls. In this case, transversal prestress can be used to solve the problem due to combined
shear forces and torsional moments. None of the previously referred theoretical models for torsion cover
transversal prestress.

In this study, the MVATM is extended to cover TPC beams under torsion. The changes in the
original VATM formulation are presented separately for each behavioral state of the beam (as also
performed in the original MVATM), namely: non-cracked state, transition between non-cracked and
cracked state and cracked state until failure. Calculation algorithms and solution procedures are
also presented.

Since no experimental results with TPC beams under torsion were found in the literature,
and since the predictions from MVATM were already checked against experimental results for LPC
beams under torsion [18,20], this study presents a theoretical parametric study to compare the global
behavior of LPC and TPC beams under torsion. This study aims to check if transversal prestress is also
an efficient technique to improve the torsional behavior of the beams.

2. Modified Variable Angle Truss Model (MVATM)

In previous studies [16,18,20], the MVTAM was validated for RC and LPC beams under torsion.
This section summarizes the MVATM formulation (Tables 1 and 2) and solution procedure for LPC
beams. The MVATM is extended to TPC beams in Section 3.

2.1. Non-Cracked State

Figure 1 shows a typical T–θ curve for a RC or LPC beam under torsion. The computation of
the theoretical T–θ curve from the MVATM [16,18,20] for the non-cracked state (Zone 1 in Figure 1)
requires 3 equilibrium equations to compute the torque, T, the effective thickness of the equivalent
hollow section, td, and the angle of the inclined concrete struts from the horizontal axis of the beam,
α, (see Equations (1)–(3) in Table 1). MVATM also requires 3 compatibility equations to compute the
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strain in the transversal reinforcement, εt, the strain in the longitudinal reinforcement, εl, and the twist,
θ (Equations (6)–(8) in Table 1).

Table 1. MVATM equations for LPC beams: non-cracked state [7,8,16,18,20].

Designs 2018, 2, 12 3 of 22 

 

Table 1. MVATM equations for LPC beams: non-cracked state [7,8,16,18,20]. 

 
where: 


cf   = concrete compressive strength (uniaxial); 

Ao  = area limited by the center line of the flow of shear stresses; 

Ac  = area limited by the outer perimeter of the section (includes hollow area): cA xy , with x and y 

the width and height of the cross section; 

Alh; Ath = homogenized steel areas in the longitudinal and transversal direction, respectively; 

Acl,eq; Act,eq = equivalent area of effective concrete in tension for the longitudinal and transversal direction,              

pc  = perimeter of area Ac; 

po  = perimeter of area Ao; 

t  = thickness of the wall; 

u  = perimeter of the centerlines of the closed stirrups: 
1 12( ) u x y , with x1 and y1 the width and         

height of the centerlines of legs of the closed stirrups; 

s  = spacing of the transversal reinforcement; 

fd  = stress in the diagonal concrete strut; 
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Ast  = area of one unit of the transversal reinforcement; 

εds  = maximum compressive strain in the outer fiber in the strut direction; 

fsl; fpl  = stress in the longitudinal ordinary and prestress reinforcement, respectively; 

fst  = stress in the transversal reinforcement; 

fcp  = stress in the concrete due to prestress; 

nc  = Ec/Es, with Ec and Es the Young’s Modulus for concrete and ordinary reinforcement, respectively; 

np  = Ep/Es, with Ep and Es the Young’s Modulus for prestress and ordinary reinforcement, respectively; 

ρl; ρt  = longitudinal and transversal reinforcement ratio, respectively (see Section 3.1); 

Kt,eq  = equivalent secant torsional stiffness; 

Kt,eq,tot = equivalent total torsional stiffness of the full section (including concrete core); 

Kt,c  = torsional stiffness of the concrete core; 

β  = St. Venant’s coefficient. 

where:
f ′c = concrete compressive strength (uniaxial);
Ao = area limited by the center line of the flow of shear stresses;
Ac = area limited by the outer perimeter of the section (includes hollow area): Ac = xy, with x and y the
width and height of the cross section;
Alh; Ath = homogenized steel areas in the longitudinal and transversal direction, respectively;
Acl,eq; Act,eq = equivalent area of effective concrete in tension for the longitudinal and transversal direction,
pc = perimeter of area Ac;
po = perimeter of area Ao;
t = thickness of the wall;
u = perimeter of the centerlines of the closed stirrups: u = 2(x1 + y1), with x1 and y1 the width and height
of the centerlines of legs of the closed stirrups;
s = spacing of the transversal reinforcement;
fd = stress in the diagonal concrete strut;
Asl; Apl = total area of the longitudinal ordinary and prestress reinforcement, respectively;
Ast = area of one unit of the transversal reinforcement;
εds = maximum compressive strain in the outer fiber in the strut direction;
fsl; fpl = stress in the longitudinal ordinary and prestress reinforcement, respectively;
fst = stress in the transversal reinforcement;
fcp = stress in the concrete due to prestress;
nc = Ec/Es, with Ec and Es the Young’s Modulus for concrete and ordinary reinforcement, respectively;
np = Ep/Es, with Ep and Es the Young’s Modulus for prestress and ordinary reinforcement, respectively;
$l; $t = longitudinal and transversal reinforcement ratio, respectively (see Section 3.1);
Kt,eq = equivalent secant torsional stiffness;
Kt,eq,tot = equivalent total torsional stiffness of the full section (including concrete core);
Kt,c = torsional stiffness of the concrete core;
β = St. Venant’s coefficient.
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Table 2. Equations of MVATM for LPC beams: cracked state [7,8,16].
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where:
xc; yc = width and height of the cross section core, respectively;
∆θmax = correction of the twists.
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The cracking torque (Tcr) sets the upper limit for Zone 1 (Figure 1). Tcr is calculated from an
equation based on the Bredt’s Thin Tube Theory, which incorporates a prestress factor to account
for the prestress (Equation (9) in Table 1). Bonded reinforcement delays the concrete cracking,
so the calculation of the effective cracking torque (Tcr,ef) accounts for the influence of the torsional
reinforcement ratio (both longitudinal, $l, and transversal, $t) (Equation (10) in Table 1). Prestress
reinforcement is also accounted if bonded to the concrete and if located in the outer area of the concrete
cross section.

