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Abstract: The course of events since 2014, including the worldwide pandemic of a coronavirus 

disease, have shown that oil market fundamentals have not always been clearly anticipated and that 

additional external factors, rather than those related to supply and demand, do play important roles 

in signaling future price changes. Within that complex setting, this study examined the influences 

of structural breaks on the long-term properties of Brent crude oil, gasoil, low-sulfur fuel oil, natural 

gas, and coal over the period 2002–2018. In an effort to assess the impacts of these structural changes, 

we identified time points at which structural break changes occurred and unit root properties using 

a representative variety of unit root testing alternatives. From the estimation results, we observed 

that only fuel oil and national balancing point (NBP) prices show evidence of mean-reverting 

behavior, suggesting that shocks to these two markets are short-lived when allowing for structural 

breaks. Although the idea of market forces bringing the non-renewable markets to their equilibrium 

in the long run makes the role of policy-making more challenging, it highlights the importance of 

the policy mix in the transition to a low-carbon energy system. 

Keywords: crude oil; gasoil; fuel oil; national balancing point (NBP); coal; structural change; unit 

root; energy transition 

 

1. Introduction 

In competitive markets with multiple sellers and buyers, prices are mostly driven by supply and 

demand, with price itself providing signals to ensure market equilibrium. However, meaningful price 

fluctuations come from exceptional events, causing distortions that may have effects on trends in the 

long-term. Furthermore, the strong push from governments to allow a smooth transition between an 

era dominated by fossil fuels and one focused on a low-carbon economy will continue to influence 

non-renewable pricing structures to reflect environmental attributes and energy-related megatrends. 

Within this framework, the study of patterns in the energy time series becomes of great interest. 

This study assesses stochastic properties of the three energy commodities that account for the 

majority of global energy demand, i.e., crude oil, coal, and natural gas, in addition to gasoil and fuel 

oil, using a comprehensive approach. In this sense and to the best of our knowledge, this paper is the 

first that addresses a systematic review of endogenous testing procedures for non-renewable energy 

prices. Of separate interest are the results of the break dates estimates themselves and the insights 

gained from this using each test. 

Our analysis is motivated by the fact that, as it is well known, the effects of major historical 

events find the balance of evidence in favor of the trend stationary hypothesis more often [1]. More 

specifically, the purpose of this paper is threefold: firstly, to provide evidence for the presence of unit 
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roots in time series in light of the most recent oil price crashes. Secondly, to examine the potential 

existence of breaks and the nature and impacts of those shocks on price developments, and thirdly, 

to properly address testing limitations providing a view towards improving modelling and 

forecasting techniques. 

While maintaining a certain distance from the effects of the coronavirus pandemic—a rather 

unique phenomenon negatively affecting expectations for growth worldwide—our study focuses on 

two major events: Firstly, the credit crunch in 2008 associated with global economy uncertainty and 

a sharp reduction in global demand. Secondly, the collapse of oil prices since late 2014. Figure 1 shows 

the developments in the prices of oil and oil products from 2002 until the end of 2018. 

 

Figure 1. Historic crude oil ($/bbl) and gasoil and low-sulfur fuel oil (LSFO) ($/ton) prices. Source: 

World Bank. 

There are multiple similarities and differences among the two oil price crashes, although the 

differences are possibly more revealing of how traded oil markets behave. In the first place, the 2008–

2009 crash was precipitated by global events, mainly the financial crisis, with oil prices during that 

crash being highly correlated with equity and exchange rate movements. Due to this interaction and 

the uncertainty regarding the health of the global economy, volatility spiked in 2008. However, the 

impact of shocks to equity markets on volatility during the recent crash was muted [2]. As a matter 

of fact, that macroeconomic shocks are closely related to crude oil price variations does not come as 

a surprise [3–8]. In the second place, the decline in the second half of 2014 was considerably sharper 

for oil than for other commodities, whereas almost all commodity prices, including coal, metals, food 

commodities, and agricultural raw materials, declined by similar magnitudes in 2008 [9]. The third 

and perhaps the most important factor from a market point of view: although after the financial crisis 

virtually all commodity prices rebounded, helped by production cuts and a strong emerging market 

demand, global oil supply started building up. 

In terms of the benefits provided by the study, it makes three main contributions: (i) it provides 

an integrated framework in which the most representative endogenous unit root testing procedures 

are evaluated; (ii) it unravels the nature of non-renewable energy resources’ prices facilitating a more 

precise assessment of the effects of structural breaks in each variable using different alternatives; (iii) 

it improves decision-making by taking into account climate policy interventions and clarifies the 

potential for a smooth transition from fossil fuels to low-carbon energy sources. As is well-known, if 

price series exhibit trend stationary properties with breaks in the trends, that would suggest that price 

stabilization policies may be ineffective and difficult to implement. 
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The remainder of this paper is organized as follows. Section 2 briefly explains the econometric 

methodology of this paper. Section 3 provides the descriptive statistics of the sample data and the 

various testing methodologies’ results. Section 4 discusses the empirical results. The final section 

includes some concluding remarks. 

