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Abstract: Sawdust, which is a waste/by-product of the wood/timber industry, can be utilised as a
valuable raw material in building material production due to its abundance and low cost. However,
the application of sawdust in the manufacture of unfired clay blocks has received little investigation.
Furthermore, the impact of different sawdust particle sizes on the properties of unfired clay blocks
has not been studied. Therefore, this study screened sawdust at three different particle sizes: SP-a
(212 µm < x < 300 µm), SP-b (425 µm < x < 600 µm) and SP-c (1.18 mm < x < 2.00 mm), to examine
their effects on the physical and mechanical properties of unfired clay blocks. The density, linear
shrinkage, capillary water absorption and flexural and compressive strengths were among the tests
performed. Different sawdust percentages, i.e., 2.5%, 5%, 7.5% and 10% of the total weight of the clay,
were considered. The tests results show that when sawdust was added to the mixture, the density of
the samples reduced for all particle sizes. However, the linear shrinkage increased in SP-a samples
but decreased in the other two particle size samples as the sawdust percentage increased from 2.5%
to 10%. On the other hand, the capillary water absorption coefficient increased while the strength
decreased with increasing sawdust content for all three groups. The highest compressive strength
(CS) and flexural strength (FS) were achieved at 2.5% of sawdust content. Furthermore, it was
observed that SP-b (CS—4.74 MPa, FS—2.00 MPa) samples showed the highest strength followed by
SP-a (CS—4.09 MPa, FS—1.69 MPa) and SP-c (CS—3.90 MPa, FS—1.63 MPa) samples. Consequently,
good-quality unfired clay blocks can be manufactured using sawdust up to 2.5% with particle sizes
ranging between 600 and 425 µm.

