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Abstract: Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and
deformations in a non-intrusive manner. By comparing two images, one from the undeformed
reference states of the sample and the other from the deformed target state, the relative displacement
between the two states is determined. DIC is well-known and often used for post-processing analysis
of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable
real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested
several combinations of the most common DIC methods in combination with different parallelization
approaches in MATLAB and evaluated their performance to determine whether the real-time analysis
is possible with these methods. The effects of computing with different hardware settings were also
analyzed and discussed. We found that implementation problems can reduce the efficiency of a
theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm.
The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel
image computation was found to be most effective. This is contrary to theory, suggesting that the
inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search
algorithm is the least efficient method. We also found that the correct choice of parallelization tasks
is critical in attaining improvements in computing speed. A poorly chosen parallelization approach
with high parallel overhead leads to inferior performance. Finally, irrespective of the computing
mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical
for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard
computing capabilities, even if parallelization is implemented, so the suggested solution would be to
use graphics processing unit (GPU) acceleration.

Keywords: digital image correlation; real-time processing; Newton–Raphson method; particle swarm
optimization; inverse-compositional Gauss–Newton method; parallel computation

1. Introduction

In a wide range of engineering applications, the measurement of displacements and
deformations plays an important role [1]. Due to limitations of invasive methods for
strain estimations, there exists a strong motivation for the development of contactless
measurement techniques. Optical-based strain measurement systems are of particular
importance in the measurement systems area as they offer a potential, non-invasive, high
throughput strain measurement system [2–4]. Therefore, over the past decade, several
different systems for measuring optical displacement have been developed [5,6]. Digital
Image Correlation (DIC) gained a lot of popularity, not only because of its simplicity and
accuracy [2] but also because of its reliability and wide range of applications [7]. Since this
method was first published by Peters and Ranson [8] in the early 1980s, the DIC method
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has been continuously improved by different researchers [6,9,10], while the basic principle
remained the same. Firstly, accurately time-resolved images of a specimen undergoing
deformation are acquired. The subsequent analysis is conducted between image pairs
separated over time where one of the images is considered as the reference state while the
other represents the deformed state of the specimen. Finally, pairs of images are compared
by dividing the reference image into sub-images and searching for the same sub-image in
the image of the deformed state [11]. The local displacement is determined by estimating
the inter-image positions of the sub-image pairs.

The method of dividing the image into sub-images, searching between images and
processing procedures has undergone many changes and improvements over the years in
order to develop accurate methods for use in various fields of technology [12,13]. However,
one of the main disadvantages of DIC is its high computational load and relatively slow
image processing time, which imposes significant limitations on the frame rate of image
acquisition, and post-processing of images.

Here, we tested the most common computational strategies used in DIC and evaluated
their performance under serial and parallel computational implementation in MATLAB.
MATLAB is a computing environment commonly used by engineers, researchers and
economists [14]. The main reason for choosing MATLAB for computing DIC algorithms is
because MATLAB allows user to implement and test user-defined algorithms [15]. It has
a large database of built-in algorithms which user can inherit and use them based on the
problem requirement [16]. Besides the built-in database, external libraries can also be used
by importing them into the MATLAB interface. It is also possible to perform extensive data
analysis and visualization using MATLAB [17].

MATLAB comes with many powerful sets of tools and functions that make it relatively
easy to use higher-level functionality and integrate complex functions into self-developed
programs. The DIC procedure adapted by MATLAB distorts the shape of the initial image
from a rectangular to an arbitrary shape while converging [18]. However, MATLAB is
slower than other programming languages and has limited control over low-level functions
such as memory management [18,19]. However, due to its widespread use, we decided to
focus on MATLAB.

We sought to combine the integer and subpixel displacement DIC methods in such a
way that they are ahead of each other. A modular program was developed to investigate the
advantages and disadvantages of different computational methods and their combinations.
These methods were tested, compared, and improved until the most efficient and optimized
combination of methods was found. Two different approaches to parallelization have been
adopted: On the one hand, sub-image parallelization in which sub-images are processed
in parallel and, on the other hand, image parallelization in which pairs of entire images
are processed in parallel. In addition to quantifying the impact of these approaches to
high-level parallelization, the impact of hardware settings on the overall performance of
DIC computations was also evaluated.

2. Theoretical Background

The main idea of DIC is to determine displacements between two states of an object
of interest by comparing two images of this object in the two different states; a reference
image such as a sample in an undeformed state and a target image such as a sample in
a deformed state. For this purpose two functions, one represents the grey level in the
reference image f (x, y) and the other for the target image g(x*, y*) at the positions [x, y]
and [x*, y*], respectively defined. The reference image is divided into several rectangular
sub-images. Each sub-image has a specific grey level distribution that is compared to a
sub-image of the same size within the target image. This comparison is performed using
correlation coefficients, which provide a measure of similarity [20].

The strategy of DIC methods can be roughly divided into two steps: First, the intfeger-
pixel displacement search, which determines the displacement of a sub-image as an integer
value. Second, a sub-pixel displacement search algorithm capable of determining sub-pixel
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displacements [21]. However, in order to reduce computational time generally, the integer-
pixel search is performed to provide initial guesses to initiate the sub-pixel displacement
algorithm [20].

C(p) =
∑M

x=−M ∑M
y=−M

[
f (x, y)− f

]
× [g(x∗, y∗)− g]√

∑M
x=−M ∑M

y=−M

[
f (x, y)− f

]2√
∑M

x=−M ∑M
y=−M[g(x∗, y∗)− g]2

. (1)

2.1. Integer Pixel Displacement

The integer pixel displacement can be determined by a variety of algorithms. The
progression of the algorithms varies in many ways, such as: (a) Grid method: It calculates
the value of the correlation coefficient from the initial point (x, y), which corresponds to
calculation point of the reference image, to the grid points in the direction from the inside
to outside until a point is obtained, where the value of the correlation coefficient is higher
than the established correlation coefficient threshold. (b) Peak search method: It considers
the reference point at a starting point, finds a point that has the same x (y) coordinate,
which is the starting point, and has the highest correlation coefficient value. Then considers
the newly found point as a starting point and finds another point that has the same y (x)
coordinate and has the greatest value of the correlation coefficient with a recently found
point. This method is repeated for a further time step [21]. But all these methods ultimately
can calculate the correlation coefficient. Currently, a zero-normalized cross-correlation
coefficient, as presented in Equation (1), is commonly used [20].

Here, f (x, y) and g(x*, y*) represent the grey levels at a certain position in reference and
target image, while f and g represent the average grey levels of the sub-images with a size
of (2M + 1) × (2M + 1) pixels, where M represents the number of rows in the image [20].
This correlation coefficient C of a point p = (x, y) T reaches its maximum if the grey level
distributions of both sub-images are equal [22]. This implies that the displacement is
determined by determining the position at which the correlation coefficient is maximal.

With this knowledge, the displacement can be determined using a simple but time-
consuming Brute Force Search (BFS) algorithm to allocate the position with the highest
correlation coefficient. A brute force search algorithm evaluates all possible positions and
determines the position with the highest correlation coefficient [3].