2. Materials and Methods 

2.1. Data Definition 

This study considers six time series, namely, crude oil Brent (Brent), gasoil (GO), low-sulfur fuel 

oil (LSFO), average Spanish gas import prices (SGP), national balancing point (NBP), and coal prices, 

all of which except SGP are variables widely traded around the world, providing producers and 

consumers with valuable financial products to protect themselves against the risk of price 

fluctuations in their respective markets. We also introduce Spanish gas import prices to expand the 

scope of investigation into oil-indexed gas supplies supported by the fact that Spain, with access to 

diverse, competing sources of gas, is an ideal reference to assess relationships between crude oil and 

long-term gas globally [10,11]. The data sets consist of the average monthly prices spanning from 

January 2002 to December 2018 (total 204 observations). The price series are converted into the 

logarithmic percentage return series for all sample indices, i.e., yt = 100 × ln (Pt/Pt−1) for t = 1, 2, ..., T, 

where yt is the returns for each time series at time t, P is the current price, and P is the price from the 

previous month. 

Figure 2 shows time variations of monthly prices and absolute returns over the study period for 

all the variables considered. 

 

Figure 2. Evolution of Brent, gasoil, fuel oil, Spanish gas import prices (SGP), national balancing point 

(NBP), and coal prices (above) and absolute returns (below) for each of the variables considered. 

As can be seen, Brent crude oil and oil products data sets share large swings in common, and at 

the same time show similar upward trends in spite of the effects of shocks during 2008 and 2014 

pulling down the trend line with no clear indication of mean reversion. Common peaks anticipating 
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potential structural breaks were observed at the beginning of 2003 and the Iraq war, in mid-2008 as a 

result of the financial crisis, and at the end of 2014. Table 1 provides of the descriptive statistics of the 

natural logarithm of the series. 

Table 1. Descriptive statistics of natural logarithm levels over 2002–2018. 

Variable 
Mean Price 

Level 

Standard 

Deviation 
Coefficient of Variation (%) Skewness Kurtosis 

InSGP 1.87 0.36 0.19 −0.41 2.25 

InBrent 4.13 0.47 0.11 −0.41 2.31 

InGasoil 6.32 0.46 0.07 −0.55 2.66 

InFuel oil 5.82 0.50 0.09 −0.23 1.95 

InNBP 1.83 0.45 0.25 −0.66 2.94 

InCoal 4.29 0.38 0.09 −0.31 3.56 

As can be seen, on average, coefficients of variation (CV) are generally close, indicating a similar 

month-to month variation in all of the prices, with gasoil showing the lowest CV. Regarding the 

statistical distribution of natural logarithm levels, all variables reveal similar evidence of negative 

skewness, implying that the left tail is more extreme than in the Gaussian case. It is interesting to 

notice that coal shows the highest level of kurtosis among the energy products’ prices, implying that 

the distribution of coal prices has a tail that is thicker than the rest. 

2.2. Methodological Issues 

This section is concerned with methodological issues affecting unit root estimation in the study 

in the context of structural change. Our focus is on the conceptual issues about the different 

approaches to better understand the potential applicability to our investigation. It is important to 

highlight the impressive amount of research in the last few decades devoted to improving existing 

methodologies and to overcoming potential problems. The fact that unit root processes can 

sometimes be viewed as observationally equivalent to, or hardly distinguishable from, a trend 

stationary process with breaks lays at the heart of the debate [12]. It has to be noted that since the 

seminal paper by Perron [1] was published, several alternatives in addition to joint inference have 

been developed, and a complementary strand of literature is concerned with specific issues related 

to the detection and estimation of structural changes [13–18]. 

The basic model in the earlier articles of Perron [1] and Hamilton [19] leading to important 

development afterwards, considers a univariate process yt generated by either additive (AO) or 

innovational outlier (IO) models, the distinction being how the impact of the break is distributed over 

time. In the AO model, the impact is complete over the period, whereas in the IO model the effect is 

distributed over time, implying a distinction between the short-run and long-run impacts of the 

break. 

The data generating process (DGP) of the additive outlier (AO) model is: 

�� =  � (��)’� ∅ + �� =  ��,�
�  ∅� +  �(��)�,�

�  ∅� ’� + �� 

where z�,�
�  =  (1, t)�, ∅ � =  (μ, β)�, 

�(��)�,�
� =   �

 DU�         for Model A1
B�           for Model A2

(DU�, B�)
�   for Model A3

     ,   ∅� =   � 

μ�          for Model A1
βb          for Model A2

(μ�, βb )�    for Model A3
 

with DUt = Bt = 0 if t ≤ T1 and DUt = 1, Bt = t − T1 if t > T1. 