Keywords: wood by-products; sawdust; particle size; clay blocks; unfired

1. Introduction

Currently, there is a great interest in adopting alternative sustainable building mate-
rials in the construction industry, and researchers have been engaged in manufacturing
novel building materials utilising different wastes/by-products. In this context, the so-
cial, economic and environmental sustainability of earthen building materials enhanced
with agricultural wastes/by-products has become apparent. These materials require less
energy to process and offer good technical characteristics. Sawdust is considered as a
waste material which is a by-product of the wood/timber industry and produced by the
cutting, sawing or grinding of timber. Every year, sawmills produce huge volumes of
sawdust [1,2] (Figure 1). According to one report, the average annual growth rate of the
global wood harvest was 0.20% between 1990 and 2015 [3], and the FAO estimates a 55%
increase in the potential industrial roundwood supply by 2030 [4]. As a result, the timber
industry is becoming more concerned about the cost-effective disposal of sawdust as the
bulk of it is burned off, polluting the environment [5–7]. Sawdust, on the other hand,
can be used as a valuable raw material in a variety of industries due to its abundance
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and low cost. Sawdust is mainly composed of cellulose, hemicelluloses, lignin and small
amounts (5–10%) of extraneous materials [8–10]. It is most commonly used in the energy,
agriculture and manufacturing industries [5]. However, little research has been performed
on the application of sawdust in the production of building materials [11]. Sawdust-based
insulation materials [12], particleboard [13–18], cement concrete bricks [19,20], fired clay
bricks [21–26] and unfired bricks [27–35] are some of the developed building materials.
Ouattara et al. [30] showed that with the incorporation of sawdust (0–25%), the dry density
of compressed clay bricks decreased, while the strength increased, for a 15–20% sawdust
content. Similarly, Demir [27] utilised 2.5–10 wt% of sawdust in unfired bricks and found
that the compressive strength gradually improved with the addition of sawdust. Fadele
and Ata [31] used sawdust lignin additives and cement (4, 8 and 12% by mass) to investi-
gate the water absorption characteristics of compressed earth blocks, where the samples
with sawdust additives performed better than the samples with cement. The thermal per-
formance of sawdust (2–10 wt%)-stabilised unfired bricks was assessed by Charai et al. [34],
and the results revealed that the addition of sawdust reduced both the density and thermal
conductivity of the brick samples. Ganga et al. [29] evaluated the mechanical and acoustic
properties of clay bricks with different percentages of cement, sawdust and mahogany
shavings. It was found that the addition of sawdust or mahogany shavings did not improve
the compressive strength of the samples. Jokhio et al. [32] measured the compressive and
flexural strengths of adobe bricks by partially replacing sand with sawdust (0–40%). The
findings revealed that about 20% of the sand substitute provided the highest compressive
strength, while the flexural strength decreased gradually as sawdust was added to the
mixture. In another study, Vilane [28] investigated the compressive strength of adobe
blocks incorporating sawdust (0–20%) and recommended the optimal percentage to be
15%. De Castrillo et al. [35] reproduced traditional adobe bricks using straw and sawdust
fibres (30–70% by volume). For both fibre types, increasing the fibre content resulted in
decreasing the bulk density, thermal conductivity and flexural and compressive strengths
of the adobes. Moreover, in contrast to straw adobes, sawdust adobes showed a general
rise in capillary absorption as the fibre percentage increased.
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Moreover, the investigation of the effect of the fibre length on the properties of unfired
clay blocks is also gaining particular attention in the literature. Sangma et al. [36] used
various lengths of coconut fibres (20–80 mm) with soil as a reinforcing material and
observed that with increasing fibre sizes up to 40 mm, the average compressive strength
and splitting tensile strength increased, and thereafter, they decreased. Mostafa and
Uddin [37] incorporated 50 to 100 mm banana fibres to manufacture compressed earth
blocks, and the findings indicated that the blocks reinforced with 60 mm and 70 mm fibre
lengths had the maximum compressive and bending strengths compared to the other
samples. Laibi et al. [38] produced compressed earth blocks utilising different kenaf fibre
lengths (10, 20 and 30 mm) and evaluated their influence on the mechanical and thermal
characteristics of the samples. The results indicated that while the positive effect on the
flexural strength was produced by shorter kenaf fibres (10 and 20 mm), the best result
was achieved with a fibre length of 30 mm. Additionally, the thermal conductivity values
declined gradually with the increase in the fibre length. In another study, the influence
of three various pig hair lengths (7 mm, 15 mm and 30 mm) on adobe was investigated
by Araya-Letelier et al. [39]. According to the findings, a longer pig hair length resulted
in lower average compressive and flexural strength values. This was explained by the
clustering of the longer fibres in the mixture which resulted in weak adhesion between
the clustered fibres and the earthen matrix. Moreover, the drying shrinkage decreased for
higher percentages and longer fibre lengths. Millogo et al. [40] found that using shorter
kenaf fibres (30 mm) reduced the pore size and improved the compressive strength more
than using longer fibres (60 mm) in pressed adobe blocks.

The conclusions drawn from the experimental results provided in the literature are of-
ten inconsistent. As a result, additional study is needed to offer comprehensive knowledge
on this subject. Therefore, this research aimed to investigate how three distinct sawdust
particle sizes affect the physical and mechanical characteristics of unfired clay blocks. The
tests included density, linear shrinkage, capillary water absorption, flexural strength (FS)
and compressive strength (CS). Three groups of samples: SP-a (212 µm < x < 300 µm), SP-b
(425 µm < x < 600 µm) and SP-c (1.18 mm < x < 2.00 mm), were prepared with different
percentages (0.25–10%) of sawdust. The findings of the experiments were analysed and
compared with the reference sample to draw useful conclusions about the influence of the
particle size and amount on the characteristics of the unfired clay blocks. The results of
incorporating different particle sizes of sawdust provide intriguing additional data that
would support evaluating the potential use of sawdust in the manufacturing of unfired
clay blocks.