Another smarter approach is particle swarm optimization. In this optimization strat-
egy, particles are initialized randomly at position p = (x1, x2) with velocity v = (v1, v2).
Through iteration with different generations “t” of the particle “i” an optimal solution is
found. The next generation is determined according to:

vid(t + 1) = wvid(t) + c1r1[pbest id − pid(t)] + c2r2[gbest id − pid(t)], (2)

pid(t + 1) = pid(t) + vid(t + 1), (3)

where d represents the x and y directions. c1 and c2 are predefined acceleration coefficients
which influence cognitive (e.g., local) optimization behavior and social (e.g., global) opti-
mization behavior, respectively. The parameters r1 and r2 are independent random values
between zero and one.

Each particle has a correlation coefficient and a history with one best position pbest
at which it has perceived its maximal correlation coefficient cbest so far. One particle has
perceived the highest correlation coefficient cbest of the whole swarm at the global best
position gbest. The generation dependent weight factor w is calculated according to:

w(t) = 0.9 − t
2Gmax

. (4)

With the maximum number of generations Gmax.
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According to Wu, et al. [3], a maximum of five generations and a correlation coefficient
of 0.75 are enough for efficient DIC calculations. Since these algorithms must be used in
real-time, small deformations between two consecutive images can be assumed. Therefore,
the integer-pixel search algorithm looks for the target sub-image in an area of 25 pixels
around the reference sub-image.

2.2. Sub-Pixel Displacement

Limiting the displacements of the sub-image to an integer value leads to an accuracy
of ±0.5 pixels. To further improve the accuracy, an interpolation approach has been
introduced to determine the displacement of the sub-image between the two states to
sub-pixel values [23]. In this approach, it is assumed that a grey level of a pixel is equal to
the grey level at its center. The most basic approach, bilinear interpolation, to determine
the grey level at an arbitrary position G (x*, y*) is as follows:

G (x*, y*) = a00 + a10xj + a01yj + a11xjyj. (5)

G (x*, y*) denotes the grey level distribution at an arbitrary sub-pixel position (x*, y*),
while x’ and y’ denote the distance along the x and y-axis from the next integer pixel
position to (x*, y*), and a00, a01, a10 and a11 are the coefficients of the bilinear interpolation
function. Utilizing a linear equation system, those coefficients can be determined by the
grey levels of surrounding integer pixel positions. Besides this simple bilinear approach,
other methods such as bicubic interpolation [24,25] or higher-order spline interpolation [26]
have been used as well. Generally, the higher the approaches’ order the higher the accuracy
at the expense of computational effort [2].

Unfortunately, bilinear interpolation just gives grey levels at certain positions within
four pixels. To find the position with the highest correlation also a search algorithm is
required. Besides the well-known Newton–Raphson (NR) algorithm, a more efficient
Inverse-Compositional Gauss–Newton (IC-GN) approach is commonly used [27]. The
IC-GN algorithm uses an affine warp function together with an interpolation approach
to backwardly calculate the position of the reference sub-image. In contrast to the NR
algorithm, in the IC-GN several parameters can be pre-computed and there is no need
to update them at every iteration. A detailed explanation can be found in a publication
by Pan, Li and Tong [28]. Finally, usage of look-up tables for calculation results required
multiple attempts to reduce the computational effort further [28].

2.3. Parallel Computation

Parallel computation is one of the most used methods to reduce computational time.
Therefore, it plays an important role in the development of new programs and the optimiza-
tion of old ones and significant research concerning this topic is ongoing [29,30]. Despite
its advances and benefits, parallel computation also has its own challenges and is a very
complex area with some restrictions and limitations [30]. Nonetheless, some studies have
been published, concerning parallel computing in DIC, either for CPU computation [23,27],
GPU computation [30] or a combination of both [31].

Parallel computing divides one main task into several subtasks which are performed
simultaneously. Unfortunately, this is only possible if the subtasks can be processed
separately. In DIC, the search for the target sub-images position of different reference
sub-images can be processed in parallel in some approaches since they are completely
independent of each other. Additionally, whole pairs of the reference image and target
image can be processed simultaneously on different workers. Parallel computing can be
used for both integer-pixel displacement and sub-pixel displacement search algorithms.

Due to the vastness and complexity of the parallel computation procedures, this study
was limited to discussing the same in general terms, while evaluation of the various DIC
algorithms and the significance of parallel computing will be done on MATLAB, one of the
most commonly used platforms for evaluating DIC algorithms.
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Parallel computation splits up one task to perform it on several workers simulta-
neously. To do this, it is necessary to process data and information in such a way that
it is correctly distributed and transmitted to the assigned worker. Because the GPU is
attached to the CPU via a PCI express bus, data transfer is slower than for standard CPU
usage [32,33]. Thus, the computation speed is severely limited by the required amount of
data transfer. According to Xinxing Shao et al. [27] in a study, it is possible to use a pixel
selection strategy to further improve the parallel computing efficiency of the DIC and it
also allows user to run the real-time analysis.

CPU Parallel Computation in MATLAB

In addition, parallel computing on the GPU, MATLAB offers the ability to execute
tasks in parallel on different processors [19]. To enable parallel computing, MATLAB
creates a parallel computing pool from different multicore processors and processes various
independent tasks in parallel [19].

MATLAB provides the user with two different possibilities to execute computing
scripts in CPU parallel computation [34]. On the one hand, the “parfor” loop function,
which works similar to a standard “for” loop but executes its command section in parallel.
On the other hand, the “parfeval” function, which allows asynchronous sub-function call
and processing on a different worker without stopping the main function to wait for any
results of the called sub-function [19].

While CPU parallel processing may seem beneficial, data transfer also has a bottleneck.
For parallel computing on a CPU, this is not as critical as for parallel computing on a GPU,
but it is still an important factor that must be taken into account [19]. MATLAB creates a
copy of the variable for each worker and passes it to the worker. In a situation where each
worker has to process a large amount of data, it takes a significant amount of time to copy
and transfer them. Therefore, it is possible that the benefits of parallel computing diminish
due to the time spent organizing and transferring data.

3. Tests and Comparisons

Here, we developed a standalone DIC program that uses a combination of different
DIC methods including leveraging the benefits of parallel computing to perform DIC anal-
yses as efficiently as possible. The most commonly used and most efficient algorithms were
programmed in MATLAB as shown in Table 1. The modified algorithm from reference [35]
was also tested and evaluated. The testing platform we developed is modular such that it
is possible to choose any combination of mathematical search algorithms. To evaluate the
performance of different parallelization approaches, two different ways of parallelizing the
image evaluation—parallel image processing and parallel sub-image processing—were im-
plemented. All methods and approaches to parallelization were implemented completely
independently, which allowed for optimizing the program structure for each module.

Table 1. List of MATLAB algorithms.