The noise ut is such that A (L) ut = B (L) εt where εt ≈ i.i.d. (0, σ2), and A (L) and B (L) are 

polynomials in L of order p +1 and q, respectively. 

The DGP of the innovational outlier (IO) model under the alternative is given by: 
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y� =  z�,�
�  ∅� + φ∗(L)(d(T�)�,�

�  ∅� + ε�) 

where 

z(T�)�,� =   �
DU�          for Model I1

(DU�, B�)�     for Model I3
,    ∅� =  �

μ�         for Model I1

(μ�, βb )�   for Model I3
 

with φ* (L) and φ (L) such that φ* (L) = A* (L)−1 B (L) and (1 − αL)−1 φ* (L) = ϕ (L). 

Models A1 and I1 are called “level shift” or “crash” models, A2 is a “changing growth” model, 

and A3 and I3 are “mixed” models. A changing growth model of the IO type is typically not 

considered because it is necessary to assume that no break occurs under the null hypothesis which 

imposes an asymmetric treatment in Perron’s framework. 

A brief description of the specific testing methodology employed in this study follows, including 

abbreviations used later on: 

(i) Zivot and Andrews (ZA) [20] and Perron and Vogelsang (VP) [21]. These unit root tests have in 

common that they endogenize the choice of the break point proposing to estimate the break date 

such that it gives the most weight to the trend stationary alternative, i.e., either minimizing the 

Dickey–Fuller statistic or optimizing a statistic which tests the significance of one or more of the 

coefficients on the trend break dummy variables. 

(ii) Lumsdaine and Papell (LP) [22]. This specification extends the ZA design to introduce a unit 

root testing procedure that allows for two structural breaks, although, unfortunately, it leads to 

results that are heavily dependent on break size [23]; however, implementing this framework 

has clear advantages, as it provides less (or stronger) evidence against the unit root hypothesis 

than that given by Perron, plus it provides valuable information as to whether structural breaks 

have significantly contributed to a change in trend or not. 

(iii) Saikkonen and Lϋtkepohl [24] and Lanne et al. (LLS) [25] extended Saikkonen and Lϋtkepohl 

[26], and Lanne et al. [27] tests respectively—these tests are considered in turn extensions of the 

tests of Elliot, Rothenberg and Stock [28], which are based on estimating the deterministic term 

first by generalized least squares (GLS) and subtracting it from the time series. It has to be noted 

that [26,27] tests have the convenient feature that they allow for smooth transitions through 

different shift functions what may be more reasonable than assuming an abrupt shift. Moreover, 

tests statistics are easy to compute for quite general shift functions and allow the possibility to 

include seasonal dummies in addition to a constant or linear trend line. 

(iv) Lee and Strazicich (LS) [29,30]. These testing methodologies propose one and two break 

Lagrange multiplier (LM) unit root tests as alternatives to the ZA and LP tests respectively. In 

contrast to the ADF (augmented Dickey–Fuller) type of tests, the LM unit root test has the 

advantage that it is unaffected by breaks under the null, and therefore solves the issue about the 

asymptotic validity of the null distributions described above. The breakpoint estimation scheme 

is similar to those in the ZA and LP tests; i.e., the breakpoints are determined to be where the 

test statistic is minimized. While the LM test offers an improvement over procedures that only 

allow for breaks under the trend stationary alternative, it is recognized to be substantially 

undersized for large breaks, whereas it has difficulties in identifying small break dates [23]. As 

a result of continuous progress made on this area, Ming et al. [31] proposed a new unit root test 

that adopts the residual augmented least squares (RALS) procedure to gain improved power 

when the error term follows a non-normal distribution. These new tests using the RALS 

procedure are more powerful than the usual LM test which does not incorporate information on 

non-normal errors, and it is not free of nuisance parameters that indicate the locations of a 

structural break. 

(v) Kim and Perron [32] (KP). These tests use research on structural change by Perron and Zhu [33] 

and Perron and Yabu [14], who developed new test procedures which allow a break in the trend 

function at an unknown time under both null and alternative hypotheses. 
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3. Results 

In this section, we examine the unit root properties of the six selected variables and identify the 

months in which structural breaks occur. The results are then analyzed to explain similarities and 

consequences using alternative testing methodologies. As discussed, each testing method applied 

will result in different specifications for the null and alternative hypotheses and will have varying 

quality in line with the underlying data generating process. Furthermore, the structure of 

deterministic terms included in the maintained regression will influence the asymptotic distributions 

of the unit root test statistics. As can be seen in Figure 1, all the variables under investigation, similarly 

to typical financial time series, seem to be better approached by a random walk like process with 

drift, implying that the differenced time series behave very much like a white noise process. In this 

sense, throughout the testing process, the alternative, including a linear trend in the maintained 

regression, seems the most plausible description of the data under both null and alternative 

hypotheses [34]. The standard conventional level for inference used is 5%. 