2. Materials and Methods
2.1. Raw Materials

The raw materials utilised in this study were red clay powder (RCP) and sawdust pow-
der (SP). Red clay was obtained from Bath Potters’ Supplies, and sawdust (softwood-based
and homogeneous) was collected from a local retailer in the United Kingdom. The water
used was normal tap water at a temperature of 20 ± 2 ◦C. According to the standard proctor
test [41], the clay had the optimum moisture content of 15.50% and a maximum dry density
of 2320 kg/m3. The Atterberg limit of clay was determined following the BS 1377-2:1990
standard [42]. The clay had a plastic limit of 19.25% water content and a liquid limit of
31.61%, indicating that it was a medium plastic clay with a plasticity index of 12.36%. X-ray
fluorescence (XRF) and X-ray diffraction (XRD) analyses were performed to analyse the
chemical and mineralogical compositions of raw materials. Figure 2 illustrates the XRD
analysis. Tables 1 and 2 show the properties of the RCP and SP, respectively. Quartz was
identified as the main mineralogical phase in clay by the XRD pattern (Figure 2a). Other
mineralogical phases found in the clay were kaolinite (Al2Si2O5(OH)4) and haematite
(Fe2O3). On the other hand, the sawdust contained amorphous phases such as hemicel-
luloses and lignin, as evidenced by the disordered nature of the XRD pattern (Figure 2b).
The only crystalline phase found was cellulose, which exhibited a sharp peak at 22.6◦ and
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a broad peak between 15◦ and 18◦ as well as a wideband peak at 35◦. SP-a, SP-b and SP-c
had bulk densities of 0.26 g/cm3, 0.23 g/cm3 and 0.20 g/cm3 and specific gravities of 1.23,
1.14 and 1.02, respectively. It was observed that as the size of the sawdust increased, its
density decreased slightly.
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Figure 2. XRD analysis: (a) red clay powder (RCP) (b) sawdust powder (SP).

2.2. Sample Preparation

The RCP was sieved through a 2 mm sieve and stored at the laboratory room tem-
perature until it was formed into clay blocks. The SP was categorised into three par-
ticle size ranges: SP-a (212 µm < x < 300 µm), SP-b (425 µm < x < 600 µm) and SP-c
(1.18 mm < x < 2.00 mm) (Figure 3). Two sets of samples were cast, one simply using clay
(Reference block), and the other using SP as an additive (Composite blocks). The samples
with SP were grouped into three particle size distributions (SP-a, SP-b and SP-c). For each
particle size group, samples were produced with the percentage of the additives ranging
from 2.5 to 10% of the dry wt of clay. The amounts of raw materials stated in Table 3 were
first blended thoroughly in the dry state in a mechanical mixer. Then, the mixture was
further thoroughly combined with sufficient water to achieve a workable consistency for
moulding. The mixture was placed in steel moulds in two layers and hand compacted. The
size of the raw clay blocks used in the testing was determined according to the EN 1015-11
standard [43], which is a 40 × 40 × 160 mm prism (Figure 4). The samples were covered
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with plastic sheets for a week before being removed from the moulds and then allowed to
cure for 21 days at the laboratory room temperature of 23–26 ◦C and relative humidity of
30–34% prior to testing.

Table 1. Properties of the red clay powder (RCP).

Optimum moisture content 15.50%
Maximum dry density (kg/m3) 2320

Liquid limit (%) 31.61
Plastic limit (%) 19.25

Plasticity index (%) 12.36
Bulk density (g/cm3) 1.43

Specific gravity 2.32
Natural moisture content (%) 6.47

Colour Red

Chemical Compounds (%)

SiO2 41.454
Al2O3 15.214
Fe2O3 8.104
MgO 5.114
K2O 1.636
TiO2 1.411
Na2O 1.027
CaO 0.633
BaO 0.216
SO3 0.047

MnO 0.040

Table 2. Properties of the sawdust powder (SP).