For the non-cracked state, MVATM incorporates the contribution of the concrete in tension (which
is neglected in the VATM) for both longitudinal and transversal directions. In addition, MVATM
also incorporates the contribution of the concrete core for plain beams (which is also neglected in
the VATM). This is performed using the homogenization technique for both directions and also by
computing an equivalent thickness heq for the concrete in tension (Figure 2), which is assumed to
be effective to carry the internal forces along with the torsional reinforcement (Equations (4) and (5)
in Table 1). Figure 2 illustrates the equivalent hollow section with wall’s thickness heq assumed by
MVATM and also the cross section of the concrete strut (with unitary width) with the corresponding
strain and stress diagrams along its effective thickness td.
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Figure 2. Equivalent hollow section assumed by MVATM (LPC beams).

The cross section illustrated in Figure 2 is used to calculate the depth of the center line of the shear
flow, the area of the effective tensile concrete and the dimensions of the concrete core (for plain beams).
In this study, ACI code [22] is used to compute heq (Equation (13) in Table 1).

To characterize the behavior of the concrete in compression in the diagonal struts and the behavior
of the reinforcement in tension, average stress (σ)–strain (ε) relationships are assumed accounting for the
softening (concrete) and stiffening (reinforcement) effects. The σ–ε relationship for concrete in compression
used in this study is the one proposed by Belarbi and Hsu in 1991 [23] (Equations (45) and (46) in
Table 3) with softening coefficients for the maximum stress (βσ) and for the strain corresponding to
maximum stress (βε) proposed by Zhang and Hsu in 1998 [24] (Equations (47)–(50) in Table 3). In addition,
the σ–ε relationship for non-prestress reinforcement in tension proposed by Belarbi and Hsu in 1995 [25]
(Equations (58)–(61) in Table 4) and the σ–ε relationship for prestress reinforcement in tension proposed by
Ramberg–Osgood, as presented in [8] (Equations (65) and (66) in Table 5), are also used.

The compressive stress in the concrete diagonal struts, fd, is defined as the average stress of
a non-uniform stress diagram (Figure 2) (Equation (51) in Table 3). In Figure 2, parameters A, B,
and C are the maximum stress, average stress and the stress diagram resultant (Equations (52)–(54) in
Table 3), respectively. Parameter k1 in Equation (51) is computed by integrating Equations (45) and (46)
(k1 = B/A according to Figure 2).
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Table 3. σ–ε relationship for concrete in compression.
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where:
εo = strain corresponding to f ′c ;
εc1 = tensile strain in the perpendicular direction to the strut;
εdsi = initial compressive strain in the outer fiber of the concrete strut due to prestress;
ε′ds = effective compressive strain in the outer fiber of the concrete strut;
$l; $t = longitudinal and transversal reinforcement ratio, respectively (see Section 3.1);
$p = longitudinal prestress reinforcement ratio (see Section 3.1);
fsly; fsty = yielding stress in the longitudinal and transversal reinforcement, respectively;
fpl0.1% = conventional proportional stress of the longitudinal prestress reinforcement.

For the non-cracked state, the strains in the longitudinal non-prestress and prestress reinforcement,
εl and εp, which are need to calculate the stresses, fl and fp, must be computed accounting for the
initial compressive strain due to prestress, εdsi, and also for the state before concrete’s decompression
(Equations (62) and (63) in Table 4 and Equations (67) and (68) in Table 5). The effective compressive
strain ε′ds in the outer fiber of the concrete strut must also be computed accounting for this initial strain
and state (Equations (55) and (56) in Table 3).

The influence of the concrete core in the torsional stiffness of plain beams is incorporated by
correcting the twists θ previously calculated with the theoretical model for the non-cracked state.
The correction consists to add the torsional stiffness of the concrete core to the torsional stiffness of the
equivalent hollow section (Equations (18)–(21) in Table 1).
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Table 4. σ–ε relationship for ordinary reinforcement in tension.
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where:
Es; Ec = Young’s modulus of the ordinary reinforcement and concrete, respectively;
Ac = area limited by the external perimeter of the section;
Ah = hollow area of the section (for plain sections: Ah = 0);
fcr = concrete cracking stress;
$ = reinforcement ratio (see Section 3.1);
εsli = initial compressive strain in the longitudinal ordinary reinforcement;
ε′sl = effective strain in the longitudinal ordinary reinforcement;
fsy = reinforcement yielding stress.