3.1. Generic Unit Root Tests 

In this subsection, we analyze the integrational properties of natural log prices in levels and first 

differences using generic ADF and KPSS (Kwiatkowski–Phillips–Schmidt–Shin) tests in order to 

examine whether all the variables can be considered, at least initially, first-order integrated in levels. 

Table 2 summarizes the results of the various tests to account for the alternative that the time 

series is stationary, rejecting the unit root null in favor of the alternative (ADF test) or accounting for 

a stationary null versus the unit root alternative (KPSS test). It has to be noted that although all 

indications are that time series under investigation do have trends, we have also included non-

trending model results, as these show more power to reject the null hypothesis than models including 

trends which are not contained in the data. In order to specify the number of lagged difference terms, 

i.e., lag length to be added to the test regression, we used the Akaike information criterion (AIC). The 

usual Ljung–Box Q-test to assess serial autocorrelation at the selected lags proves that in all cases the 

number of lags is sufficient to remove serial correlation in the residuals (this not shown in the table). 

Table 2. Generic unit root tests results. 

 Ln Price in Levels Ln Price 1st Differences 

 Without Trend With Trend Without Trend With Trend 

Stat ADF KPSS ADF KPSS ADF KPSS ADF KPSS 

Brent 0.283 6.625 −2.302 3.471 −3.761 0.367 −3.895 0.051 

GO 0.469 6.559 −2.250 3.499 −3.607 0.437 −4.586 0.051 

LSFO 0.341 6.777 −3.434 3.336 −3.692 0.190 −5.341 0.063 

SGP 0.813 8.262 −1.450 3.851 −12.960 0.369 −13.122 0.097 

NBP −0.390 4.779 −3.299 1.895 −11.444 0.039 −8.537 0.036 

Coal 0.704 4.574 −3.434 2.512 −11.883 0.132 −11.883 0.081 

cValue −1.942 0.463 −3.443 0.146 −1.944 0.463 −3.443 0.146 

Notes: ADF denotes the augmented Dickey–Fuller unit root test and KPSS denotes the Kwiatkowski–

Phillips–Schmidt–Shin unit root test. Critical Values (cValue) are for right-tail probabilities derived 

from [35,36], respectively. 

Test results clearly indicate that none of the six variables are stationary at the 5% level or better 

with than without a trend. The ADF test does not reject the null hypothesis of a unit root for the levels 

of the three prices. The KPSS test, in which the null hypothesis is stationarity, indicates that the null 

hypothesis is clearly rejected. When both tests are applied to the first-differences of the variables, 

results strongly imply stationarity. As discussed before, unit root tests can be misleading when 

structural breaks remain unaccounted for, tending to lose dramatically against stationary alternatives 

with low-order moving average processes [21]. 

We use five additional procedures to test the null hypothesis that each time series contains a unit 

root including one or two structural breaks. 
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3.2. Unit Root Tests with One Structural Break 

Prior to further testing, two main choices related to the nature of the DGP need to be made. First 

is the question about how the effect of the breaks is incorporated into the process, and secondly comes 

how to characterize the form of the break under the trend-break stationary alternative, i.e., mainly 

deciding about the most relevant model for inference. In regard to the first question, we will use 

econometric models preferably allowing for smooth transitions from one level to some other level 

over an extended period of time, i.e., innovational models. We believe that in our case, smooth 

transitions, sometimes expanding for a few months, are a more realistic option than assuming abrupt 

shifts to new levels. Regarding the second question, we argue that selection in the form of the break 

is correlated with the data and therefore we will favor the break specification according to the most 

general mixed model; this decision is also supported by specific research on this matter [37]. Central 

to our investigation is the fact that misspecification of the form of the break can be critical and the 

performances of the different tests used may vary significantly depending on the break model 

selection. 

Following the decision to consider the break as unknown but also joint inference overall, the 

general-to-specific principle, widely used in model selection, seems best suited for our analysis. 

Therefore, we initially start with a general specification that incorporates a changing intercept (crash 

model) and then continue with a combined assumption for the break behavior including intercept 

and trend break (mixed model). We then evaluate the inference provided and the significance of the 

coefficients of the dummy variables. Table 3 shows the empirical results for the location of the break 

and inference from the ZA (tαZA) and VP unit root tests either minimizing the t-statistic for the 

intercept break coefficient using a crash model (tθ) or over the maximum t-statistic for the absolute 

trend break coefficient tIδI using a mixed model (t|θ|). In all cases the method for deciding the number 

of additional lags in the autoregressive equation is given by BIC. Inferences on nonstationarity in 

cases of discrepancy between models indicate rejection or acceptance of the unit root null according 

to the models which show the most robust specifications. In addition, results from the LLS tests where 

the level shift point (τ) is viewed as an unknown valued parameter, from the KP tests (tαλ) and from 

the minimum LM unit root test statistic (tαLS), are also shown. It has to be noted that the presence of 

the endpoints causes the asymptotic distribution of the statistics to diverge towards infinity. 

