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Abstract: This study presents a hybrid Artificial Intelligence-Finite Element Method (AI-FEM) pre-
dictive model to estimate the modulus of a subgrade reaction of a strip footing rested on a bi-layered
profile. A parametric study was carried out using 2D Plaxis FEM models for strip footings with width
(B) and rested on a bi-layered profile with top layer thickness (h) and bottom layer thickness (H).
The soil was modeled using the well-known Mohr-Coulomb’s constitutive law. The extracted load-
settlement curve from each FEM model is approximated to hyperbolic function and its factors (a, b)
were determined. The subgrade reaction value (Ks) is the (stress/settlement), hence (1/Ks = a·∆ + b).
Both inputs and outputs of the parametric study were collected in a single database containing the
geometrical factors (B, h & H), soil properties of the top and bottom layers (c,ϕ& γ) and the extracted
hyperbolic factors (a, b). Finally, three AI techniques—Genetic Programming (GP), Evolutionary
Polynomial Regression (EPR) and Artificial Neural Networks (ANN)—were implemented to develop
three predictive models to estimate the values of (a, b) using the collected database. The three
developed models showed different accuracy values of (50%, 65% and 80%) for (GP, EPR and ANN),
respectively. The innovation of the developed model is its ability to capture the degradation of a
subgrade reaction by increasing the stress (or the settlement) according to the hyperbolic formula.

Keywords: load-settlement curve models; bi-layered soil; subgrade reaction (Ks); strip footing; Finite
Element Method (FEM); stress-strain relationship; artificial intelligence; PLAXIS 2D

1. Introduction

Strip footings are known for their application as underlain structures of buildings and
pavement facilities as they are considered to be elemental strips [1,2]. The load (pressure)-
settlement characteristics of these structures are of great importance due to the design
parameters that the parabolic curve evaluates for constitutive modeling purposes [2,3].
Scarce land space suitable for foundation construction has compelled geotechnical experts
to seek improvement methods, which is based on the available resources and the behavior of
the studied soil [4]. Attempts have been made by researchers to investigate the relationship
that exists between the load-settlement curves of soil foundations obtained in the field and
those from laboratory studies [5]. In this effort, the analytical methods of study and the
numerical techniques are correlated in order to work out the best practices to improve the
carrying capacity of weak soils [5]. The load-settlement behavior of foundations in terms
of failure patterns is discussed by [6,7]. Figure 1 shows the failure phases, the pressure
distribution and the resultant settlement and failure pattern corresponding to general, local
and punching failure modes [3].
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Figure 1. The load-settlement behavior and failure modes.

The constitutive relations and the geometry of the foundation are studied using this
load-settlement or pressure-displacement curve. It has been found that the geometry and
overburden pressure of these footings depend on the “a” and “b” factors of the load-
settlement relationship which states that

P =
∆

(a∗∆) + b
(1)

where P is the applied load, ∆ is the settlement, and (a and b) are the load-settlement factors
of the parabola. For the purpose of analysis and design, a working load magnitude is
needed to evaluate the constitutive relation and application to the depth of the underlain
soil z to which the load is applied [1,8,9]. The determination of the load-settlement factors
has been increasingly important in the constitutive formulation of the solutions of the
settlement and subgrade reaction of the soil-strip footing arrangement because of their
dependence on the footing geometry and soil overburden pressure [3]. Stability-failure
properties of foundations rested on soils have been studied using load-settlement relations
and subgrade reaction behavior. The subgrade reaction (Ks) is equally related to the
load-settlement constitutive relation; thus

Ks =
P
∆

=
1

(a∗∆) + b
(2)

The Ks depends on the shape and geometry, including depth, z of the foundation
structure; hence, its evaluation requires constitutive relations of the soil-footing interaction.
Due to the use of flexible analysis in designing multiple foundations, which requires the
modulus of subgrade reaction behavior of soils, the Ks has become an important parameter
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in the failure analysis of foundation structures. The settlement and subgrade reaction of
different soil structures and arrangements have been studied previously. According to
Iancu and Ionut [10], who studied the effect of foundation depth, size and shape on the
subgrade reaction of cohesionless soils, it has been found that the Ks depended on the
loading and the size of the loaded area. Elsamee [9] presented a summary table (Table 1)
for the evaluation of a subgrade reaction based on the effects of elastic parameters, Es and
υs; thus

Table 1. Different proposed formulas to calculate the subgrade reaction, Ks based on elastic parameters.

