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Abstract: In this paper, we deal with a simple embedded electronic system for an industrial
pneumatic–hydraulic system, based on a low-cost programmable logic controller (PLC) and industrial
electronic parts with 24 V logic. The developed system is a hydraulic pulse system and generates a
series of high-pressure hydraulic pulses with up to a max. 200 bar output pressure level and with
up to a max. 2 Hz output hydraulic pulses frequency. In this paper we are describing requirements,
the concept of the embedded control system in a diagram, security features and its industrial
network connectivity (CAN bus, MODBUS). In description of the software solution we describe the
implementation of the program threads approach in this low-cost PLC. The PLC programming with
threads generate two layers of services—physical and application layer, and as a result, the threads
create the main control state machine. In conclusion, we describe the calibration method of the system
and the calibration curves. For further study we offer readers the full programming code written in
sequential function charts to be used as PLC language. The cost of the described industrial networked
control system with industry standard optoelectronic insulated interfaces and certified industrial
safety relay does not exceed €1000 Euros.

Keywords: PLC programming; hydraulic pulse system; state machine programming

1. Introduction

Our built-in embedded system for the pneumatic–hydraulic pulse system is based on the use of a
modern low-cost programmable logic controller (PLC). A modern PLC allows you to program parallel
running programs (threads), each of them being programmed for PLC programmers well-known
ladder diagrams or as functional block diagrams [1,2]. In our work, we prepared for the PLC robust,
external error-free control program, so as to control the series high pressure hydraulic pulses based at
one PLC. Each thread represents a separate task and independent state of system. Parallel running
threads cooperate with each other and this set of independent threads creates a unique reactive control
state machine [3,4].

2. Requirements for Pneumatic–Hydraulic Pulse System

Since we have limited space in this contribution, we are only trying to describe the requirements
for the overall machine and requirements for creating a specific series of impulses.

The system controls up to four independent series, each of them defined by four adjustable
parameters; the number of pulses (N), the maximum hydraulic pressure (p), the hydraulic pulse
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duration (T1) and the duration of the pause between pulses (T0). Each WAGON of this TRAIN has four
passengers: N, p, T1, T2, see Figure 1, where WAGONs build a so-called “PNEUMATIC–HYDRAULIC
PULSE TRAIN”. The pneumatic–hydraulic pulse train can cyclically repeat its defined circle path
by the number of times which is set in the TRAIN SESSION number. The number of WAGONs may
be set by the user from 1 to 4. The embedded control system allows each user to set the output of
the hydraulic pressure in bars within the range 0–200 bar, the number of WAGONS, and number of
cyclic reruns of the train’s path. The control system must allow system calibration (dependence of the
output hydraulic pressure in units of [bar] at the user’s desired hydraulic pressure in [ADU] units
(ADU unit = Analog Digital Unit)). It must ensure the generation of system and error messages.
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Figure 1. Pneumatic–hydraulic pulse train-schematic represents of cyclic repeating sequence pulses for
hydraulic pulse system as cyclic paths of train with four wagons, each with four passengers.

3. Hardware Solution

3.1. Pneumatic–Hydraulic Parts

The schematic diagram of the developed pneumatic–hydraulic system with PLC based control
system is shown in Figure 2 and a photo of the prototype is shown in Figure 3. The proportional
pneumatic valve regulates input air pressure. Regulated air is then fed into pneumatic four-way
valve circuit and it controls the two-position pneumatic pump. This pneumatic circuit controls the
two-direction movement of the hydraulic cylinder with, resulting amplified hydraulic pressure as its
output [5].
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Figure 2. Schematic diagram of the developed pneumatic–hydraulic system. Figure 2. Schematic diagram of the developed pneumatic–hydraulic system.



Designs 2018, 2, 48 4 of 10
Designs 2018, 2, x  4 of 11 

 

 

Figure 3. The photo of the functional prototype of the pneumatic–hydraulic pulse system. 