Therefore, trimming is performed to remove endpoint values from consideration as the break date in 

all cases. 
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Table 3. One-break unit root test results. 

 
Model 

 
Model 

Inference 
Crash Mixed Crash Mixed 

Variable t-Statistic Value 
Break 

Date 
Value 

Break 

Date 
Inference Variable t-Statistic Value 

Break 

Date 
Value 

Break 

Date 

Brent 

tαZA −4.422 June 2014 −4.196 
September 

2014 
N-S 

SGP 

tαZA −3.618 
September 

2014 
−2.489 June 2005 N-S 

tθ −4.440 
September 

2014 
−4.261 

September 

2014 
N-S tθ −3.642 

December 

2014 
−2.480 June 2005 N-S 

tIδI −4.425 July 2014 −3.493 May 2010 N-S tIδI −3.642 
December 

2014 
−1.047 June 2015 N-S 

τ −1.614 
February 

2015 
- - N-S τ −2.260 

February 

2009 
- - N-S 

tαλ −3.918 July 2014 −3.493 May 2010 N-S tαλ −1.690 
February 

2015 
−2.547 

August 

2013 
N-S 

tαLS −1.703 
December 

2014 
−2.604 

November 

2014 
N-S tαLS −1.202 

December 

2014 
−2.128 

September 

2014 
N-S 

Gasoil 

tαZA −3.937 
August 

2014 
−3.688 

August 

2014 
N-S 

NBP 

tαZA −4.289 
September 

2004 
−4.630 

September 

2004 
N-S 

tθ −3.956 
August 

2014 
−3.718 

September 

2014 
N-S tθ −4.579 

September 

2003 
−4.642 

September 

2003 
N-S 

tIδI −3.956 
August 

2014 
−3.270 May 2010 N-S tIδI −4.290 

September 

2004 
−4.149 

February 

2006 
N-S 

τ −1.625 April 2003 - - N-S τ −3.505 
March 

2007 
- - S 

tαλ −3.514 
October 

2014 
−3.254 

September 

2014 
N-S tαλ −4.431 

September 

2004 
−4.384 

November 

2005 
S 

tαLS −1.582 
November 

2014 
−2.391 

November 

2014 
N-S tαLS −2.875 

November 

2003 
−3.328 

February 

2006 
N-S 

Fuel oil 

tαZA −5.139 
September 

2014 
−5.010 

September 

2014 
N-S 

Coal 

tαZA −3.077 
November 

2011 
−3.257 

September 

2008 
N-S 

tθ −5.165 
September 

2014 
−5.034 

September 

2014 
S tθ −3.490 May 2003 −3.060 

August 

2008 
N-S 
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tIδI −5.165 
August 

2014 
−3.734 

September 

2010 
S tIδI −3.490 May 2003 −3.060 

August 

2008 
N-S 

τ −2.057 
February 

2015 
- - N-S τ −2.346 

August 

2011 
- - N-S 

tαλ −4.530 
October 

2014 
−3.823 

August 

2008 
N-S tαλ −2.976 

March 

2014 
−3.617 June 2008 N-S 

tαLS −1.730 
November 

2014 
−2.515 

September 

2014 
N-S tαLS −1.678 

September 

2003 
−2.435 

October 

2008 
N-S 

Notes: Break date denotes the corresponding month of the value statistic. Shaded dates denote similar detection ranges for the crash and mixed models within 3 

month spans. Inference is assessed as S: stationary (green) or N-S: nonstationary. 
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As can be seen, large negative values for the test statistics might reject the null hypothesis of a 

unit root, and therefore, according to this, we are unable to reject the unit null hypothesis for any of 

the variables except for fuel oil when applying VP tests and for NBP applying either LLS or KP tests 

at a significance level of 5%. These results show that market-related events may have stronger effects 

on some variables than others. The case of LSFO is very interesting considering the commodities price 

drop at the end of 2014 using the crash model—it led to higher power when the intercept break was 

large and the slope break was small, resulting in long-term stationarity. Perhaps the fact that LSFO is 

the least traded commodity of the oil-related commodities might be a reason for it. 