Algorithms Type

Brute Force Search Algorithm Integer-pixel search algorithm
Particle Swarm Optimization Integer-pixel search algorithm

Modified Particle Swarm Optimization
(integrated Star Search algorithm) Integer-pixel search algorithm

Newton–Raphson method Sub-pixel search algorithm
Inverse-compositional Gauss–Newton method

self-implemented Sub-pixel search algorithm

Inverse-compositional Gauss–Newton method
by Baker and Matthews [35] Sub-pixel search algorithm

Two standard DIC search algorithms, the brute force search algorithm and the Newton–
Raphson method, were implemented as reference methods. Additionally, one of the two
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particle swarm optimization algorithms implemented here was modified so that the gradi-
ent descent search algorithm—the star search algorithm was integrated into the particle
swarm optimization algorithm. Furthermore, two versions of the inverse-compositional
Gauss–Newton method were implemented. One variation was completely implemented
by the authors and another one taken from a publication by Baker and Matthews [35],
which was then integrated into the developed software. The two implementations of the
inverse-compositional Gauss–Newton algorithm differ in detail as to the overall program
structure and usage of higher-level MATLAB functions.

Finally, the accuracy and efficiency of combinations of different methods were tested
on two different sets of test data. The first dataset consisted of 204 images of a rectangular
specimen undergoing deformation due to tensile forces, taken in the RMIT Materials
Laboratory. The second set consisted of 11 images showing different states of a deformation
process taken from Blaber, et al. [34]. A sample of three consecutive images of each of
the two datasets is presented in Figure 1. The histogram of three consecutive images in
dataset 1 can be found in Figures A1–A3 (see Appendix A).
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There are three approaches to choosing a reference image. The simplest approach
is a single reference image approach, which uses an image at the beginning of a series
with an undeformed test piece before any displacement or force is applied. The motion or
displacement of the interrogation points is then tracked over time by correlating subsequent
images in the series with the original reference image [36].

In some cases, the DIC pattern may change significantly during the test, such that
the DIC pattern of the deformed sample cannot be correlated back to the undeformed
reference image. In this situation, incremental correlation can be used, in which each image
is correlated with a previous image instead of correlating with the initial reference image.
Incremental correlation gives incremental displacement between each image. The total
displacements from the original reference image of the undeformed test piece are calculated
by summing the incremental displacements. However, the disadvantage of increasing
the correlation is that the errors in the overall offsets also add up, thus the errors usually
increase with the number of images in the increasing correlation sequence [36].

As a trade-off between using a single reference image of an undeformed sample and
increasing correlation, a series of images can be divided into sub-series, and the images in
each sub-series are correlated back to the image at the beginning of that sub-series. This
type of approach is called a partitioned correlation [36].

In this study, to evaluate the performance of the different approaches in choosing
the reference image, the reference image was updated after every evaluation to maximize
workload and with the assumption that sequential images in real-time applications only
have small displacements. Hence, each evaluated pair of images consists of two consecutive
images. Consequently, there were no large displacements between two images. However,
the accuracy of the various methods was verified for constant reference images, resulting
in large displacements between the two images. All methods were implemented such that
they had a guaranteed accuracy of 0.1 pixels, with results usually having an error below
0.05 pixels [37]. The subset size used was 31 × 31 pixel2 with a sampling size of 15 pixels.
The results were 1.06 million data points for dataset 1 and 200,000 data points for dataset 2.
All tests were performed with two different hardware settings, giving directly comparable
results as well as providing information on the impact of the system being used. The two
used computer systems are listed in Table 2.

Table 2. Hardware overview test computers.

Parameter Computer 1 Computer 2

Operating System Windows Server 2012 R2 64-bit Windows 7 enterprise
RAM 4 GB DDR2 16 GB

CPU Intel Xeon Dual Core CPU E5
2726v3 2.4 GHz

Intel Core i7-6700 Quad-Core 3.4
GHz

Hard drive N/A Samsung PM871a
Ethernet Connection Intel I219-LM N/A
Data Transfer
Rate [GBit/s] 1 4.16

Computer 1 used two workers per core, while Computer 2 used one worker per core.
Nonetheless, both were working with four workers. To minimize the influence of any
external factors, like high network utilization, all tests were carried out several times at
different days and different times. All results presented are the average of several test
runs. Test runs with long calculation times were performed 25 times, since the influence of
external short-term factors was reduced by the longest simulation time. Medium to very
short simulations were repeated 100, 250 or 1000 times to decrease the influence of short
duration factors according to the overall simulation period.
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4. Results
4.1. Evaluating Result Correctness

The displacement between the first and the twenty-second image of dataset 1 in the X
direction is represented in Figure 2, it was determined by using the author’s program. The
results of our test platform were validated by comparing it with the results from NCORR
by Blaber et al. [34], as shown in Figures 3 and 4. Comparison of the results obtained by
a program of the authors and NCORR shows clear similarities. The visualization of the
author’s results is slightly different from the visualization of NCORR. Examining the X
and Y axes shows that the same section is displayed; investigation of the legend explains
the slight differences in the color distribution between the analysis images. This offset in
the results could be due to the DIC settings used, especially the subset size. This led to
faster convergence, but resulted in the maximum number of upper legends in the author’s
program approximately 0.05 higher than lower legends compared to the reference image.
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of dataset 2, obtained by the program developed by the authors. On the right side, the same
displacement for the same image pair is shown but obtained by the program by Blaber et al. [34].

4.2. Evaluating Integer Pixel Routines

As seen in Table 3 below, the processing time between the two different datasets is
different for the two hardware settings. A representation of Table 3 in the form of a diagram
can be found in Figure A4 (see Appendix A). The relative time difference between the two
different datasets in serial computation, for analyses conducted on PC 1, is significantly
higher if the brute force search algorithm is used. For example, the analysis of dataset 1 is
around 30 times longer than the analysis of dataset 2 if the particle swarm optimization
and the Newton–Raphson Method are used. If the brute force search algorithm is used,
instead of the particle swarm optimization, the ratio of the processing time of dataset 1 to
dataset 2 increases to 50. However, the ratio between the time required to analyze dataset 1
to the time required to analyze dataset 2 remains constant on PC 2, regardless of the chosen
integer pixel search algorithm. The reason for using two completely different sized datasets
is to have data read/overhead time considered for various cases. The time required to
load one image is independent of the number of data points [38]. For example, images of
dataset 1 have 5300 data points per image; images of dataset 2 have 1000 data points per
image. Bringing this information together shows that t_new for dataset 1 is less than half



Designs 2021, 5, 15 10 of 21

of t_new of dataset 2 for PC 2, while t_new for dataset one is less than a quarter of data 2
for PC 1.

Table 3. Overview of the analyses time for serial calculation.