To compute the solution points of the theoretical T–θ curve in the non-cracked state, an iterative
solution procedure based on a trial-and-error technique is used. Figure 3 shows the flowchart of the
calculation algorithm for hollow (Figure 3a) and plain (Figure 3b) sections. Figure 3b only presents
the needed additional part of the flowchart with respect to Figure 3a. The calculation procedure ends
when the effective cracking torque is reached.

2.2. Cracked State

When the effective cracking torque (Tcr,ef) is reached, the influence of concrete in tension vanishes
from the longitudinal and transversal equilibrium equations. From this point, the resultant forces in
both directions are equilibrated only by the longitudinal and transversal reinforcement, including
prestress reinforcement (Equations (23) and (24) in Table 2). This induces a sudden increase of the
twist (Zone 2.a in Figure 1), as it is experimentally observed for plain beams. For hollow beams,
experimental tests show that Zone 2.a is not clearly observed [26] (Figure 1). For such beams, MVATM
usually estimates a negligible length for Zone 2.a [16].

Despite concrete reaches its tensile strength in the outer area of the cross section, for plain beams
the influence of the concrete core still remains after cracking [27].

In the cracked state, the equivalent hollow section (with thickness heq) assumed for the non-cracked
state is no longer used to compute the area limited by the center line of the shear flow, neither its
perimeter. After concrete cracking, the effective wall thickness is considered to be equal to the effective
thickness of the concrete struts, td, computed from the VATM [7,8]. The center line of the shear flow is
now assumed to be located at td/2 (Equations (25) and (26) in Table 2).
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Table 5. σ–ε relationship for prestress reinforcement in tension.
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where:
Ep = Young’s modulus of the prestress reinforcement;
fpi = initial stress due to prestress in the prestress reinforcement;
fpt = ultimate stress of the prestress reinforcement;
fp0.1% = conventional proportional stress of the longitudinal prestress reinforcement;
εpl = strain in the prestress reinforcement;
εdec = strain in the prestress reinforcement at concrete’s decompression;
εpli = initial tensile strain in the prestress reinforcement;
εsli = initial compressive strain in the longitudinal ordinary reinforcement;
ε′l = effective strain in the longitudinal ordinary reinforcement;
εp0.1% = strain corresponding to fp0.1%.

Since in the cracked state the beam already reached the concrete’s decompression, the calculation
of the strains in the longitudinal non-prestress and prestress reinforcement, εsl and εp, to calculate the
stresses, fsl and fp, is performed with Equation (64) in Table 4 and Equation (69) in Table 5, respectively.
In the same way, the effective compressive strain ε′ds in the outer fiber of the concrete strut is computed
from Equation (57) in Table 3.

To estimate Zone 2.a in Figure 1, the calculation procedure presented in Table 2 is only performed
until Tcr,ef is reached (the calculation procedure for Zones 2.b and 3 is described in Section 2.3).
From the obtained results, only the point of the T–θ curve corresponding to T = Tcr,ef is used since the
objective of this section is only to estimate Zone 2.a.

The target of this section is illustrated in Figure 4b for plain sections. Zone 2a corresponds to the
horizontal landing, with T = Tcr,ef and θI

cr ≤ θ ≤ θII
cr. The value of θI

cr corresponds to the abscissa of the
intersection point between the horizontal level for T = Tcr,ef and the theoretical T–θ curve computed
with MVATM for the non-cracked state (Section 2.1). The value of θII

cr corresponds to the abscissa of
the intersection point between the same horizontal level and the theoretical T–θ curve computed with
MVATM for the cracked state.

Figure 4 illustrates how the corrections are implemented to draw the final theoretical T–θ for
RC hollow and plain beams (Figure 4a,b), respectively), starting from the point corresponding to the
cracking torque (Tcr,ef).

Based on the aforementioned, the iterative calculation procedure to compute the T–θ curve
presented in Section 2.1 needs to be corrected for the cracked state (Table 2). The flowchart for the
calculation algorithm is illustrated in Figure 5a (hollow sections) and Figure 5b (plain sections), with α′

and td
′ calculated from Equations (2) and (3) (see Table 1), respectively.
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Figure 3. Flowchart to compute the T–θ curve from MVATM for the non-cracked state: (a) hollow sections,
(b) plain sections.
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2.3. Zones 2.b and 3 (Cracked and Ultimate States)

The theoretical T–θ curve from MVATM for the cracked state, computed as presented in Section 2.2,
is not fully valid for Zone 2.b and 3 (Figure 1), since the model incorporates the influence of the concrete
core for plain sections. Earlier studies [27,28] shown that the influence of the concrete core for the
cracked torsional stiffness of the beam decreases as the torsional moment increases. This influence
is residual in the ultimate state. Then, for plain beams a criterion is adopted in this study to correct
the T–θ curve calculated from MVATM for the cracked state (Section 2.2), starting from Tcr,ef to the
maximum torque Tu. Since the concrete core mainly influences the torsional stiffness in the cracked
state [27,28], only the twists θ are corrected in the T–θ curve. The correction method for plain beams
consists as follows: from Tcr,ef to Tu the influence of the concrete core is gradually reduced by decreasing
linearly the “external” dimensions of the concrete core. Full dimensions and null dimensions are
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considered for Tcr,ef and Tu, respectively (Equations (35)–(41) in Table 2). For θ ≥ θu the corrections
are made by assuming that the influence of the concrete core no more exists (Equation (42) in Table 2).
The criterion to correct the T–θ curve of plain beams, for the cracked and ultimate state, is illustrated
in Figure 4b. A linear variation for ∆θ is assumed from Tcr,ef to Tu.