3.2. PLC Based Control System 

The embedded control system was implemented on a cheap programmable logic controller type 

(PLC) Nanoline from Phoenix Contact [6] and on additional PLC’s modules (analog input–output 

module, LCD display and keypad user interface module, USB, RS232 and Ethernet communication 

module). The PLC works with industrial logic levels and they both have two levels 0 and 24 V; PLC's 

analog outputs are in the range 0–10 V, and PLC's analog inputs are in range 0–5 V. The used PLC 

Nanoline is built around an ARM 32 processor and its operating system allows for the running of 

several independent program threads simultaneously. The run of each thread is conditional on the 

value of the hardware input signal or by the program setting of value of the internal program flag. 

This interesting ability of the PLC’s operating system creates a challenge for us to generate a master 

program for control of hydraulic pulses based on states machines 

3.3. User Interface Elements 

HMI (human–machine interface) of the pneumatic–hydraulic pulse system consists of keypad, 

LCD display (4 rows × 20 characters) and few switches. The manual switch strains between two basic 

modes of equipment (MANUAL mode and AUTO mode), the potentiometer serves for manual 

adjustment of output hydraulic pressure, the button allows for starting the series hydraulic pulsation 

(PULSE mode), another button serves to stop the pulses (the RESET button), the security (or 

emergency) button serves to turn off the power of the appliance (EMERGENCY). The required values 

for WAGON and TRAIN parameters and the choosing of other equipment modes (e.g., calibration of 

the system) are entered from the PLC build keypad. 

3.4. Electrical Parts of System 

Electrical parts of system consist a 24 V power supply, a safety relay, electrical and optical relays, 

switches, terminals and wires as is seen in Figures 2 and 3. 

  

Figure 3. The photo of the functional prototype of the pneumatic–hydraulic pulse system.

3.2. PLC Based Control System

The embedded control system was implemented on a cheap programmable logic controller type
(PLC) Nanoline from Phoenix Contact [6] and on additional PLC’s modules (analog input–output
module, LCD display and keypad user interface module, USB, RS232 and Ethernet communication
module). The PLC works with industrial logic levels and they both have two levels 0 and 24 V; PLC’s
analog outputs are in the range 0–10 V, and PLC’s analog inputs are in range 0–5 V. The used PLC
Nanoline is built around an ARM 32 processor and its operating system allows for the running of
several independent program threads simultaneously. The run of each thread is conditional on the
value of the hardware input signal or by the program setting of value of the internal program flag.
This interesting ability of the PLC’s operating system creates a challenge for us to generate a master
program for control of hydraulic pulses based on states machines

3.3. User Interface Elements

HMI (human–machine interface) of the pneumatic–hydraulic pulse system consists of keypad,
LCD display (4 rows × 20 characters) and few switches. The manual switch strains between two
basic modes of equipment (MANUAL mode and AUTO mode), the potentiometer serves for manual
adjustment of output hydraulic pressure, the button allows for starting the series hydraulic pulsation
(PULSE mode), another button serves to stop the pulses (the RESET button), the security (or emergency)
button serves to turn off the power of the appliance (EMERGENCY). The required values for WAGON
and TRAIN parameters and the choosing of other equipment modes (e.g., calibration of the system)
are entered from the PLC build keypad.

3.4. Electrical Parts of System

Electrical parts of system consist a 24 V power supply, a safety relay, electrical and optical relays,
switches, terminals and wires as is seen in Figures 2 and 3.
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3.5. Safety Measures