Integer-Pixel
Search

Sub-Pixel
Search Algorithm

Time PC 1 [s] Time PC 2 [s]

Set 1 Set 2 Set 1 Set 2

Brute Force Newton–Raphson 3345.5 65.23 2084.4 45.38
PSO (Particle Swarm Optimization) Newton–Raphson 582.4 19.10 346.6 7.64

Mod. PSO Newton–Raphson 556.9 17.94 327.2 7.34
Brute Force IC-GN 3351.3 89.44 2198.5 58.04

PSO IC-GN 677.0 29.72 452.5 13.60
Mod. PSO IC-GN 706.3 30.29 464.7 12.39
Brute Force IC-GN by Baker [35] 3197.2 78.86 2090.3 52.65

PSO IC-GN by Baker [35] 534.8 20.80 309.2 7.26
Mod. PSO IC-GN by Baker [35] 524.2 21.39 305.7 7.15

Typically, all computations processed in serial and conducted on the computer with
the better hardware setting (PC 2) were 30%–70% faster than the same analysis conducted
on the computer with inferior hardware properties (PC 1). The time difference between PC
1 and PC 2 for the brute force search-based analyses is lower than for the other analyses.
For the integer pixel search algorithms in serial computation (Table 3), all combinations
relying on the brute force search algorithm are much slower than the other computations.
Moreover, both particle swarm optimization, as well as the modified particle swarm opti-
mization, performed nominally equally on both computers. If the modified particle swarm
optimization is used in combination with the Newton–Raphson method, the whole compu-
tation is around 5% faster than the standard particle swarm optimization in combination
with the Newton–Raphson method. However, a combination of modified particle swarm
optimization with the IC-GN algorithm by Baker et al. [35] is only 2% faster than the
standard particle swarm optimization combined with the same IC-GN algorithm. The
combination of the IC-GN algorithm implemented by the author and the modified particle
swarm optimization algorithm is even slower than a combination with the standard particle
swarm optimization.

4.3. Evaluating Sub-Pixel Routines

Comparing the sub-pixel search algorithms in serial computation (see Table 3), nearly
all computations which use the Newton–Raphson method are the fastest if compared to
analyses using the same integer-pixel search algorithm. The only exceptions are the combi-
nation of the two Particle Swarm Optimizations (PSOs) and IC-GN by Baker et al. [35] for
PC 2 and dataset 2, where both combinations with the IC-GN algorithm by Baker et al. [35]
are slightly faster than the Newton–Raphson algorithm. Furthermore, the IC-GN algorithm
published by Baker et al. [35] is always faster than the IC-GN algorithm implemented by
the author. The performance difference for the IC-GN algorithm by Baker et al. [35] to
the algorithm implemented by the authors is small if the brute force search algorithm is
used as an integer-pixel search. If the standard particle swarm optimization is used, this
difference increases and is maximal if the modified PSO is used. Even though PSO is easy
to operate and has a high convergence rate, it does a poor job of balancing exploration and
the accuracy of the algorithm is low. To improve the performance of the PSO algorithm,
the Particle Swarm Optimization Research Toolbox in MATLAB was used, and several
parameters related to various crossover operations, to obtain promising particle guiding
patterns and search capabilities, are dynamically adjusted [39]. This modification was done
to obtain better accuracy and faster convergence.

The time required for each image varies significantly depending on methods, hardware
settings and even based on image sets. The longest time needed to analyze one pair of
images in serial computation was with the brute force search algorithm combined with
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the IC-GN method by the author, conducted on PC 1 with images of dataset 1, where it
took in average of 16.5 s per image pair. This corresponds to a processing frame rate of
0.06 Hz. On the other hand, the shortest time required to analyze one pair of images in
serial computation was with the modified particle swarm optimization and the IC-GN by
Baker et al. [35], conducted on PC 2 with dataset 2. In this analysis, 0.71 s were required on
average to analyze one image pair which equals a frame rate of 1.4 Hz.

As seen in Table 4, the time differences between the two different datasets are different
for the two hardware settings. A visualization of Table 4 can be found in Figure A5 (see
Appendix A). All computations conducted on the computer with the better hardware
setting (PC 2) are 30%–200% faster than the same analysis conducted on the computer with
inferior hardware setting (PC 1), if processed in sub-image parallel computation. The time
difference between PC 1 and PC 2 tends to be smaller for the brute force-based analyses
than for the other analyses. Additionally, the influence of hardware settings is stronger for
dataset 2 than for dataset 1. Furthermore, the time it takes to analyze two different datasets
is more different on PC 2. The difference is small if the brute force search algorithm is used;
however, the difference is larger if the particle swarm optimization or the modified particle
swarm optimization are used.

Table 4. Overview of the analyses time for parallel sub-image calculation.

Integer-Pixel
Search

Sub-Pixel
Search Algorithm

Time PC 1 [s] Time PC 2 [s]

Set 1 Set 2 Set 1 Set 2

Brute Force Newton–Raphson 2682.5 58.66 1905.4 36.722
PSO Newton–Raphson 863.5 20.00 677.6 8.38

Mod. PSO Newton–Raphson 861.5 19.41 618.9 8.17
Brute Force IC-GN 2938.0 61.56 1942.1 38.756

PSO IC-GN 914.6 24.18 678.8 11.10
Mod. PSO IC-GN 964.6 24.15 685.7 10.99
Brute Force IC-GN by Baker [35] 2348.4 55.13 1776.4 35.00

PSO IC-GN by Baker [35] 552.2 17.98 424.2 7.49
Mod. PSO IC-GN by Baker [35] 902.7 20.19 418.9 6.60

4.4. Significance of Parallel Computation

Looking at Table 4, all the combinations relying on the brute force search algorithm are
much slower than the other computations. The brute force search-based computations are
between three to five times slower than the other algorithms. Moreover, both the particle
swarm optimization as well as the modified particle swarm optimization perform more
or less the same. In combination with the Newton–Raphson method, the modification is
around 5% faster than the standard particle swarm optimization.

In the case of sub-pixel search algorithms in parallel sub-image computation, in Table 4,
computations using the IC-GN algorithm implemented by the authors are always slower
than any of the other two. The time required per image is different between the methods,
hardware settings and even image sets. The longest time required to analyze one pair of
images in the parallel computation of sub-images was performed using the IC-GN brute
force search algorithm performed by the author, on PC 1 with images of dataset 1, where it
took an average of 14.47 s per image pair. This equals a frame rate of 0.07 Hz. The least
time required to analyze one image pair in parallel sub-image computation was with the
Modified particle swarm optimization and the IC-GN by Baker et al. [35] conducted on
PC 2 with dataset 2. In this analysis, 0.66 s were required on average to analyze one image
pair which equals a frame rate of 1.5 Hz.

As seen in Table 5, the time differences between the two different datasets are different
for the two hardware settings. A visualization of Table 5 is shown in Figure A6 (see
Appendix A). All computations conducted on the computer with the better hardware
setting (PC 2) are 40%–100% faster than the same analyses conducted on the computer
with inferior hardware setting (PC 1), if they are processed in image parallel computation.
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The time difference between PC 1 and PC 2 tends to be smaller for brute force search
algorithm-based analysis than for other analyses if dataset 2 is analyzed; however, there
is not such an influence for dataset 1. Additionally, the influence of the hardware set is
stronger for dataset 2 than for dataset 1. In addition, the impact of dataset hardware is
stronger for dataset 2 than dataset 1. Additionally, the time it takes to analyze two different
datasets is more different on PC 2. The difference is small if the brute force search algorithm
is used but big for the other two search algorithms. For example, the analysis of Set 1 took
43 times longer than the analysis of Set 2, with a combination of PSO and NR algorithm on
PC 1, while the same analysis took 80 times longer for Set 1 than for Set 2 on PC 2.