For hollow beams, the T–θ curve is firstly calculated with MVATM for the cracked state
(Section 2.2). Since no concrete core exists and since MVATM always predicts a narrow Zone 2.a (∆θ in
Figure 1), a small correction of the twists is performed because, as previously referred, no experimental
Zone 2.a is usually observed for hollow beams. For this, all the twists of the T–θ curve, starting from
point (θII

cr; Tcr), are translated to the left by ∆θ (Equations (43) and (44) in Table 2). The criterion to
correct the T–θ curve for hollow beams, for the cracked and ultimate state, is illustrated in Figure 4a.

The flowcharts for the calculation algorithm for MVATM in cracked state, including the correction
criteria for the twists, are illustrated in Figure 5a (hollow sections) and Figure 5b (plain sections).
Only the new/different part of the flowchart is presented in Figure 5b.

The theoretical failure point of the beam under torsion is defined as follows: either the maximum
compressive strain in the outer fiber of the concrete struts, εds (Figure 1), or the tensile strain for the
torsional reinforcement, εs, reaches its ultimate conventional value (εcu and εsu, respectively).

3. Extension of the MVATM for TPC Beams

In this section, the MVATM is extended to cover both longitudinally and transversally prestressed
concrete beams. The aim is to propose a generalization of the MVATM for PC beams for which RC,
LPC and TPC beams constitutes particular cases. Thus, the MVATM is generalized to beams with
combined longitudinal and transversal prestress (LTPC beams).

3.1. Non-Cracked State

As previously referred, the upper limit of Zone 1 (Figure 1) is set up with the effective cracking
torque Tcr,ef, which is computed from Equation (9) (Table 1) and remains valid both for RC and LPC
beams. For TPC or LTPC beams, the failure criterion for concrete under biaxial state, from which
Hsu in 1984 [29] proposed the prestress factor incorporated in Equation (9) (

√
1 + 10( fcp/ f ′c)) for LPC

beams, must be reviewed.
Let us first consider a hollow beam under a torsional moment, T, combined with a longitudinal

prestress stress state, σ, as illustrated in Figure 6a. The biaxial stress state in the element A of the beam
(Figure 6b) can be illustrated by the Mohr’s circle in a σ (normal stress)–τ (shear stress) coordinate
system, as illustrated in Figure 6c. Failure of the element A will occur when the biaxial stress state
reaches a critical value.

For LPC beams, Hsu in 1984 [29] used the Cowen’s failure criterion from 1952 [3], which constitutes
a simplification of the Mohr’s failure criterion. This criterion is defined by the following equations
which allow to compute the maximum shear stress τ:

τ

f ′c
=

√
0.0396 + 0.120

σ

f ′c
− 0.1594

(
σ

f ′c

)2
(71)

τ

f ′c
=

1(
f ′c
f ′t

)√1 +
(

f ′c
f ′t

)
σ

f ′c
, (72)

Equation (71) is applied if failure is governed by compression, while Equation (72) is applied if
failure is governed by tension. f ′t is the concrete strength in tension and σ is the concrete compression
stress due to the longitudinal prestress.
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Figure 6. Stress state for LPC beams under torsion: (a) beam, (b) element A, (c) Mohr´s circle.

For usual prestress levels, failure is generally governed by tension [29]. Then, prestress factor is
computed from Equation (72). Assuming f ′c/ f ′t = 10, Equation (72) can be written as follows:

τ

f ′c
=

1(
f ′c
f ′t

)√1 + 10
σ

f ′c︸ ︷︷ ︸
γ

(72a)

The prestress factor γ is the ratio between the strength of a beam with and without prestress.
Such prestress factor γ is incorporated in Equation (9) (Table 1) to compute the cracking torque.

In this study, for TPC or LTPC beams the prestress factor is obtained in a similar way as previously
described. Let us now consider a hollow TPC beam under torsion (Figure 7a). The stress state of the
element A (Figure 7b) is illustrated by the Mohr’s circle in Figure 7c.
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Figure 7. Stress state for TPC beams under torsion: (a) beam, (b) element A, (c) Mohr´s circle.

Comparing Figures 7c and 6c, it can be stated that the unique difference between Mohr’s circles is
that Points P and P’ are symmetrical with respect to the σ axis. Then, the Cowen’s failure criterion
gives the same prestress factor as the one given from Equation (72). Equation (9) from Table 1 is still
valid to compute the cracking torque for TPC beams, being σ the concrete compression stress due to
transversal prestress.
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For a LTPC hollow beam under torsion (Figure 8a), the stress state of the element A (Figure 8b) is
illustrated by the Mohr’s circle in Figure 8c, where σl and σt are the concrete stresses due to longitudinal
and transversal prestress, respectively. Comparing Figures 8c and 6c it can be stated that the element
A must rotate at an angle Ø (Figure 8c) to meet the same stress conditions (normal stress only in one
direction) as for the element A for LPC beam in Figure 6. After element A is rotated, the normal stress
in the vertical face is σl + σt (Figure 8c). Then, for LTPC beams the new prestress factor is:

γ =

√
1 +

σl + σt

f ′t
(73)

One can conclude that for LTPC beams (general case), the cracking torque should be computed
from Equation (74) instead of Equation (9) in Table 1.