The basis of ensuring the safety operation of high pressure pneumatic–hydraulic pulse system
is the certified safety relay [7]. The safety relay can detect system errors that switch off the power
for the whole electrical power part of the equipment (but not for control PLC). Key safety sensors
are connected in the series. In the case of detection of problems by dedicated sensors with any
media (hardware signals AIR or LIQUID) or detection of mechanical problems (hardware signals as
DISTANCE ERROR or COVER EMERGENCY SWITCH), the series of connected sensor’s contacts is
interrupted, the safety relay responds and sets the signal ERROR and switches off the power for the
hydraulic–pneumatic pulse system in order to automatically reduce the output hydraulic pressure
to minimum. The mechanical error with name DISTANCE ERROR is generated by a mechanical
contact switch mounted near the hydraulic cylinder and serves to indicate an attempt to generate
high hydraulic pressure. To ensure of the safe operation of the high pressure pneumatic–hydraulic
pulse system, we used a certified safety relay. The safety relay can, in the case of detecting the system
errors, switch off the power for the whole electrical power part of the equipment (except of power for
control PLC).

3.6. Network Connectivity of the Pneumatic–Hydraulic System

Network connectivity of our control system is ensured with the PLC expansion Ethernet
communication module [8]. This expansion module allows for external control of all program elements
in the PLC program (e.g., PLC’s signals, flags, registers ...) via industrial standard MODBUS protocol
(via TCP-IP protocols). For our special purpose, where the pneumatic–hydraulic pulse system is a part
of a test bench, we have developed the communication embedded server—a converter between the
CAN bus (CAN is used by test bench’s protocol) and RS232 (as physical base for MODBUS protocol).
The CAN converter consists of the hardware module OLIMEX occupied with 8bit ATMEL AVR-CAN
microcontroller [9]. The developed protocol and BUS converter allows us to control and monitor
pneumatic–hydraulic pulses system, even though the CAN bus.

4. Software Solution

4.1. Basic PLC Functions

The programming approaches for modern PLC are described in standards and books, for example
by the authors of [10,11]. The ladder diagram or graphic function block diagram programming
approach is still the focus of PLC’s programmers. The IEC 61131-3 (IEC 1131-3: The International
Programmable Controller Language Standard) is the third part (of 10) of the open international
standard IEC 61131 for programmable logic controllers and was first published in December 1993 by
the IEC [6]. The current (third) edition was published in February 2013. Part 3 of IEC 61131 deals with
the basic software architecture and programming languages of the control program within the PLC.
It defines two graphical and two textual programming language standards:

• Ladder diagram (LD), graphical
• Function block diagram (FBD), graphical
• Structured text (ST), textual
• Instruction list (IL), textual (deprecated in 3rd edition of the standard)
• Sequential function chart (SFC), has elements to organize programs for sequential and

parallel control processing (IEC 1131-3: The International Programmable Controller Language
Standard and)

The modern low-cost PLC based on powerful ARM architecture such as Nanoline from Phoenix
Contact allows for the running of several program threads. It gives to the PLC programmer the
possibility to program the main control program without creating one long and complicated PLC
program. Each independent PLC program thread can be initiated by hardware signal(s) (the PLC use
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24 V logic at input) or by internal programming flag with boolean data type (it can be set by another
PLC program thread). Each PLC program thread can be programmed with ladder diagram or graphic
functional block diagram programming approach and the PLC programmer may not to know about
the concurrent program techniques or about the use of special concurrent program library for PLC.

4.2. List of Hardware Inputs and Outputs for PLC

The list of all digital and analog inputs and outputs used in the project is in the Table 1.
Each hardware input signal (ERROR, WAIT, MANUAL, AUTO, PULSE and RESET) is processed
in the PLC by individual program thread (see Table 2). These signals are grouped in the so-called
physical layer. Some hardware signal inputs are used for indicating the error’s cause in the safety
power shutdown of the pneumatic–hydraulic system via safety relay (Figure 2).