Table 5. Overview of the analyses times for parallel image calculation.

Integer-Pixel
Search

Sub-Pixel
Search Algorithm

Time PC 1 [s] Time PC 2 [s]

Set 1 Set 2 Set 1 Set 2

Brute Force Newton–Raphson 1778.7 41.20 1208.3 24.94
PSO Newton–Raphson 152.8 5.57 105.5 2.90

Mod. PSO Newton–Raphson 158.9 5.44 108.0 2.89
Brute Force IC-GN 1823.6 45.66 1239.8 26.13

PSO IC-GN 186.9 8.82 124.4 4.36
Mod. PSO IC-GN 189.7 8.10 135.8 4.36
Brute Force IC-GN by Baker [35] 1766.4 43.32 1193.6 24.73

PSO IC-GN by Baker [35] 156.0 5.63 107.2 2.99
Mod. PSO IC-GN by Baker [35] 148.0 5.74 106.0 2.91

Regarding the integer pixel search algorithms in parallel image computation (see
Table 5), all combinations relying on the brute force search algorithm are much slower than
the other computations. Computing with the brute force search algorithm is three to four
times slower than other algorithms. Moreover, the particle swarm optimization as well as
the modified particle swarm optimization performed in the same order of magnitude. A
combination of the Newton–Raphson method and modified particle swarm optimization
is 5% faster than a combination of the Newton–Raphson method and standard particle
swarm optimization. A combination of the modified particle swarm optimization and
the IC-GN algorithm by the authors performs equally well with the combination of the
standard particle swarm optimization and the same IC-GN algorithm. However, if the IC-
GN algorithm published by Baker et al. [35] is used instead, the variations in performance
cannot be generalized, which can be seen in Table 5.

For the sub-pixel search algorithms in parallel image computation (see Table 5), it
can be seen that computations which use the Newton–Raphson method are faster than
computations using the IC-GN algorithm implemented by the author, while computations
relying on the IC-GN algorithm published by Baker et al. [35] are faster. Furthermore, the
inverse-compositional Gauss–Newton (IC-GN) algorithm published by Baker et al. [35] is
always faster than the IC-GN algorithm as implemented by the author. The most time
required to analyze one image pair in parallel image computation was with the brute force
search algorithm combined with IC-GN method by the author, conducted on PC 1 with
images of dataset 1, where it took in average of 8.98 s per image pair. On the other hand,
the least time required to analyze one image pair in parallel image computation was with
the modified particle swarm optimization and the Newton–Raphson method, conducted on
PC 2 with dataset 2. In this analysis, 0.29 s were required, on average, to analyze one image
pair, which equals a frame rate of 3.5 Hz. The same frame rate could be achieved with a
combination of the modified particle swarm optimization and the Newton–Raphson method,
as well as with the modified particle swarm optimization and the IC-GN by Baker et al. [35].

Comparing Tables 3–5 shows that the parallel computation of images is more efficient
since it is two to three times faster than serial computation. Furthermore, it is remarkable
that the time difference is smaller for method combinations relying on the brute force
search algorithm. Finally, parallel sub-pixel calculation does not necessarily improve the
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computational speed of a serial computation. Comparing Tables 3 and 4 shows that parallel
sub-image computation is inferior to serial computation in most cases. The parallelization
is only beneficial if the brute force search algorithm is used as an integer pixel search
algorithm. In general, the larger images of dataset 2 benefits in parallel computation more
than the smaller images of dataset 1.

The performance is evaluated for the entire process, not just for the image analysis
itself. This includes the program initiation, loading of the images and displaying of results.
All computational times presented in Tables 3–5 represent the time required from starting
the program to presenting the results of the last pairs of images. This is in contradiction
with most of the literature, which deal only with image pair analysis and do not address
the effects of pre-processing and post-processing at all.

5. Discussion
5.1. Hardware Profile and Influence of Dataset Properties

All analysis executed on PC 2 is faster than the same analyses conducted on PC 1.
The reason for this outcome is due to differences in the processor in use between the two
computers. PC 1 has a 3.4 GHz Quad-Core CPU, while PC 1 just has a 2.4 GHz Dual Core
CPU. Therefore, PC 2 is 1.4 times better in terms of frequency than PC 1. This relationship
is also observed in terms of analysis time. However, other factors, such as cache size and
data bus speed, also have an impact. The data transfer rate between image storage place
and CPU is also a limiting factor. For PC 1 this is most likely the Ethernet connection that
connects the system to the central server. This Ethernet connection has a data transfer rate
of 1 GBit/s. Additionally, several other data must also be transmitted over this Ethernet
connection. Therefore, the whole bandwidth is not available for the program itself. PC 2
has to read the images from its SATA SSD, which has a reading speed of 4.16 GBit/s. It is
assumed that no other data transfers are in progress while DIC is running; therefore, the
entire band rate is available for the program. These two factors affect the time it takes to
read one pair of images and directly result in degraded performance on PC 1. Techniques
such as double buffering are not considered. It is assumed that the program always uses
the most current image of a live video stream as a target image, with the previously used
target image as a new reference image. This is to avoid queuing raw images if the camera
is receiving images faster than the software is processing them.

The improvements between the two different computer settings decrease with increas-
ing data traffic. This is explained by the rising portion of data handling time in the total
computation time with increasing data traffic. It can be assumed that the data transfer rate
between different worker processes is approximately the same for different computers and;
therefore, the time required to transfer a certain amount of data is the same for the higher-
level hardware settings and for the inferior one. The processing times also differ between
the two different datasets. The influence of the brute force search algorithm is stronger
for dataset 1 than for dataset 2 when comparing this integer pixel search algorithm with
others. The brute force search algorithm determines the correlation coefficient distribution
for the whole image. Therefore, the computational time of one sub-image is directly related
to the image size. Both particle swarm optimizations work always with a fixed number of
particles and generations. Therefore, the computational time of those two algorithms is
not directly related to the image size itself. In conclusion, the computation time increases
with increasing image size for brute force search, while it remains constant for the two
variations of the particle swarm optimization. Of course, this is only true if you choose a
constant number of sub-images is chosen.

5.2. Integer Pixel Search

For the integer-pixel search algorithms, the brute force search algorithm is generally
the most inefficient algorithm. This was ruled out because this very simple algorithm deter-
mines the correlation coefficient for each possible sub-pixel position, which is much more
computationally expensive than the two particle swarm optimizations. This is explained by
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the following calculation. Assuming images have a size of 500 × 1000 pixels and the sub-
sets have a size of 31 × 31 pixels, this gives a total of 970 × 470 = 455,900 possible sub-set
positions within one image. Consequently, for the brute force search algorithm, 455,900 cor-
relation coefficients must be determined per reference sub-image. Contrary, both particle
swarm optimizations use a total number of 50 particles over a maximum of five iterations.
In the standard particle swarm optimization, the correlation coefficient of each particle for
each iteration step is determined, resulting in a maximal 250 evaluations of the correlation
coefficient. For the modified particle swarm optimization, the correlation coefficient of the
particle, as well as the four surrounding pixels, is determined, which results in a theoretical
total of a maximal 1250 evaluations of the correlation coefficient. Both algorithms use
look-up tables to reduce the computational burden if different particles move to the same
position. Additionally, the modified particle swarm optimization converges faster which,
on average, results in fewer iteration steps. Besides the determination of the correlation
coefficients for the different positions, all three methods determine the maximal found
correlation coefficients. However, this can be considered less computationally intense
compared to the determination of the correlation coefficient itself. By simply comparing
the number of calculated correlation coefficients of different methods, it becomes apparent
that the brute force search algorithm requires much more computational power than the
two particle swarm optimizations [40].