Tcr = 166.1Act
(

2.5
√

f ′c(MPa)
)√

1 + 10
σl + σt

f ′c
(×0.85 if f ′c ≥ 50 MPa) (74)
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Figure 8. Stress state for LTPC beams under torsion: (a) beam, (b) element A, (c) Mohr´s circle.

If the transversal prestress reinforcement is bonded to the concrete and also located in the outer
area of the cross section, it is considered effective to delay concrete cracks. Then the transversal
reinforcement ratio, $t, must also incorporate this reinforcement as follows:

ρt =
Astu
Acs

+
np Aptup

Acsp
(75)

where Apt is the area of one unit of the transversal prestress reinforcement, up is the perimeter and sp

the longitudinal spacing of the reinforcement. Equation (75) should substitute Equation (12).
For TPC beams, the homogenization of the cross section to include the influence of the concrete in

tension, for both longitudinal and transversal directions, must also consider the transversal prestress
reinforcement. In the same way as presented in Section 2.1 for LPC beams, now the total distributed
transversal force, Ft,tot, considers the contribution of the transversal prestress reinforcement as follows
(see Figure 9):

Ft,tot = Ath ft/s = (At/s + nAct,eq/s + np Apt/sp) ft (76)

Equation (76) substitutes Equation (5) in Table 1 to compute the effective depth of the struts td
(Equation (3) in Table 1).
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From the VATM [7,8] for RC and LPC beams, the calculation of the angle of the concrete struts,
α, can be performed with Equation (77) which is related with the force in the transversal direction,
instead of Equation (2) in Table 1.

sen2α =
Ft,tot

fdtd
(77)

For TPC beams, Ft,tot must be computed from Equation (76) in order to incorporate the contribution
of the transversal prestress reinforcement.

Designs 2018, 2, 12 14 of 22 

 

For TPC beams, Ft,tot must be computed from Equation (76) in order to incorporate the 

contribution of the transversal prestress reinforcement. 

 

Figure 9. Equivalent hollow section assumed by MVATM (LTPC beams). 

In order to use one simple equation to calculate α and also to generalize such equation for any 

type of beam (RC, LPC, TPC or LTPC), an alternative and general equation is proposed. For this, 

Equation (77) is divided by Equation (2) from Table 1. The new Equation (78) substitutes Equations 

(77) and (2) from Table 1. 

2
,2

2

,

t tot

l tot

F psen
tg

cos F


  


 (78) 

All the other equations from Table 1 remain unchanged and valid for TPC and LTPC beams.  

The reduction factors βσ = βε depends on parameter η (Equation (48) in Table 3), which represents 

the ratio between the resisting forces in the longitudinal and transversal reinforcement. For TPC 

beams, parameter η must also account for the resistance force in the transversal prestress 

reinforcement. Then η is calculated as follows: 

0.1%

0.1%

sl sly pl pl

st sty pt pt

f f

f f

 
 

 
 (79) 

pt p

pt

c p

A u

A s
   (80) 

where: 

ρpt = transversal prestress reinforcement ratio; 

fpt0.1% = conventional proportional stress of the transversal prestress reinforcement. 

Equations (79) and (80) substitute Equations (48) and (48b), respectively, in Table 3. 

For TPC beams, the calculation procedure to compute the strain in the transversal prestress 

reinforcement, εpt, which is need to compute the stress, fpt, should follows identical steps as the ones 

presented in Section 2.1 for LPC beams. The equations are the following ones: 

ttpipt  ,
 (81) 

pt

tpi

tpi
E

f ,

, 

 

(82) 

st sti st
   

 

(83) 

Asl
f
sl

Ast fst

d

Apl fpl f
Fl,tot heq

Ft,tot

Apt fpt

Figure 9. Equivalent hollow section assumed by MVATM (LTPC beams).

In order to use one simple equation to calculate α and also to generalize such equation for any type of
beam (RC, LPC, TPC or LTPC), an alternative and general equation is proposed. For this, Equation (77)
is divided by Equation (2) from Table 1. The new Equation (78) substitutes Equations (77) and (2) from
Table 1.

tg2α =
sen2α

cos2α
=

Ft,tot po

Fl,tot
(78)

All the other equations from Table 1 remain unchanged and valid for TPC and LTPC beams.
The reduction factors βσ = βε depends on parameter η (Equation (48) in Table 3), which represents

the ratio between the resisting forces in the longitudinal and transversal reinforcement. For TPC beams,
parameter η must also account for the resistance force in the transversal prestress reinforcement.
Then η is calculated as follows:

η =
ρsl fsly + ρpl fpl0.1%

ρst fsty + ρpt fpt0.1%
(79)

ρpt =
Aptup

Acsp
(80)

where:

$pt = transversal prestress reinforcement ratio;
fpt0.1% = conventional proportional stress of the transversal prestress reinforcement.

Equations (79) and (80) substitute Equations (48) and (48b), respectively, in Table 3.
For TPC beams, the calculation procedure to compute the strain in the transversal prestress

reinforcement, εpt, which is need to compute the stress, fpt, should follows identical steps as the ones
presented in Section 2.1 for LPC beams. The equations are the following ones:

εpt = εpi,t + ε
′
t (81)

εpi,t =
fpi,t

Ept
(82)

ε′st = −εsti + εst (83)
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εsti =
2 Apt

sp
fpi,t

2 Ast
s (Es − Ec) +

(
A′c − A′h − 2 Apt

sp

)
Ec

(84)

For LTPC beams, Equations (81) and (82) must be used with Equations (67) and (68) in Table 5,
while Equations (83) and (84) must be used with Equations (62) and (63) in Table 4.