In addition, some detailed considerations can be outlined. Figure 3 shows tests statistical results 

for Brent prices using the VP break date selection process while maximizing the intercept break of 

the abs-t-statistic (t|θ|), and over the Dickey–Fuller (DF) t-statistic (this not shown on Table 3). As can 

be seen, both methodologies clearly coincide in giving the most weight to an estimated breakpoint 

located at the end of 2014 rather than around 2008. 

 

Figure 3. VP test breakpoint estimation over tθ and Dickey–Fuller (DF) t-statistic. Notes: x-axis 

denotes years and y-axis denotes t-statistic value. 

It has to be noted that in the case of LLS tests, selecting the AR order has proved to be critical in 

order not to jeopardize power of the test. During the testing process, overstating the AR order reduces 

power progressively, whereas severely understating the order makes power drop comparatively 

faster. In our case and following LLS indications, a reasonably large AR order, i.e., six, has been used 

to select the break date. In the case of the KP test, as discussed previously, the modelling approach 

concentrates on estimating the break date by minimizing the sum of squared residuals, and only the 

results from the innovational model test are shown, for consistency with the original strategy. 

3.3. Unit Root Tests with Two Structural Breaks 

The results of the Lumsdaine and Papell [22] (LP) and Lee and Strazicich [30] (LS) unit root tests 

with two structural breaks are presented in Table 4.
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Table 4. Two-break unit root test results. 

 
Model 

 
Model  

 

 

 

Inference 

Crash Mixed Crash Mixed 

Variable t-Stat Value Break Date Value Break Date Inference Variable t-Stat Value Break Date Value Break Date 

Brent 

LP 

−5.382 July 2008 -6.097 July 2008 N-S 

SGP 

LP −5.253 
December 

2008 
−5.058 

December 

2008 
N-S 

 September 2014  
September 

2014 
   

December 

2014 
 

December 

2014 

LS −1.821 February 2005 −3.173 
October 

2008 
N-S LS −1.281 

December 

2005 
−2.783 

September 

2005 
N-S 

  December 2014  
November 

2014 
   

December 

2014 
 January 2015 

GO 

LP −4.911 September 2008 −5.658 July 2008 N-S 

NBP 

LP −5.108 January 2009 −5.682 April 2006 

N-S 
  September 2014  

September 

2014 
   

November 

2014 
 

September 

2015 

LS −1.708 September 2004 −3.071 
October 

2008 
N-S LS −3.161 

November 

2003 
−3.625 

November 

2004 
N-S 

  November 2014  March 2011    
September 

2015 
 

September 

2015 

LSFO 

LP −5.668 December 2004 −5.777 July 2008 N-S 

Coal 

LP −3.765 
September 

2008 
−4.310 

September 

2008 
N-S 

  September 2014  
September 

2014 
   March 2013  January 2012 

LS −1.851 February 2005 −3.416 
September 

2013 
N-S LS −1.782 

September 

2003 
−2.836 August 2007 

N-S 

  November 2014  
February 

2015 
   March 2013  

September 

2015 

Notes: Break date denotes the corresponding month of the value statistic. Shaded dates denote similar detection ranges for the crash and mixed models within 3 

month spans. Inference is assessed as S: stationary or N-S: nonstationary. In the case of LP tests, critical values are −6.16 and −6.75 at a significance level of 5% for 

crash and mixed models. It has to be noted that in this case, critical values are specific to the sample size employed in [22]. Critical values for the LM test vary 

according to the location of the break. 
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As can be seen, all unit root tests with two structural breaks suggest nonstationarity for all the 

variables, which is an indication of the ability of the two-break test to expand on insights in regard to 

long periods of time [14]. Regarding the locations of break dates, the effect of the sharp downturn in 

prices at the end of 2014 is overwhelmingly present in all the time series analyzed except for NBP 

and coal. Interestingly, the impact of the financial crisis in 2008 is only revealed when applying the 

two-break tests, possibly indicating that supply–demand fundamentals were the main driver of oil 

products’ dynamics over the whole period analyzed and in spite of 2008’s events. As can be seen 

from Table 4 above, LLS tests’ break date selection picked breakpoints that slightly differ from other 

tests. In this sense, it is important to note that the rather different development of how to model the 

impact of the break, distributed over time, as in the case of VP or LS models, compared to the impact 

of the break being complete within the period TB + 1, as in the LLS case, may reasonably affect the 

nature of the results. 

Again, NBP results reflect better gas market events, such as those in 2006, rather than the oil 

crash in 2008. In addition, although coal prices appear to be very reflective of 2008’s events, as would 

be expected of a global commodity, other coal market episodes captured do not coincide with oil-

driven shocks. It has to be noted that detection of both intercept and slope breaks in the mixed model 

seems to work properly, especially for LP tests. Results from the LM tests are more difficult to 

reconcile and they show poorer break-detection capabilities than LP tests. 