Unfortunately, the case is not that clear for the standard Particle Swarm Optimization
(PSO) and the modified version. The significant difference between those two methods is
that the standard version only takes the correlation coefficient at the particles own position
into account while the modified version additionally takes also the correlation coefficients
at the surrounding pixels into account. This leads to a faster convergence, because more
information is considered while updating the particle positions. This also increases the
total computational effort per iteration step. Because the particle swarm optimization
stops if a sufficiently high correlation coefficient of 0.995 is found, the number of used
generations is lower for the modified particle swarm optimization than for the standard
version. With regards to the results obtained during the tests carried out and presented
in Tables 3–5, it can be stated that the modified PSO version performs, in general, at least
equally as well as the standard version. Therefore, using a modified version of PSO instead
of the standard version may be beneficial as it converges faster [41]. Shi and Eberhart [42]
modified the standard PSO algorithm by introducing inertial weights ω, and achieved a
balance between global and local search. The reported results show a linear decrease in the
ω while solving the algorithm, which ultimately increased the convergence rate.

5.3. Sub-Pixel Search

A version of the inverse-compositional Gauss–Newton algorithm as published by
Baker et al. [35] is around 2%–3% more efficient than the version implemented by the
authors. There can be many reasons for such a discrepancy, and they are described in
detail in the specific implemented code. One major difference between the two versions
is the data flow to sub-functions. The version published by Baker et al. [35] uses fewer
sub-functions than the version implemented by the author. Otherwise, the amount of data
passed by the author’s implementation is lower per sub-function call than the amount of
data passed in the version proposed by Baker et al. [35].

The performance comparison between the Newton–Raphson method and the inverse-
compositional Gauss–Newton algorithm by Baker et al. [35] cannot be generalized and,
apparently, both algorithms perform similarly, as can be seen in Tables 3–5.

Among all the tests carried out within the framework of this study, sometimes, the
IC-GN algorithm by Baker et al. [35] is faster and sometimes there is no difference. This is
somewhat in conflict with theoretical predictions and most of the modern literature, which
indicates that the IC-GN algorithm is superior to the Newton–Raphson algorithm [28]. The
implementation of the IC-GN algorithm into the program was more complex compared to
the NR algorithm. The fact that MATLAB generally uses call by value functionality strongly
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increases the time required to shift data from different sub-functions. Every time a sub-
function is called, a copy of the data, which has to be transferred between caller function
and called function, is created. This drastically increases the computation time. Because the
data flow is more complex for both IC-GN versions, than for the NR algorithm, MATLAB
requires more time to copy values and allocate memory. This reduces the advantages
of IC-GN over the NR algorithm. However, the IC-GN algorithm has the advantage of
reducing the computation time by an iteration step. If the number of iterations is small,
this advantage is negligible. The overall impact of this is difficult to measure theoretically.
Though there is no real evidence that one algorithm is more efficient than the other (except
for the IC-GN by the author), a slight connection to the datasets supports the premise that
the reason for the worse performance, than theoretically expected, is mainly connected to
the data flow and the small number of iterations.

5.4. Parallel Computation

Concerning the different types of computing, the tests performed show that the
parallel computation of images is much more efficient than the sequential and parallel
computation of sub-images; compare Tables 3–5. Parallel image computation solves the
same task as in serial computation. In both cases, the worker solves one image completely
on its own. In serial computation, a single worker analyses all image pairs, while in parallel
image computation, several workers are working on different image pairs at the same
time. Nonetheless, the data must be organized and distributed to the workers, which is
more complex in the case of parallel image computation, creating an additional workload
for this computational type. However, this load is small compared to the analysis itself.
Otherwise, parallel sub-image computation differs more from the serial computation. In
parallel sub-image computation, the different workers have to solve different sub-sets of
the same image pair. To do so, all workers need both the target as well as the reference
image. Consequently, this increases the data flow, because every worker needs every
image pair and slows down the computation. Assuming four number of workers, which
is the case for both hardware settings used in this study, this results in a four times larger
amount of data for sub-image parallel computation than for image parallel computation.
Therefore, the overall efficiency of sub-image parallel computation is lower than parallel
image computation. Nonetheless, all workers are working on the same image pair in
sub-image parallel computation. This means that the time between starting the analysis of
a particular pair of images and determining the final displacement result is shorter than
with image parallel computation.

5.5. GPU Accelerated Technique

Recent developments utilize Graphics Processing Units (GPUs)-based image corre-
lation implementations [43]. By running computing DIC at different points of interest
simultaneously, processing can be significantly accelerated by orders of magnitude [31].
For parallel processing using the GPU in MATLAB, NVIDIA’s CUDA (Compute Unified
Device Architecture) GPU computing technology is utilized [33]. CUDA is a programming
technique developed by NVIDIA which shifts program parts to the GPU [44]. The CUDA
technology is included in MATLAB as simple to use as a toolkit. MATLAB introduced a
new data type called “gpuArray”. This data type is similar to a regular array, but addition-
ally includes information that all tasks associated with this array must be performed on the
GPU. More than 100 MATLAB functions support this data type and, using CUDA technol-
ogy, transfer the computational task to the GPU if they are executed with a gpuArray [32].
The bottleneck of this technology lies within the data transfer. For each computational
task, all the necessary data must be transferred from the CPU to the GPU before it can be
processed [45]. Afterwards, any results must be transferred back from the GPU to the CPU.
In GPU-based image processing systems, it is also possible to get user-specified feedback
from the applications on a real-time basis.
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According to Conrad et al. [37], the GPU-based DIC system is capable of measuring
total strain at the speed up to 850 Hz and the strain fields overcome parallel computing
limitations. This is enabled by combining a fast camera with path-independent and marker-
free image correlation on the GPU, and it is highly limited with the capability of GPU
used and dependent on the size of the image. By implementing a DIC algorithm that
is capable of running in parallel computing methods, multi-core CPU and GPU allow
threads to run concurrently, resulting in the increase of computing speed depending on
the simultaneous cores supported by the device [40]. In the case of both CPU and GPU
resources being available, it is wise to use both. The heterogeneous parallel computing
on the CPU and GPU can result in further speed improvements over GPU alone. This
advantage in acceleration can be achieved by highlighting points of interest (POIs) on
both the CPU and GPU and processing them on these two platforms simultaneously [46].
However, this article focuses only on executing DIC algorithms using two different types
of CPU hardware. For further research, comparison between the parallel computing using
CPU with and without GPU acceleration can be considered.