In TPC beams, the effective strain in the transversal ordinary reinforcement must be calculated
accounting that it undergoes an initial compressive strain εsti due to the transversal prestress. The strain
in the transversal reinforcement εst due to the external torque T is calculated with Equation (6) from
Table 1.

The outer fiber of the concrete struts also undergoes an initial compressive strain εdsi due to the
transversal prestress. If a 45 degrees angle is assumed for the direction of the struts for the pre-cracked
state, then εdsi can be simply computed as follows (see Figure 10b):

εdsi ≈
εsti

cos 45
(85)
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For LTPC beams, the outer fiber of the concrete struts undergoes an initial compressive strain due
to both longitudinal and transversal prestress. Again, by assuming a 45 degrees angle for the direction
of the struts, εdsi can be computed as follows (see Figure 10):

εdsi ≈
εsli + εsti

cos 45
(86)

All the other equations presented in Section 2.1 remains valid for TPC and LTPC beams, including
the procedure to correct the twists in order to incorporate the influence of the concrete core for plain
beams (Table 1).

For LTPC beams, the flowchart for the calculation algorithm is the same as the one illustrated in
Figure 3a (hollow sections) and Figure 3b (plain sections). The differences are only related with the
correction of some steps in order to substitute some equations and add new ones:

- 1st step: Select εds. Calculate εdsi (Equation (86)) and ε′ds Equation (55));
- . . .
- 4th step: Calculate T (Equation (1)), εst (Equation (6)), ε′sl (Equation (63)), ε′st (Equation (83)),

εpl (Equation (67), εpt (Equation (81)), fst and fsl (Equations (58)), fpl and fpt (Equations (65) and (66));

- . . .
- 7th step: Calculate α′ (Equation (78));
- . . .
- 12th step: T > Tcr,ef ? (Equation (74));

- . . .
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3.2. Zone 2a (Cracked State)

In the same way as described for LPC beams (Section 2.2), after the cracking torque is reached,
the influence of the tensile concrete vanishes. Thus, the equilibrium equations incorporate only the
forces in the reinforcements, including prestress reinforcement (Asl fsl + Apl fpl and Ast fst/s + Apt fpt/sp

for longitudinal and transversal reinforcements, respectively).
From VATM and for RC an LPC beams [7,8], the calculation of the angle of the concrete struts,

α, can be performed with Equation (87), which is related with the force in the transversal direction,
instead of Equation (23) from Table 2.

sen2α =
Ast fst

s fdtd
(87)

For TPC beams, Equation (87) must be rewritten in order to replace the transversal force (per
unit length) in the ordinary reinforcement (Ast σst/s) by the total transversal force (also per unit length)
including both the ordinary and prestress reinforcement (Ast fst/s + Apt fpt/sp):

sen2α =
Ast fst

s fdtd
+

Apt fpt

sp fdtd
(88)

where fpt is the stress in the transversal prestress reinforcement.
In order to use one simple equation to calculate α and to generalize this equation for any type

of beams (RC, LPC, TPC or LPTC beams), an alternative equation is proposed by taking the ratio
between Equations (88) and (23) from Table 2. This new equation substitutes Equations (88) and (23)
from Table 2.

tg2α =
sen2α

cos2α
=

Ast fst
s +

Apt fpt
sp

Asl fsl
po

+
Apl fpl

po

(89)

In the same way, since the longitudinal equilibrium equation is also used to compute the effective
depth of the concrete struts (td), Equation (24) must also incorporate both the total longitudinal and
transversal forces (general case):

td =
Asl fsl
po fd

+
Ast fst

s fd
+

Apl fpl

po fd
+

Apt fpt

sp fd
(90)

Equation (90) substitutes Equation (24) from Table 2.
All the other equations presented in Section 2.2 remains valid for TPC and LTPC beams.
The flowchart for the calculation algorithm to compute the new T–θ curve for cracked state is the

same as the ones illustrated in Figure 5a (hollow sections) and Figure 5b (plain sections), with td
′ and

α′ calculated with Equations (90) and (89), respectively.

3.3. Zones 2.b and 3 (Cracked and Ultimate States)

The calculation procedure presented in Section 2.3 remains valid, including the procedure to correct the
twists in the cracked state to incorporate the influence of the concrete core for plain sections. The flowchart
for the calculation algorithm to compute the new T–θ curve for the cracked state is the same as the ones
illustrated in Figure 5a (hollow sections) and Figure 5b (plain sections), with the corrections presented in
Section 3.2.
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4. Theoretical Parametric Study

4.1. Reference Beams and Study Variables

In this section, some theoretical results obtained with MVATM extended to TPC beams are used to
compare the global behavior under torsion of TPC, LPC and LTPC beams. For this purpose, the series
of squared RC hollow beams tested by Bernardo and Lopes in 2009 [26] are used as reference beams.
Among the sixteen beams tested by the authors, a set of nine beams were chosen in order to allow
grouping beams with similar concrete strength and different torsional reinforcement ratio (including
beams with ductile and brittle failure) and also beams with similar torsional reinforcement ratio and
different concrete strength (including beams with normal-strength concrete–NSC–and high-strength
concrete–HSC).