Table 1. List of programmable logic controller (PLC) hardware inputs and outputs and their responsible
processing layer.

n. Name of
Hardware Signal

Signal
Direction/Digital/Analog

Signal is Processed in the
Independent Thread Description of Physical Signal

1 ERROR I0-input Physical layer 4_ERROR From safety relay
2 MANUAL I1-input Physical layer 1_MANUAL User input, manual control
3 AUTO I2-input Physical layer 2_AUTO User input, pulse gen.
4 PULSE I3-input Physical layer 3_PULSE User input, start of pulsing
5 RESET I4-input Physical layer 5_RESET User input, stop of pulsing

6 AIR_ERROR I5-input Application layer
4_State_Func From pressure air tank switch

7 LIQUID_ERROR I6-input Application layer
4_State_Func From hydraulic tank switch

8 DISTANCE_ERROR I7-input Application layer
4_State_Func From distance contact switch

9 PNEU_PUMP Q0-output
Application layer
1_State_Func and

3_State_Func
For pneumatic pump control

10 PULSE_RELAY Q1-output Application layer
3_State_Func For pulse control generation

11 HYDR_PRES_SENSOR AI0-input All application layers From hydraulic pressure sensor

12 MANUAL_PRES_SET AI1-input Application layer
1_State_Func From user man. potentiometer

13 PNEUMATIC_VALVE AU0-output
Application layer
1_State_Func and

3_State_Func
For proportional valve control

Table 2. List of implemented physical layer threads.

n. Name of
Thread

Signal Condition for
Perform of the Thread

Program Switches the
Flag to ON

Conditionally can
Set also

Description of
Program Thread

1 4_ERROR Signal ERROR = ON State_FLAGS_4_ERROR PNEU_PUMP(OFF)
PULSE_RELAY(OFF)

Safety relay output
processing

2 0_WAIT Signal ERROR = ON State_FLAGS_0_WAIT Wait state

3 1_MANUAL Signal MANUAL = ON
AND ERROR = OFF State_FLAGS_1_MAN State_FLAGS_0_WAIT User input, manual

control mode

4 2_AUTO Signal AUTO = ON
AND ERROR = OFF State_FLAGS_2_AUTO State_FLAGS_0_WAIT User input, pulse

generation mode

5 3_PULSE Signal PULSE = ON
AND ERROR = OFF State_FLAGS_3_PULSE State_FLAGS_0_WAIT User input, start of

pulsing

6 5_RESET Signal RESET = ON
AND ERROR = OFF State_FLAGS_2_AUTO START_BUTT_ON User input, stop of

pulsing

4.3. Physical Layer Threads

Threads of the physical layer (Table 2) run in the PLC’s operating system after their initializing
by hardware input signals. The physical layer ensures processing of hardware signals and as a result,
this layer sets outputs flags, which are processed in the application layer. These output flags manage
transitions between states in the master control state machine (literally by start or by stop of the
respective threads in the application layer). These program threads also process aforementioned inputs
hardware signals and set of hardware output signals by aligning the required settling time or also,
the next set of parameters of elements of pneumatic or hydraulic hardware (e.g., delay of relays, setting
time of input valve, etc.).
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4.4. Application Layer Threads

The running of the application layer thread (listed in Table 3) begin by changes of program
flags (one or two flags, then in AND or in OR mutual combination) which are received from the
physical layer. Some threads in application layer create of individual states in the master control state
diagram (Figure 3). In addition, these threads enable the realization of sub states. For example, thread
2_State_Func can call of sub state 6_State_Func. This thread serves for the manual input of parameters
in the hydraulic pulse train. Next threads also underpin subroutine for user input interaction such the
22_State_Func. This sub state provides the possibility of the manual input of calibration constants.