4. Discussion 

This section provides a discussion on the key market factors underpinning price series evolution 

in view of the results shown. Over the period of interest, i.e., 2002 to 2018, there are three specific sub-

periods to note. First, the period until mid-2008 with prices steadily increasing due to strong demand 

growth for crude oil driven by non-OECD countries, particularly China and India. Second, the period 

after the second half of 2008—the sharp decline of commodity prices—quickly followed by a surge 

in the price of oil and a period of relatively stable but historically high prices, and finally, the 

commodity price collapse between mid-2014 and early 2016, driven by a mounting supply glut 

followed by a rebound in investment and trade against a backdrop of benign global financing 

conditions overall. In line with this chronology of events, our investigation reveals key aspects of the 

response of each market to shocks considering both crash and mixed modelling developments. 

Table 5 and Figure 4 show for each of the six variables analyzed the corresponding structural 

breaks according to the crash model effects, i.e., permitting a one or two-time change in the level of 

the time series. It is noted that allowing for two breaks produces a richer set of results, not necessarily 

more precise definition of the locations of break dates. 

Table 5. Break dates crash model. 

 SGP Brent Go LSFO NBP Coal 

ZA September 2014 June 2014 August 2014 September 2014 September 2004 November 2011 

VP December 2014 July 2014 August 2014 August 2014 September 2004 May 2003 

LS1 December 2014 December 2014 November 2014 November 2014 November 2003 September 2003 

LLS February 2009 February 2015 April 2003 February 2015 March 2007 August 2011 

LP2A December 2008 July 2008 September 2008 December 2004 January 2009 September 2008 

LP2B December 2014 September 2014 September 2014 September 2014 November 2014 March 2013 

LS2A December 2005 February 2005 September 2004 February 2005 November 2003 September 2003 

LS2B December 2014 December 2014 November 2014 November 2014 September 2015 March 2013 

Notes: Shaded dates denote similar detection ranges in the second half of 2014. LS1 indicates the one-

break LS intercept model. LP2A and LP2B indicate the two-break LP crash model. LS2A and LS2B 

indicate the two-break LS crash model. 
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Figure 4. Break dates crash model. 

In general, the sequence of relevant outliers found for all the time series considered indicates 

that the 2014–2015 price crash was without any doubt the most influential event over the period for 

the crude oil and oil-related variables, including Spanish gas import prices. Only when the scope of 

the research is expanded upon with two breaks, does the 2008 financial crisis manifest itself—not for 

LSFO though. Interestingly, both NBP and coal prices typically show a response to their own market 

events and not to oil price shocks. In the case of NBP, periods of high volatility during the winters of 

2003–2004 and 2004–2005, with actual shortages creating significant seasonal upward pressure on 

prices, seem to be more relevant than oil-related events over the whole period analyzed. Moreover, 

crash modelling for NBP prices reflects very vividly the gaps which opened between NBP and 

continental gas prices in the period of November 2006 to July 2007, and also in the fourth quarter of 

2008 as a recession in the UK hit hard and the lag in long term contracts meant that falling oil prices 

were much slower to feed through into gas prices (see SGP chart over the same period). Finally, the 

analysis also reveals the highly relevant nature of gas-market events in the last part of 2015, not 

coinciding with the crude oil price drop in 2014. 

In the case of coal, our analysis reflects the multidimensional nature of coal market-driven 

events, such as the coal price increase by 40–50% in one year between 2003 and 2004, as much as the 

fact that prices fell drastically in the wake of economic downturns starting in autumn 2008, affecting 

both coking coal and steam coal markets through lower automobile sales and electricity consumption 

decline [38]. In particular, the trend of declining prices since 2011, by around 50% until 2015 [39], due 

to increasing supply and subdued demand for thermal coal, is clearly shown in our results. 

Table 6 and Figure 5 show for each of the six variables analyzed the corresponding structural 

breaks according to the mixed model effects, i.e., permitting a one or two-time change in the level 

and in the rate of growth of the time series. 
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Table 6. Break dates mixed model. 

 SGP Brent Go LSFO NBP Coal 

ZA July 2005 June 2014 August 2014 
September 

2014 

September 

2004 

September 

2008 

VP July 2015 May 2010 May 2010 
September 

2010 

February 

2006 
August 2008 

LS1 
September 

2014 

November 

2014 

November 

2014 

September 

2014 

February 

2006 

October 

2008 

KP 2013-8 
September 

2014 

September 

2014 
August 2008 

November 

2005 
June 2008 

LP2

A 

December 

2008 
July 2008 July 2008 July 2008 April 2006 

September 

2008 

LP2

B 

December 

2014 

September 

2014 

September 

2014 

September 

2014 

September 

2015 
January 2012 

LS2

A 

September 

2005 

October 

2008 

October 

2008 

September 

2013 

November 

2004 
August 2007 

LS2

B 
January 2015 

November 

2014 
March 2011 

February 

2015 

September 

2005 

September 

2015 

Notes: Shaded dates denote similar detection ranges in the second half of 2014. LS1 indicates the one-

break LS intercept model. LP2A and LP2B indicate the two-break LP crash model. LS2A and LS2B 

indicate the two-break LS crash model. 