Table 6 summarizes the geometrical and mechanical properties of the nine chosen squared RC
hollow beams, namely: the external width (x) and height (y) of the cross section, the thickness
of the walls (t), the distances between centerlines of legs of the closed stirrups (x1 and y1),
the area of longitudinal reinforcement (Asl), the distributed area of one branch of the transversal
reinforcement (Ast/s, where s is the spacing of transversal reinforcement), the longitudinal reinforcement
ratio (ρsl = Asl/Ac, with Ac = xy) and the transversal reinforcement ratio (ρst = Astu/(Acs),
with u = 2(x1 + y1)), the average concrete compressive and tensile strength ( fcm ≡ f ′c and fctm ≡ fcr),
the average yielding stress of longitudinal and transversal reinforcement (flym and ftym), the concrete
Young’s Modulus (Ec), the compressive strains for concrete (peak stress value, εo, and maximum value,
εcu). For the reinforcement, usual values were adopted for the conventional maximum tensile strain
(εlu = εtu = 10h) and Young’s Modulus (Es = 200 GPa). It should be noted that, for all the nine beams,
longitudinal and transversal reinforcement ratios are equilibrated.

Table 6. Properties of the reference RC hollow beams [26].

Beam x; y
cm

T
cm

x1
cm

y1
cm

Asl
cm2

Ast/s
cm2/m

$sl
%

$st
%

fcm
MPa

fctm
MPa

flym
MPa

ftym
MPa

Ec
GPa

εo
%

εcu
%

A2 60 10.7 53.8 53.1 14.0 6.3 0.39 0.37 47.3 3.5 672 696 36.1 0.20 0.35
A3 60 10.9 54.0 53.5 18.1 8.3 0.50 0.49 46.2 3.4 672 715 35.8 0.20 0.35
A5 60 10.4 52.8 52.8 30.7 14.1 0.85 0.83 53.1 3.8 724 672 37.5 0.20 0.35
B2 60 10.8 53.3 53.4 14.6 6.7 0.41 0.40 69.8 4.1 672 696 39.4 0.21 0.33
B4 60 11.2 52.3 53.6 32.2 15.1 0.89 0.89 79.8 4.4 724 672 41.0 0.21 0.31
C2 60 10.0 53.2 53.3 14.0 6.3 0.39 0.37 94.8 4.9 672 696 43.2 0.22 0.28
C3 60 10.3 54.5 54.0 23.8 10.5 0.66 0.63 91.6 4.8 724 715 42.8 0.22 0.28
C4 60 10.3 54.6 54.5 30.7 14.1 0.85 0.86 91.4 4.8 724 672 42.7 0.22 0.28
C6 60 10.4 53.3 52.9 48.3 22.6 1.34 1.34 87.5 4.7 724 724 42.2 0.22 0.29

For the objectives of this section, the reference beams will be theoretically prestressed in the
longitudinal direction (LPC), in the transversal direction (TPC) and in both directions (LTPC).
A moderate prestress level is chosen with respect to the concrete compressive strength (fcp) for LPC
and TPC beams: fcp = 0.225 f ′c , with fcp the compressive stress in concrete due to prestress. This value
was chosen from the range of allowed values imposed by ACI Code ( f ACI

cp,max = 0.45 f ′c).
To evaluate the efficiency of transversal prestress, when compared with longitudinal prestress,

the chosen criteria was to impose the same stress state in the concrete (fcp) for LPC and TPC beams.
The areas of prestress reinforcement were chosen so that the prestress reinforcement ratios for each
direction are similar. For LTPC beams, the chosen criterion was to assume half of the previously
referred prestress level for each direction. With this criterion, the total prestress reinforcement ratio is
the same for all the studied beams (LPC, TPC and LTPC), since this quantity is related with the total
prestress force to be applied.

For the parametric analysis, the following study variables were considered: the concrete compressive
strength ( f ′c) and the total reinforcement ratios (ρl,tot = ρsl + ρpl, ρt,tot = ρst + ρpt, with $sl, $st, $pl and $pt
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computed with Equation (48a)–Table 3, Equation (12)–Table 1, Equation (48b)–Table 3 and Equation (80),
respectively). To calculate $pt, it is assumed that up is equal to the perimeter of the center line of the walls.

Table 7 presents the information about prestress for the studied reference beams, namely: the total
area of longitudinal prestress reinforcement (Apl), the distributed area of one branch of the transversal
prestress reinforcement (Apt/sp, where sp is the spacing of the transversal prestress reinforcement), the ratio
of longitudinal and transversal prestress reinforcement (ρpl and ρpt, respectively), the average stress in
concrete due to prestress for each direction (fcpl and fcpt, respectively). For the prestress reinforcement, usual
values were adopted for the proportional conventional limit stress to 0.1% (fp0.1% = 1670 MPa) and Young’s
Modulus (Ep = 195 GPa). The initial stress in the prestress reinforcement for each direction (fpli and fpti) was
considered constant and equal to 1350 MPa. This value corresponds to a current chosen design criteria to
compute the area of prestress reinforcement, it corresponds to 0.75fpu with fpu the tensile strength of the
prestress reinforcement, which is assumed to be equal to 1800 MPa.

Table 7. Prestress values for fcp = 0.225 f ′c (LPC and TPC) and fcp = 0.1125 f ′c (LTPC).