Table 3. List of application layer threads.

n. Name of Thread Flag Condition for Perform of
the Thread

Description of Program Thread, see Figure 4 Master
Control State Diagram for Hydraulic Pulse System

1 0_State_Func State_FLAGS_0_WAIT = ON
AND ERROR = OFF

WAIT STATE, Initialization of calibration constants, zeroing of the ATE
pressure sensor

2 1_State_Func State_FLAGS_1_MANUAL = ON
AND ERROR = OFF

MANUAL STATE, manual control of output hydraulic pressure via
manual potentiometer

3 2_State_Func State_FLAGS_2_AUTO = ON
AND ERROR = OFF

AUTO STATE, setting of parameters for hydraulic pulse train: WAGON
parameters numbers of TRAIN WAGON and number of TRAIN SEASSON,
manual calibration constants inputs (sub state: 22_State_Func)

4 3_State_Func State_FLAGS_3_PULSE = ON
AND ERROR = OFF

PULSE STATE, performing of hydraulic pulsation according of parameter
settings, after finish of pulsing goes automatic to AUTO MODE
(FLAGS_2_AUTO = ON, FLAGS_3_PULSE = OFF)

5 4_State_Func State_FLAGS_4_ERROR ERROR STATE, Safety relay determined, determination of the error source

6 5_State_Func State_FLAGS_5
Sub state of PULSE STATE, measurement of the maximum of the hydraulic
pulse peak during PULSE MODE (during the pause time and during the
pulse time)

7 6_State_Func State_FLAGS_21_QSET Sub state of AUTO STATE, user setting of parameters for four TRAIN (T0, T1,
COUNT, PRESSURE)

8 7_State_Func State_FLAGS_7 Sub state of PULSE STATE, actual modification of parameters after one
TRAIN SESSION

4.5. Description of the Master Control State Machine

The main control state machine (Figure 4) for hydraulic pulse system consists of 7 separate threads
running in the application layer, each thread represents the individual state of pneumatic–hydraulic
pulsing system and is described in Table 3. Transitions between states in the application layer is
controlled by the program flags and they are isolated from the hardware inputs signals (Table 1)
processed by the physical layer (Table 2). This solution allows for the reliable function of high-pressure
hydraulic pulse system, with reliable answers to user inputs or to the error status. We observed the
reliable automatically generated ends of each hydraulic train pulsation cycle.

4.6. Auxiliary Functions

The control of pulses sequences according to saved parameters in the hydraulic pulse train ensures
thread 7_State_Func in the application layer, which is called from the state PULSE (3_State_Func).
The thread 6_State_Func ensures the users inputs for controlling of the actual content of the hydraulic
pulse train and is called from AUTO STATE (2_State_Func).

4.7. Calibration of the System

The thread 6_State_Func in the application layer ensures the manual input of calibration constants
from the user. The reason for the calibration can be described as follows: user works at input or at
output with pressure units in [bar], but the PLC works with an internal representation of pressure in
ADU units (12 bit). The user can perform the calibration process in MANUAL STATE which means
static mode (no pulse condition, manually controlled output hydraulic pressure). The user obtains,
during the calibration procedure, two calibration curves. The first calibration curve is dependence
between the output hydraulic pressure (measured with portable calibrated hand-held hydraulic
pressure measurement equipment from WIKA [10]) and the output voltage in 12bit ADU (measured via
PLC itself) from the sensor output hydraulic pressure ATE PS60. ATE PS60 is a commercial produced
hydraulic pressure sensor used in the cars, the manufacturer is ATE. In our case, in calibration process
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we obtained a linear relationship, which leads to the linear Equation (1) derived by regression analysis
from the graph of the measured values:

PWIKA [bar] = AATE PS60 × PATE PS60 [ADU] + BATE PS60 (1)

By the calibration-determined value of the constant AATE PS60 for pressure sensor ATE PS60 is
0.1021 [bar/ADU] and the value of the constant BATE PS60 is equal to 4.8074 [bar] (Figure 5).
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The second dependence is the static transfer function of the entire pneumatic–hydraulic system.
This is the curve which represents output hydraulic pressure (in bar unit, measured by WIKA
equipment [12]) at the values of the input control voltage for proportional pneumatic valve (measured
in ADU units via PLC A/D extension module). Measurement leads to the next linear equation:

PWIKA [bar] = ASYS × PSetInputValve [ADU] + BSYS (2)

where the value of the constant ASYS is 0.053 [bar/ADU] and the value of the constant BSYS is
0.0626 [bar] (Figure 6). Both linear Equations (1) and (2) provide of four calibration constants, which
user can enter in to the control system (in the thread 6_State_Func). Then, after the static calibration of
pneumatic hydraulic pulse system, the user input entered value are in bar units obtained at the output
of pneumatic–hydraulic system, as is required in both states—MANUAL and PULSE STATE.
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Figure 5. Measured pressure system transfer curve for pressure sensor ATE PS60, dependence between
pressure sensor ATE PS60 output voltage in ADU (Analog Digital Unit) units and pressure in bar from
portable measurement device WIKA CPH 6200 (see Equation (1)).
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Figure 6. Measured transfer curve between output of pneumatic–hydraulic system pressure in bar units
and control voltage for proportional pneumatic valve as input of system in ADU units (see Equation (2)).

5. Discussion

The pneumatic–hydraulic system developed by us is one part in an industrial test bench.
Our possible benefits are in the introduction of co-operating layers (physical layers and application
layers) on a low-cost PLC platform (without the need for high-level programming like C++). This may
be our possible contribution to the education of young technicians. All necessary software solutions
(running at “nanoNavigator” IDE (Integrated Development Environment) from Phoenix Contact [13])
are provided by authors for study purposes as Supplementary Materials (Source code S1). Mutually
communicating threads can be studied in the software simulator provided by nanoNavigator IDE and
is not necessary to study or program with buy any PLC hardware.

6. Conclusions

We developed an embedded control for pneumatic–hydraulic system which produces a series of
high-pressure hydraulic pulses (up 200 bar). The pneumatic–hydraulic system can be calibrated, it is
networked in industrial networks (MODBUS over TCP/P and CAN bus) and generates accurately
hydraulic pulses (time and pressures characteristics). The system proved to be reliable. This hydraulic
impulse unit is a part of a test machine and it can be used in the industry for hydraulic parts dynamic
testing by series of pulses with maximal frequency pulses 2 Hz. From the point of view of software
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architecture, the embedded control system is based on a low-cost PLC architecture and control program
is a set of parallel program threads. Each programming thread can be identified as one state in a master
control state diagram. The PLC multi-thread program is not designed as one large and opaque linear
program, but rather as a group of mutually communicating PLCs programs, which ultimately forms
one master control state diagram. The cost of the described industrial networked control system with
industry standard optoelectronic insulated interfaces and certified industrial safety relay does not
exceed €1000 Euros.

Supplementary Materials: The following are available online at http://www.mdpi.com/2411-9660/2/4/48/s1,
Source code S1: PLC software project (NanoNavigator IDE).

Author Contributions: Conceptualization, J.P.; Data curation, P.M.; Methodology, J.P. and P.M.; Software, J.P.;
Validation, J.P. and P.M.; Writing – original draft, J.P.; Writing – review & editing, J.P.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lamb, F. PLC Hardware and Programming Multi-Platform; AuthorHouse: New York, NY, USA, 2016;
ISBN 13 978-1524648183.

2. Collins, K. PLC Programming for Industrial Automation; Exposure Publishing: New York, NY, USA, 2007;
ISBN 13 978-1846854965.

3. Harel, D.; Lachover, H.; Naamad, A.; Pnueli, A.; Politi, M.; Sherman, R.; Shtull-Trauring, A.; Trakhtenbrot, M.
STATEMATE: A working environment for the development of complex reactive systems. In Proceedings of
the 11th International Conference on Software Engineering, Singapore, 11–15 April 1988.

4. Harel, D. A Visual Formalism for Complex Systems. 1987. Available online: https://www.fceia.unr.edu.ar/
asist/harel01.pdf (accessed on 19 November 2018).