Items SP-a SP-b SP-c

Particle Size 212 µm < x < 300 µm 425 µm < x < 600 µm 1.18 mm < x < 2.00 mm
Bulk density (g/cm3) 0.26 0.23 0.20

Specific gravity 1.23 1.14 1.02
Natural moisture content (%) 5.02

Colour Light brown

Chemical Compounds (%)

SiO2 Al2O3 Fe2O3 MgO K2O TiO2 Na2O CaO BaO SO3 MnO
0.348 0.390 0.186 0.408 0.340 0.171 0.926 1.681 0.074 0.049 0.026
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Table 3. Mix ID and material proportions.

Mix ID Clay (g) SP (%) SP (g)

R (Reference) 550 0 0

Group A

S-a-2.5 550 2.5 13.75
S-a-5 550 5 27.50

S-a-7.5 550 7.5 41.25
S-a-10 550 10 55

Group B

S-b-2.5 550 2.5 13.75
S-b-5 550 5 27.50

S-b-7.5 550 7.5 41.25
S-b-10 550 10 55

Group C

S-c-2.5 550 2.5 13.75
S-c-5 550 5 27.50

S-c-7.5 550 7.5 41.25
S-c-10 550 10 55
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2.3. Experimental Tests

All the physical and mechanical property tests of the produced clay blocks were
performed after 28 days of the drying period. The average of three samples was used to
calculate the results of all tests.

2.3.1. Physical Property Tests

XRD analyses were performed to identify the crystal structure in the composites. For
the XRD test, finely ground powder from the samples after 28 days of the drying period
was used. The analysis was conducted using a Rigaku mini-flex XRD analyser (30 kV
voltage and 15 mA) with Cu K radiation. The data were collected at an angular speed of
2◦/min in continuous scan mode for a 2θ angle from 5◦ to 60◦.

The densities of the samples were calculated by dividing the dry weight of the samples
by their volume. The volume was obtained by taking measurements of the sample in all
three dimensions with digital callipers.

BS EN 1015-18 [44] specifies the test procedure of the capillarity water absorption
coefficient. The half prism samples from the flexural strength were employed for the test.
In accordance with the standard, the half prisms were oven dried at 60 ± 5 ◦C for 24 h in a
ventilated oven to attain constant mass, and the oven-dried masses were recorded. The
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samples were then placed on their bases in a container of 5 mm-deep water and weighed
again after 10 min (Figure 5a). The capillarity water absorption coefficient was determined
using the following Equation (1) [44]:

Cw = 0.1 × (Mt − Mi) (1)

where Cw (kg/(m2·min0.5) is the capillary water absorption coefficient, Mt (kg) is the
weight of the sample removed from the water after 10 min, and Mi (kg) is the weight of the
oven-dried sample.
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Linear shrinkages of the samples were determined by measuring the initial length
of the samples after casting and the length after the drying period with a digital calliper.
They are expressed as the percentage of the ratio of the difference in drying length to the
initial length.

2.3.2. Mechanical Property Tests

The flexural strength test was carried out on the full prism samples (40 × 40 × 160 mm)
according to the 3-point bending test described in EN 1015-11 [43] (Figure 5b). The load
was applied to the samples at a rate of 10 N/s until the failure occurred. The flexural
strength (f, MPa) was calculated using Equation (2):

f =
1.5FL

bd2 (2)

where F (N) is the rupture load, L (mm) is the distance between the supports, d (mm) is the
width of the sample, and b (mm) is its height.

After breaking each prism sample in the flexural strength test according to EN 1015-11,
half prism samples were tested for compressive strength. Both air-dried and oven-dried
(60 ± 5 ◦C for 24 h) samples were tested for compressive strength. The samples were
sandwiched between two bearing steel plates (Figure 5c) and compressed at a rate of
0.40 MPa/s until observable damage resulted from the compression. The compressive
strength (C, MPa) was determined using the maximum sustained load (F, kN) and the
surface area (A, mm2) of the samples on which the load was applied:

C =
F
A

(3)

3. Results and Discussions
3.1. Physical Properties

The XRD result (Figure 6) shows that the addition of SP did not lead to the formation
of new mineral phases.
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3.1.1. Density