Type LPC TPC LTPC

Beam
Apl

cm2
$pl
%

fpli
MPa

fcpl
MPa

Apt/sp

cm2/m
$pt
%

fpti
MPa

fcpt
MPa

Apl

cm2
Apt/sp

cm2/m
$pl
%

$pt
%

fpli
MPa

fcpl
MPa

fpti
MPa

fcpt
MPa

A2 16.63 0.46 1350 10.64 8.44 0.46 1350 10.64 8.32 4.22 0.23 0.23 1350 5.32 1350 5.32
A3 16.48 0.46 1350 10.40 8.39 0.46 1350 10.40 8.24 4.20 0.23 0.23 1350 5.20 1350 5.20
A5 18.26 0.51 1350 11.95 9.20 0.51 1350 11.95 9.13 4.60 0.25 0.25 1350 5.97 1350 5.97
B2 24.73 0.69 1350 15.71 12.56 0.69 1350 15.71 12.36 6.28 0.34 0.34 1350 7.85 1350 7.85
B4 29.08 0.81 1350 17.96 14.90 0.81 1350 17.96 14.54 7.45 0.40 0.40 1350 8.98 1350 8.98
C2 31.60 0.88 1350 21.33 15.80 0.88 1350 21.33 15.80 7.90 0.44 0.44 1350 10.67 1350 10.67
C3 31.26 0.87 1350 20.61 15.72 0.87 1350 20.61 15.63 7.86 0.43 0.43 1350 10.31 1350 10.31
C4 31.19 0.87 1350 20.57 15.69 0.87 1350 20.57 15.60 7.85 0.43 0.43 1350 10.28 1350 10.28
C6 30.09 0.84 1350 19.69 15.17 0.84 1350 19.69 15.05 7.58 0.42 0.42 1350 9.84 1350 9.84

4.2. Comparative Analysis

Based on the extended MVATM presented in this study, the theoretical T–θ curves for all the
reference beams presented in Tables 6 and 7 were computed. The results are presented in Figures 11–14.
The T–θ curves are grouped for beams with similar concrete strength (Figure 11 for NSC beams and
Figure 12 for HSC beams), as well as for beams with similar total reinforcement ratio (Figure 13 for high
torsional reinforcement ratio–torsional brittle failure, and Figure 14 for low torsional reinforcement
ratio–torsional ductile failure).

From Figures 11–14, it can be stated that the cracking torque is higher for LPC beams,
when compared with TPC beams. This seems to show that longitudinal prestress is more effective for
low loading levels, namely to delay the cracked state. Since the initial average compressive stress in
concrete due to prestress is the same (in magnitude) for both LPC and TPC beams, this result show
that the cracking torque strongly depends on the prestressing direction. For LTPC beams, the cracking
torque is also higher when compared with TPC beams, and similar when compared with LPC beams.
Despite LTPC beams incorporate only half of the prestress level for each direction, when compared
with LPC and TPC beams, the biaxial compressive stress state in LTPC beams shows to be also effective
to delay the cracking state.

For high loading levels, Figures 11–14 show that the torsional behavior of LPC and TPC beams
with the same prestress level is very similar, namely for the resistance torque. In fact, it should
be remembered that for high loading levels, PC beams behaves as current RC beams. The total
reinforcement ratio in the prestressing direction is very similar for both LPC and TPC beams in
Figures 11–14. Then, from the previous observations it can be stated that transversal prestress seems to
be equally effective for the resistance torque when compared with longitudinal prestress.
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Figure 11. T–θ curves for NSC beams.
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Figure 12. T–θ curves for HSC beams.
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Figure 13. T–θ curves for high torsional reinforcement ratio.
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Figure 14. T–θ curves for low torsional reinforcement ratio.

For LTPC beams, the resistance torque and the torsional stiffness in the cracked state are higher
when compared with those of LPC and TPC beams. Despite LTPC beams incorporate the same total
amount of prestress reinforcement, as for LPC and TPC beams, the results show that the distribution
of the prestress reinforcement in both directions (longitudinal and transversal) is better to enhance the
torsional behavior of the beams for the ultimate state.

5. Conclusions

In this study, the MVATM was extended to cover TPC beams under torsion. For this, the changes
in the VATM formulation were presented in order to incorporate the influence of transversal prestress,
in addition to longitudinal prestress.

Based on the extended MVATM, a global calculation procedure was defined and implemented
with an appropriate programming language (DELPHI). The extended MVATM allows to predict the
entire T–θ curve for beams under torsion, including RC, LPC, TPC and LTPC beams.

The results from a theoretical parametric study performed with the extended MVATM where
presented in order to compare the global behavior of LPC, TPC and LTPC beams with similar total
prestress reinforcement ratios. From the theoretical T–θ curves and for beams with prestress in only
one direction (LPC and TPC beams), it was observed that, for the ultimate loading and when compared
with longitudinal prestress, transversal prestress constitutes an effective solution for beams under
torsion. However, for low loading levels, transversal prestress seems to be less effective, namely to
delay the cracking torque.

For beams with prestress in both directions (LTPC beams), the results shown that the biaxial
compressive stress state due to prestress is also effective to delay the cracking torque. Moreover,
LTPC beams shown to have higher resistance torque and torsional stiffness in the cracked state,
when compared with LPC and TPC beams. This observation shows that, even with the same total
amount of prestress reinforcement, it is better to distribute prestress in both directions (longitudinal
and transversal).

The extended MVATM proposed in this study represents an important advance in the attempt to
generalize the Space-Truss Analogy for PC beams under torsion. However, it should be noted that
experimental results with TPC and LTPC beams under torsion are of great need, namely to help to
confirm the main findings of this study.
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