5. Merritt, H.E. Hydraulic Control Systems; John Wileys & Sons: Cincinnati, OH, USA, 1967.
6. Phoenix Contact. Nanoline Base Units. Available online: https://www.phoenixcontact.com/online/

portal/us/?uri=pxc-oc-itemdetail:pid=2700464&library=usen&pcck=P&tab=1&selectedCategory=ALL
(accessed on 19 November 2018).

7. Safety Relays-PSR-SCP-24UC/ESAM4/3X1/1X2/B-2900509. Available online: https://www.
phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2900509&library=usen&pdfmode=
direct&pdflanguage=en (accessed on 19 November 2018).

8. Communication Module-NLC-COM-ENET-MB1-2701124. Available online: https://www.phoenixcontact.
com/online/portal/us?uri=pxc-oc-itemdetail:pid=2701124&library=usen&pcck=P-21-03-03-01&tab=1
(accessed on 19 November 2018).

9. OLIMEX. AVR-CAN Development Board Based on AT90CAN128. Available online: https://www.olimex.
com/Products/AVR/Development/AVR-CAN/ (accessed on 19 November 2018).

10. John, K.-H.; Tiegelkamp, M. IEC 61131-3: Programming Industrial Automation Systems: Concepts
and Programming Languages, Requirements for Programming Systems, Decision-Making Aids;
Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-12015-2.

11. Lewis, R.W. Programming Industrial Control Systems Using IEC 1131-3; The Institution of Electrical Engineers:
New York, NY, USA, 1998; ISBN 0852969503.

12. Wika Instruments. Hand-Held Pressure Indicator Model CPH 6200. Available online: http://www.wika.us/
upload/DS_HPCPH6200___CPH6200_S2_en_us_17152.pdf (accessed on 19 November 2018).

13. Phoenix Contact. Software-NLC-NAV-01–2701221. Available online: https://www.phoenixcontact.com/online/
portal/us?uri=pxc-oc-itemdetail:pid=2701221&library=usen&tab=1 (accessed on 19 November 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.mdpi.com/2411-9660/2/4/48/s1
https://www.fceia.unr.edu.ar/asist/harel01.pdf
https://www.fceia.unr.edu.ar/asist/harel01.pdf
https://www.phoenixcontact.com/online/portal/us/?uri=pxc-oc-itemdetail:pid=2700464&library=usen&pcck=P&tab=1&selectedCategory=ALL
https://www.phoenixcontact.com/online/portal/us/?uri=pxc-oc-itemdetail:pid=2700464&library=usen&pcck=P&tab=1&selectedCategory=ALL
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2900509&library=usen&pdfmode=direct&pdflanguage=en
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2900509&library=usen&pdfmode=direct&pdflanguage=en
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2900509&library=usen&pdfmode=direct&pdflanguage=en
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2701124&library=usen&pcck=P-21-03-03-01&tab=1
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2701124&library=usen&pcck=P-21-03-03-01&tab=1
https://www.olimex.com/Products/AVR/Development/AVR-CAN/
https://www.olimex.com/Products/AVR/Development/AVR-CAN/
http://www.wika.us/upload/DS_HPCPH6200___CPH6200_S2_en_us_17152.pdf
http://www.wika.us/upload/DS_HPCPH6200___CPH6200_S2_en_us_17152.pdf
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2701221&library=usen&tab=1
https://www.phoenixcontact.com/online/portal/us?uri=pxc-oc-itemdetail:pid=2701221&library=usen&tab=1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Requirements for Pneumatic–Hydraulic Pulse System 
	Hardware Solution 
	Pneumatic–Hydraulic Parts 
	PLC Based Control System 
	User Interface Elements 
	Electrical Parts of System 
	Safety Measures 
	Network Connectivity of the Pneumatic–Hydraulic System 

	Software Solution 
	Basic PLC Functions 
	List of Hardware Inputs and Outputs for PLC 
	Physical Layer Threads 
	Application Layer Threads 
	Description of the Master Control State Machine 
	Auxiliary Functions 
	Calibration of the System 

	Discussion 
	Conclusions 
	References