6. Conclusions

The analysis of the different mathematical search algorithms shows that there are
significant differences in computation times between the tested methods and combinations,
despite similar accuracy. It is clear that the combination of implemented methods can
reduce the computational time of standard digital image correlation without compromising
accuracy. Additionally, the tests performed show that real-time analysis with high frame
rates, implemented using CPU processing, requires computational resources that are
available only in high-performance computing systems; or are possible only at the expense
of a significant reduction in accuracy. However, real-time analysis with a slow frame rate,
lower accuracy or a reduced number of evaluated data points is possible in MATLAB with
nominally average computing systems—analysis frequencies up to 3.5 Hz are possible
with a standard Intel i7 Quad-Core CPU.

The fastest computation can be achieved by a combination of a modified particle
swarm optimization, in which a downhill star search algorithm is integrated into the
particle swarm optimization search algorithm, as an integer pixel search algorithm. To
increase the accuracy to sub-pixel level, Newton–Raphson Search algorithm is best suited
when a relatively low accuracy of 0.1 pixels is required.

The computational time is least if image pairs are processed in parallel. Parallelization
of smaller tasks, as in sub-image parallel computation, leads to an increase in computation
time than in serial processing. The time it takes to process the additional data traffic is
longer than the reduction in time by parallelizing the tasks. However, the conducted tests
show that the type of parallelization has a direct relation with the computation time, as far
as this study is concerned computation time is reduced to up to 55%, even on a computer
with a standard quad-core processor. Finally, the tests show that theoretically superior
methods can perform worse than other methods due to some practical implementation dis-
advantages of these methods. Our results also highlight the necessity to explore alternative
computing approaches such as GPU-based parallel computing to reduce the evaluation
time further.
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Abbreviations

Symbol and Abbreviation Description
MATLAB Matrix Laboratory
f Grey level in the reference image
g Grey level in the deformed image
(x, y) Denotes the position in the reference image
(x*, y*) Denotes the position in the deformed image
Hz Hertz
C Correlation coefficient
v Velocity
d Direction of the search
r Independent random values
ω inertial weights
M Number of rows in an image
N Number of columns in an image
w Weight factor
G Grey level distribution at an arbitrary sub-pixel
a Coefficients of the bilinear interpolation function
t Time
i Iterations
GBit/s GigaBits per second
CPU Central processing unit
GPU Graphics processing unit
CUDA Compute unified device architecture

Appendix A

Figures A1–A3 are histograms of dataset 1 generated using the image processing
toolbox feature in the MATLAB [47].
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10. Simončič, S.; Podržaj, P. An Improved Digital Image Correlation Calculation in the Case of Substantial Lighting Variation. Exp.

Mech. 2017, 57, 743–753. [CrossRef]
11. Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future

goals. Meas. Sci. Technol. 2018, 29, 082001. [CrossRef]
12. Yoneyama, S.; Murasawa, G. Digital image correlation. In Experimental Mechanics; Freire, J.F., Ed.; Encyclopedia of Life Support

System (EOLSS) Publishers: Oxford, UK, 2009.
13. Beyerer, J.; Leon, F.P.; Frese, C. Machine Vision: Automated Visual Inspection: Theory, Practice and Applications; Springer:

Berlin/Heidelberg, Germany, 2015. [CrossRef]
14. Jiang, Z.; Gao, Y.; Liu, J. A lid approach for predicting wave induced motions of trimaran in regular waves. Brodogradnja 2019, 70,

171–185. [CrossRef]
15. Gil, P. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing. J. Sci. Educ.

Technol. 2017, 26, 508–518. [CrossRef]
16. Jaton, F. We get the algorithms of our ground truths: Designing referential databases in digital image processing. Soc. Stud. Sci.

2017, 47, 811–840. [CrossRef] [PubMed]
17. Solav, D.; Moerman, K.M.; Jaeger, A.M.; Genovese, K.; Herr, H.M. MultiDIC: An Open-Source Toolbox for Multi-View 3D Digital

Image Correlation. IEEE Access 2018, 6, 30520–30535. [CrossRef]

http://doi.org/10.1111/j.1475-1305.2006.00258.x
http://doi.org/10.1080/09243046.2015.1129681
http://doi.org/10.1007/s11340-016-0133-6
http://doi.org/10.1016/j.measurement.2018.06.022
http://doi.org/10.1117/1.602438
http://doi.org/10.1007/BF02321649
http://doi.org/10.1088/0957-0233/20/6/062001
http://doi.org/10.1117/12.7972925
http://doi.org/10.1016/j.optlaseng.2015.10.002
http://doi.org/10.1007/s11340-017-0265-3
http://doi.org/10.1088/1361-6501/aac55b
http://doi.org/10.1007/978-3-662-47794-6
http://doi.org/10.21278/brod70209
http://doi.org/10.1007/s10956-017-9695-z
http://doi.org/10.1177/0306312717730428
http://www.ncbi.nlm.nih.gov/pubmed/28950802
http://doi.org/10.1109/ACCESS.2018.2843725


Designs 2021, 5, 15 21 of 21

18. Cheng, J.A.; Grossman, M.; Mckercher, T. Professional CUDA C Programming; John Wiley & Sons, Inc.: Indianapolis, IN, USA, 2014;
ISBN 978-1-118-73927-3.

19. Kim, P. Convolutional neural network. In MATLAB Deep Learning; Springer, Apress: Berkeley, CA, USA, 2017. [CrossRef]
20. Pan, B.; Xie, H.M.; Xu, B.Q.; Dai, F.L. Performance of sub-pixel registration algorithms in digital image correlation. Meas. Sci.

Technol. 2006, 17, 1615–1621. [CrossRef]
21. Lin, Y.; Lan, Z. Sub-Pixel Displacement Measurement in Digital Image Correlation Using Particle Swarm Optimization. In

Proceedings of the ICINA-International Conference on Information, Networking and Automation, Kunming, China, 18–19
October 2010. [CrossRef]

22. Rafael, C.G.; Richard, E.W.; Steven, L.E. Digital Image Processing Using MATLAB, 2nd ed.; Gatesmark: Knoxville, TN, USA, 2008;
ISBN 978-09-8208-540-0.