From Figure 7, it can be observed that for all three groups, samples containing 2.5%
sawdust had densities of ≥1750 kg/m3, which fulfilled the criteria of the IS 1725 and
SLS 1382 standards [45,46]; therefore, they can be used as load-bearing units according
to the standards. Additionally, the sample with 5% SP-a met the standard criteria, with a
density of 1776 kg/m3. In general, the samples with the lowest sawdust percentage had
the highest densities, and for all three groups, densities decreased as the sawdust amount
increased in the mixture. Several researchers noticed a similar trend when they combined
lignocellulosic fibres with earth [47–54]. With the same percentages of the SP content,
SP-a-blended samples had slightly higher densities compared to the other two groups. This
is in line with the fact that SP-a had a higher specific gravity (1.23) than SP-b (1.14) and
SP-c (1.02). This can also be explained by the particle size difference of each group. SP-c
had a larger particle size, resulting in more gaps between the SP and the clay matrix, but
SP-a had considerably smaller particle dimensions, resulting in a more homogenous end
product, with fewer pores and a higher density. The densities of the samples decreased
from 1861 to 1611 kg/m3 (SP-a), 1837 to 1476 kg/m3 (SP-b) and 1781 to 1422 kg/m3 (SP-c)
with 2.5% to 10% sawdust addition, corresponding to around 23%, 29% and 32% decreases
compared to the reference sample (2091 kg/m3).

3.1.2. Capillary Water Absorption

The water absorption value can indicate the porosity of the matrix, with a higher
water absorption value indicating a higher porosity. Moreover, the open porosity of the
samples determines how much water may be absorbed by the capillary. In this study, it
was observed that the capillary water absorption coefficient increased as the amount of
SP increased in the three groups of samples (Figure 8). The capillary water absorption
was higher for SP-a samples than the other two groups. The increase was up to around
34%, 27% and 25% for SP-a, SP-b and SP-c, respectively, compared to the reference sample.
This might be related to the pore structure of the samples which is caused by the particle
size of the sawdust. Capillary water absorption is inversely proportional to the diameter
of the pores, where the smaller the diameter, the greater the capillary absorption [55–57].
When sawdust with larger particle dimensions was used to make clay blocks, it typically
resulted in a more porous microstructure with pores of larger diameters. Sawdust with
smaller particle dimensions, on the other hand, resulted in better compaction and therefore
the formation of finer pores, and finer pores absorb water faster because of the increased
capillary pressures produced by them [35,58]. Other investigations on lignocellulosic fibre-
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earth composites found similar results, indicating that larger percentages of fibre resulted
in higher absorption levels [49,59–61]. In addition, the results indicate that capillary water
absorption is inversely related to the sample density, with a lower density indicating more
porosity and greater capillary water absorption (Figure 9).
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3.1.3. Linear Shrinkage

The linear shrinkage results indicate that by increasing SP-b and SP-c in the mix-
ture, the shrinkage of the samples gradually decreased (Figure 10). The SP-c samples
with a larger particle size had a greater linear shrinkage reduction of around 45% (10%
SP-c), whereas SP-b (10%) samples had a shrinkage reduction of 31% compared to the
reference sample. This is consistent with previous studies [28,49,62,63] which indicated
that adding natural fibres to the mixture improved shrinkage. Bouhicha et al. [62] and
Araya-Letelier et al. [39] observed that increasing the percentage and length of barley straw
and pig hair, respectively, reduced the drying shrinkage of the samples. This could be
due to the fibres being long enough for the development of bond stresses at the fibre-soil
interface, therefore opposing soil deformation and contraction. On the other hand, in the
case of SP-a, the 2.5% content had lower linear shrinkage than the reference sample, but
linear shrinkage increased with increasing SP-a content. This result might be explained
by the fact that the fibre length is insufficient for the bond stresses to build; however,
additional research is required to confirm this.