 

Figure 5. Break dates mixed model. 
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As it can be seen, for crude oil and oil-related products the influence of the downturn in 2014 is 

lower than in the crash model, and oil price recovery after 2008 events and into 2010–2011 seemed to 

be more important relative to changes in slope; the same goes for LSFO. Again, the NBP and coal’s 

different profile became evident. Viewed in perspective, this is not a minor issue and reinforces the 

case for the UK’s market having its own dynamics, in spite of the continental European oil linkage 

[40]. As it can be noticed, exceptionally high gas prices in the UK during the winter 2005–2006 as a 

result of the January 2006 Russia–Ukraine crisis, followed by a spell of extremely cold weather and 

the fire at the UK’s Rough storage facility, were extremely relevant to a change in slope of NBP prices. 

Regarding coal market developments, breakpoints signaling meaningful changes of slope are 

emphasized more and more clearly in late 2008 as a result of weak global demand and easing supply 

conditions. Changes in slope during the declining trend since 2011 that continued into 2014–2015 are 

also detected. It is interesting to notice that since late 2014, the development of European spot prices 

of coal and gas show remarkable similarity, suggesting that the relative competitiveness of the two 

fuels remains stable. 

5. Conclusions 

It is now widely admitted that failing to check for the structural break effects in time series’ 

properties leads to confusing results in regard to the assessment of stationarity properties. In 

particular, traditional unit root tests may have little power when the true data generating process 

includes a broken trend and is stationary. In this research we investigated the stochastic properties 

and changing trends of six non-renewable resource prices throughout a structured strategy with a 

view toward optimize the testing quality, validity, and relevance of results in the presence of 

structural breaks. Our main innovation in this sense is that we brought together a wide-ranging panel 

of model specifications combining traditional endogenous testing approaches and pre-detection 

techniques. 

Our main findings are as follows. When we applied generic tests, we were unable to reject the 

unit root null hypothesis for any of the six variables analyzed. However, when we applied the VP 

test allowing for one structural break, we found strong evidence for the stationarity of fuel oil and 

also for NBP when using either the LLS model or the KP model. These results confirm the findings 

of previous research revealing the high degree of persistence shown by crude oil and gasoil prices, 

but they also reveal the potential for a stationary trend process for fuel oil. In the case of NBP, the 

results found for stationarity when using pre-testing methodology led to us thinking that one of the 

main factors supporting the controversy over the persistence of market-related time series, such as 

UK gas prices, might be the considerations about the inference process itself and the approximation 

to assumed knowledge of the true break date. 

Of separate interest are the break dates themselves. The results indicate that the 2014–2015 price 

downturn was without any doubt the most influential event over the period for all the non-renewable 

variables analyzed, and especially significant for the intercept of fuel oil, turning its long-term 

dynamics towards stationarity. Only when the scope of the research was expanded with the two-

break tests, were the 2008 financial crisis’s effects manifest. Interestingly, both NBP and coal price 

trends show that their dynamics are mainly affected by their own market events and not directly by 

oil price shocks, this in spite of sharing common industry fundamentals on a timely basis, such as 

depressed demand or oversupply situations. As evidence of this, our results show that, even under 

the two-break tests, the effects of 2008 and 2014 downturns on NBP and coal prices are very limited. 

The case of coal prices’ drastic drop in the last part of 2015, not coinciding with crude oil price drop 

in the second half of 2014, is a good example of this. 

The results have significant consequences for economic analysis, forecasting, and policy-making 

decisions. In particular, when modelling non-renewable energy resources, it will be critical to account 

for structural breaks while testing for unit roots. Moreover, our findings reveal that in developed 

markets long-term dynamics may be mainly achieved by genuine market dynamics resulting from 

the free interplay of market forces—this fact does not necessarily lead us to believe that less 

developed national markets behave like unit root processes. Further to this research, we suggest 
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expanding investigations on the relationship between traditional energy resources’ prices and 

renewable generation prices, consistently interconnected through competition in gas and electricity 

markets. In line with this, an interesting issue not analyzed in the study is the evolution of the 

relationship between prices for natural gas and coal and in spite of price regulation for coal masking 

that relationship over long periods. Finally, and as another route of investigation worth exploring, 

we believe that cointegration and long-run equilibria of non-renewable energy variables, especially 

applying new methodological innovations in cointegration analysis, such as non-linear cointegration, 

could shed more light on the complex interactions analyzed in our study. 
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