23. Chu, T.C.; Ranson, W.F.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech.
1985, 25, 232–244. [CrossRef]

24. Bruck, H.A.; McNeill, S.R.; Sutton, M.A.; Peters, W.H. Digital image correlation using Newton-Raphson method of partial
differential correction. Exp. Mech. 1989, 29, 261–267. [CrossRef]

25. Pan, B.; Wu, D.; Wang, Z. Internal displacement and strain measurement using digital volume correlation: A least-squares
framework. Meas. Sci. Technol. 2012, 23. [CrossRef]

26. Bornert, M.; Doumalin, P.; Dupré, J.-C.; Poilâne, C.; Robert, L.; Toussaint, E.; Wattrisse, B. Assessment of Digital Image Correlation
Measurement Accuracy in the Ultimate Error Regime: Improved Models of Systematic and Random Errors. Exp. Mech. 2017, 58,
33–48. [CrossRef]

27. Shao, X.; Dai, X.; He, X. Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in
digital image correlation. Opt. Lasers Eng. 2015, 71, 9–19. [CrossRef]

28. Pan, B.; Li, K.; Tong, W. Fast, Robust and Accurate Digital Image Correlation Calculation without Redundant Computations. Exp.
Mech. 2013, 53, 1277–1289. [CrossRef]

29. Asanovic, K.; Bodik, R.; Demmel, J.; Keaveny, T.; Keutzer, K.; Kubiatowicz, J.; Morgan, N.; Patterson, D.; Sen, K.; Wawrzynek, J.;
et al. A view of the parallel computing landscape. Commun. ACM 2009, 52, 56–67. [CrossRef]

30. Zhang, L.; Wang, T.; Jiang, Z.; Kemao, Q.; Liu, Y.; Liu, Z.; Tang, L.; Dong, S. High accuracy digital image correlation powered by
GPU-based parallel computing. Opt. Lasers Eng. 2015, 69, 7–12. [CrossRef]

31. Gates, M.; Heath, M.T.; Lambros, J. High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation.
Int. J. High Perform. Comput. Appl. 2014, 29, 92–106. [CrossRef]

32. NVIDIA. CUDA Developer Zone. 2017. Available online: https://developer.nvidia.com/cuda-zone (accessed on 19 March 2019).
33. NVIDIA. CUDA C Best Practices Guide. Available online: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.

html (accessed on 19 March 2019).
34. Blaber, J.; Adair, B.S.; Antoniou, A. Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Exp. Mech. 2015, 55,

1105–1122. [CrossRef]
35. Baker, S.; Matthews, I. Lucas-Kanade 20 Years On: A Unifying Framework. Int. J. Comput. Vis. 2004, 56, 221–255. [CrossRef]
36. Bigger, R.; Blaysat, B.; Boo, C.; Grewer, M.; Hu, J.; Jones, A.; Klein, M.; Raghavan, K.; Reu, P.; Schmidt, T.; et al. A Good Practices

Guide for Digital Image Correlation; International Digital Image Correlation Society: Hangzhou, China, 2018. [CrossRef]
37. Conrad, F.; Blug, A.; Kerl, J.; Fehrenbach, J.; Regina, D.; Bertz, A.; Kontermann, C.; Carl, D.; Oechsner, M. GPU-based digital image

correlation system for uniaxial and biaxial crack growth investigations. Procedia Struct. Integr. 2020, 28, 2195–2205. [CrossRef]
38. Sutton, M.A.; Matta, F.; Rizos, D.; Ghorbani, R.; Rajan, S.; Mollenhauer, D.H.; Schreier, H.W.; Lasprilla, A.O. Recent Progress in Digital

Image Correlation: Background and Developments since the 2013 W M Murray Lecture. Exp. Mech. 2016, 57, 1–30. [CrossRef]
39. Wang, T.; Kemao, Q.; Seah, H.S.; Lin, F. A flexible heterogeneous real-time digital image correlation system. Opt. Lasers Eng. 2018,

110, 7–17. [CrossRef]
40. Wang, C.; Song, W. A modified particle swarm optimization algorithm based on velocity updating mechanism. Ain Shams Eng. J.

2019, 10, 847–866. [CrossRef]
41. Yao, J.; Han, D. Improved Barebones Particle Swarm Optimization with Neighborhood Search and Its Application on Ship Design.

Math. Probl. Eng. 2013, 2013, 175848. [CrossRef]
42. Shi, Y.; Eberhart, R. Modified Particle Swarm Optimizer. In Proceedings of the IEEE Conference on Evolutionary Computation,

ICEC, Anchorage, AK, USA, 4–9 May 1998. [CrossRef]
43. Balit, Y.; Charkaluk, E.; Constantinescu, A. Digital image correlation for microstructural analysis of deformation pattern in

additively manufactured 316L thin walls. Addit. Manuf. 2020, 31, 100862. [CrossRef]
44. Shao, X.; Zhong, F.; Huang, W.; Dai, X.; Chen, Z.; He, X. Digital image correlation with improved efficiency by pixel selection.

Appl. Opt. 2020, 59, 3389–3398. [CrossRef]
45. Blug, A.; Regina, D.J.; Eckmann, S.; Senn, M.; Bertz, A.; Carl, D.; Eberl, C. Real-Time GPU-Based Digital Image Correlation Sensor

for Marker-Free Strain-Controlled Fatigue Testing. Appl. Sci. 2019, 9, 2025. [CrossRef]
46. Yang, J.; Huang, J.; Jiang, Z.; Dong, S.; Tang, L.; Liu, Y.; Liu, Z.; Zhou, L. 3D SIFT aided path independent digital volume

correlation and its GPU acceleration. Opt. Lasers Eng. 2021, 136, 106323. [CrossRef]
47. Tyagi, V. Understanding Digital Image Processing; CRC Press: Boca Raton, FL, USA, 2018. [CrossRef]

http://doi.org/10.1007/978-1-4842-2845-6_6
http://doi.org/10.1088/0957-0233/17/6/045
http://doi.org/10.1109/ICINA.2010.5636461
http://doi.org/10.1007/BF02325092
http://doi.org/10.1007/BF02321405
http://doi.org/10.1088/0957-0233/23/4/045002
http://doi.org/10.1007/s11340-017-0328-5
http://doi.org/10.1016/j.optlaseng.2015.03.005
http://doi.org/10.1007/s11340-013-9717-6
http://doi.org/10.1145/1562764.1562783
http://doi.org/10.1016/j.optlaseng.2015.01.012
http://doi.org/10.1177/1094342013518807
https://developer.nvidia.com/cuda-zone
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://doi.org/10.1007/s11340-015-0009-1
http://doi.org/10.1023/B:VISI.0000011205.11775.fd
http://doi.org/10.32720/idics/gpg.ed1
http://doi.org/10.1016/j.prostr.2020.11.048
http://doi.org/10.1007/s11340-016-0233-3
http://doi.org/10.1016/j.optlaseng.2018.05.010
http://doi.org/10.1016/j.asej.2019.02.006
http://doi.org/10.1155/2013/175848
http://doi.org/10.1109/icec.1998.699146
http://doi.org/10.1016/j.addma.2019.100862
http://doi.org/10.1364/AO.387678
http://doi.org/10.3390/app9102025
http://doi.org/10.1016/j.optlaseng.2020.106323
http://doi.org/10.1201/9781315123905

	Introduction 
	Theoretical Background 
	Integer Pixel Displacement 
	Sub-Pixel Displacement 
	Parallel Computation 

	Tests and Comparisons 
	Results 
	Evaluating Result Correctness 
	Evaluating Integer Pixel Routines 
	Evaluating Sub-Pixel Routines 
	Significance of Parallel Computation 

	Discussion 
	Hardware Profile and Influence of Dataset Properties 
	Integer Pixel Search 
	Sub-Pixel Search 
	Parallel Computation 
	GPU Accelerated Technique 

	Conclusions 
	
	References