3.2. Mechanical Properties
Flexural Strength and Compressive Strength

Table 4 summarises the results obtained from the mechanical property tests. The
results represent the arithmetic mean of three samples. From Table 4, it is observed that
the results of both air-dried and oven-dried samples met the standard requirement of com-
pressive strength (1–2.08 MPa) [45,64–66]. Additionally, the samples fulfilled the flexural
strength requirement of the standards (0.25–0.50 MPa) [46,65,66] of unfired earth blocks.
The highest compressive and flexural strengths were achieved with the lowest percentage
of sawdust content for all groups. It should also be noted that an increase in the content
of sawdust led to a decrease in both the compressive and flexural strengths, irrespective
of the particle size dimension. Moreover, the best mechanical strength was obtained for
SP-b (FS—2.00 MPa, CS—4.74 MPa). It can be observed that the compressive strength
trend for oven-dried samples was similar to that of air-dried samples, although oven-dried
samples exhibited a higher compressive strength level. Several studies found a similar
trend where the strength decreased as the fibre amount increased [35,47,54,61,63]. More-
over, the study of Mostafa and Uddin [37] demonstrated that the strength of compressed
earth blocks gradually increased for 50–70 mm banana fibres and then decreased for the
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higher lengths of fibres (80–100 mm). As already highlighted by the authors, the decrease
in strength depends on the decline in the bulk density, non-homogenous fibre distribution,
larger gaps produced by larger fibre lengths and decreased cohesion and bonding between
the fibres and the soil matrix of the final products. In Figures 11 and 12, the percentage
increase/decrease in the flexural and compressive strengths compared to the reference
sample is plotted against different percentages of three types of SP. Figure 11 demonstrates
that for the 2.5% content of all three groups, the percentage increase in flexural strength
is at a maximum, and above 2.5%, it shows a decreasing trend in the strength increment.
However, the flexural strength of SP-a, SP-b and SP-c at 7.5%, 10% and 5% contents, respec-
tively, was lower than the reference sample. As shown in Figure 12, at a 2.5% content, SP-b
significantly improved the compressive strength compared to the reference sample, while
SP-a marginally enhanced it, and SP-c did not improve it. Moreover, Figures 13 and 14
show that the compressive strength decreased with the decreasing density and increasing
capillary water absorption of the samples.
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Figure 10. Linear shrinkage results of SP-incorporated samples.

Table 4. Average values and standard deviation (in parenthesis) of mechanical property test results of the stabilised
clay blocks.

Mix ID
Flexural Strength (FS) Compressive Strength (CS)

(Air Dried)
Compressive Strength (CS)

(Oven Dried)

Av. FS (MPa) Av. CS (MPa) Av. CS (MPa)

R 1.52 (0.14) 4.06 (0.39) 5.40 (0.09)
S-a-2.5 1.69 (0.04) 4.09 (0.06) 5.44 (0.10)
S-a-5 1.57 (0.02) 3.81 (0.05) 5.03 (0.09)

S-a-7.5 1.46 (0.03) 3.55 (0.04) 4.95 (0.27)
S-a-10 1.26 (0.07) 3.33 (0.16) 4.58 (0.05)
S-b-2.5 2.00 (0.03) 4.74 (0.18) 6.28 (0.05)
S-b-5 1.86 (0.04) 4.29 (0.04) 5.82 (0.17)

S-b-7.5 1.65 (0.03) 4.15 (0.03) 5.58 (0.23)
S-b-10 1.36 (0.04) 3.53 (0.09) 4.74 (0.29)
S-c-2.5 1.63 (0.06) 3.90 (0.28) 5.23 (0.04)
S-c-5 1.45 (0.04) 3.45 (0.04) 4.68 (0.08)

S-c-7.5 1.28 (0.01) 3.28 (0.03) 4.35 (0.20)
S-c-10 1.05 (0.06) 3.17 (0.09) 4.19 (0.25)



Designs 2021, 5, 57 12 of 16

Designs 2021, 5, x FOR PEER REVIEW 12 of 17 
 

 

and 5% contents, respectively, was lower than the reference sample. As shown in Figure 
12, at a 2.5% content, SP-b significantly improved the compressive strength compared to 
the reference sample, while SP-a marginally enhanced it, and SP-c did not improve it. 
Moreover, Figures 13 and 14 show that the compressive strength decreased with the de-
creasing density and increasing capillary water absorption of the samples. 

Table 4. Average values and standard deviation (in parenthesis) of mechanical property test results 
of the stabilised clay blocks. 

Mix ID 
Flexural 

Strength (FS) 
Compressive Strength (CS) 

(Air Dried) 
Compressive Strength (CS) 

(Oven Dried) 
Av. FS (MPa) Av. CS (MPa) Av. CS (MPa) 

R 1.52 (0.14) 4.06 (0.39) 5.40 (0.09) 
S-a-2.5 1.69 (0.04) 4.09 (0.06) 5.44 (0.10) 
S-a-5 1.57 (0.02) 3.81 (0.05) 5.03 (0.09) 

S-a-7.5 1.46 (0.03) 3.55 (0.04) 4.95 (0.27) 
S-a-10 1.26 (0.07) 3.33 (0.16) 4.58 (0.05) 
S-b-2.5 2.00 (0.03) 4.74 (0.18) 6.28 (0.05) 
S-b-5 1.86 (0.04) 4.29 (0.04) 5.82 (0.17) 

S-b-7.5 1.65 (0.03) 4.15 (0.03) 5.58 (0.23) 
S-b-10 1.36 (0.04) 3.53 (0.09) 4.74 (0.29) 
S-c-2.5 1.63 (0.06) 3.90 (0.28) 5.23 (0.04) 
S-c-5 1.45 (0.04) 3.45 (0.04) 4.68 (0.08) 

S-c-7.5 1.28 (0.01) 3.28 (0.03) 4.35 (0.20) 
S-c-10 1.05 (0.06) 3.17 (0.09) 4.19 (0.25) 

 
Figure 11. Percentage increase/decrease in flexural strength with increasing SP content. 

-40

-30

-20

-10

0

10

20

30

40

0 2.5 5 7.5 10

In
cr

ea
se

/d
ec

re
as

e 
in

 F
S 

(%
)

SP %

S-a S-b S-c
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4. Conclusions

The following conclusions can be derived from the experimental investigation pre-
sented in this paper:

• The different particle sizes of SP had influences on the physical and mechanical
properties of the SP-blended clay blocks.
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• The SP inclusion decreased the density of the samples compared to the reference
sample due to its lower specific gravity. SP-c samples were lower in density than the
other two groups of samples.

• In comparison to the reference sample, the linear shrinkage of the three groups of
samples reduced when SP was added to the mixture. However, by increasing the finer
particle size of the sawdust (SP-a), linear shrinkage increased, while larger particle
(SP-b and SP-c) additions decreased the linear shrinkage values.

• The capillary water absorption coefficient values increased for all groups as the per-
centage of SP increased, and the values were higher than the reference sample. The
increase was higher for the SP-a group compared to the other groups.

• All the SP-incorporated clay blocks fulfilled the strength requirements of the standard
for unfired earthen blocks, and the highest strength was achieved at 2.5% of SP content.
SP-a and SP-b improved the compressive strength of the samples compared to the
reference sample. However, SP-c did not improve the compressive strength. Moreover,
the flexural strength showed a similar trend to the compressive strength. Moreover,
SP-b (425 µm < x < 600 µm) had a higher strength than the other groups at the same
percentage of content.

• The sawdust content of 2.5% with particle sizes ranging between 600 and 425 µm can
be utilised to manufacture good-quality unfired clay blocks as it showed the highest
mechanical strength and improved the physical properties compared to the other mix
proportions and particle sizes.

Further study on the thermal and durability characteristics of different particle size
SP-incorporated clay blocks might be an intriguing way to complete the assessment of the
potential benefits of the utilisation of SP in the production of unfired clay blocks.
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