No Investigator Year Suggested Formula

1 Winkler 1867 q
δ

2 Biot 1937 0.95Es
B(1−υ2

s )

[
B4Es

(1−υ2
s )EI

]0.108

3 Terzaghi 1955 Ksf = Ksp

(
B−B1

2B

)
4 Vesic 1961 0.65Es

B(1−υ2
s )

12
√

EsB4

EI

5 Meyerhof and Baike 1965 Es
B(1−υ2

s )

6 Selvadurai 1984 0.65
B ∗

Es
(1−υ2

s )

7 Bowles 1988 Es
B1(1−υ2

s )mIsIF

Where q = the pressure per unit of area. δ = the settlement produced by load application. B1 = side dimension of
square base used in the plate load test. B = width of footing. ksp = the value of subgrade reaction for 0.3 × 0.3
(1 ft wide) bearing plate. Ksf = value of modulus of sub-grade reaction for the full-size foundation. Es = modulus
of elasticity. υs = Poisson’s ratio. EI = flexural rigidity of footing, m = takes 1, 2 and 4 for edges, sides and center
of footing, respectively. IS and IF = influence factors depend on the shape of footing.

None of the above constitutive models of subgrade reaction considered the effect of
loading except the Winkler model, which considered loading per unit area (q, kN/m2)
while others such as the Biot, Terzaghi, Vesic, Meyerhof and Baike, Selvadurai and Bowles
considered the rigidity and Poisson relations in their models for the Ks of footings rested on
soils. Various other proposed numerical models have been presented on the evaluation of
the Ks which agree with the Winkler model, and these models used the Plate Loading Test
(PLT) technique to arrive at their constitutive relation [9]. Mughieda et al. [11] studied the
behavior of a raft foundation structure with a response to the subgrade reaction (Ks) and
found that Winkler is the most popular model used to study the interaction between the Ks
and foundation, which is represented by a number of springs with a significant flaw based
on the lack of coupling in springs and the non-linearity of settlement in soils. It further
found that the value of the Ks has an effect on the pressure distribution on the soil below
the footing. Extensive related research has been studied by Ziaie–Moayed and Janbaz [12]
on the parameters that affect the subgrade reaction in clayey soils in which foundation
size, shape, depth and rigidity effects were observed. The size effect was verified after
conducting a 3D plaxis constitutive model for the load-settlement relation and it was found
that the Terzaghi equation was not suitable for low, consistent clayey soils, in terms of the
shape effect on Ks, while the Terzaghi equation was found to be suitable for stiff clayey
soils. The conditions for depth embedment and rigidity effects were also proposed [12].
The coupled FEM-AI technique was used to predict the lateral behavior of free head
piles in a multi-layered profile, and three Artificial Intelligence (AI) techniques (GP, EPR
and ANN) were used to develop the predictive models [13]. Few numerical research
studies have been evidently conducted on strip foundations underlain by multilayered
soil arrangements based on a subgrade reaction and load settlement curve. Previously, the
assumptions in the above constitutive methods have been that the soil is homogenous and
finite layered and there has been no attempt to determine the load-settlement parameters
“a” and “b” which underlie the constitutive load-settlement curve model and the subgrade
reaction. In the present research work, a constitutive FEM approach was used to solve,
simulate and generate a database for a strip foundation rested on a multiple bi-layered soil
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arrangement. The multiple databases were deployed using the smart learning abilities of
AI-based techniques to predict the hybrid models of the load-settlement factors (a and b).

2. Artificial Intelligence (AI) Techniques

AI is a broad scientific field that encompasses several methodologies and has nu-
merous applications. Knowledge-based, logical, statistical, and emulating biological
systems/creatures-based methods in relation to AI may all be categorized. On the other
hand, applications for AI may be divided into categories for decision-making, classification,
regression and optimization. The best methodologies for regression applications (such as
for this research) are GP, ANN and EPR.

2.1. Genetic Algorithm GA

GA is a mathematical method for simulating the process of biological beings evolving.
It hinges on the straightforward axiom “The most suitable creature will survive.” A pool
of solutions for the issue under consideration, fitting criteria, and a method for creating
new solutions by combining the current ones are necessary in order to make use of this
optimization principle. The “Chromosome,” which is an ordered collection of genes used by
biological organisms to pass on their genetic information to the next generation, is similar
to how GA displays the answer as an ordered set of steps (genes). This enables GA to
perform genetic operations on the solutions, such as crossover and mutation. By switching
the heads and tails of the two existing solutions, the crossover mixing technique creates
two new solutions from two existing ones. Mutation refers to the haphazard alteration
of genetic information brought on by radiation, chemicals and copying errors; it is used
by haphazardly altering a step of the solution under consideration. The algorithm cycle
starts by generating a number of randomly chosen solutions for the population under
consideration, assessing each one’s fitness using fitting criteria, choosing the best-fitting
solutions, deleting the rest and then regaining the original population size by combining
the survival solutions (using crossover and mutation procedures to generate new ones).
Then, the algorithm cycle repeats. The fitting of the solutions becomes more efficient with
each cycle, until it reaches an acceptable level [14].

2.2. Genetic Programming (GP)

The GA approach, which was previously discussed, is applied in GP. It depends
on applying generalized additive modelling GA as a “multi-variable and structure free
regression technique,” where the populations are a collection of mathematical formulas
generated randomly and the fitting criterion is the “Sum of Squared Errors (SSR)” between
the predicted values and the correct values of the training dataset. Each formula must
be provided in genetic form (as a chromosome), rather than as a list of steps, in order
to use genetic operations. The chromosome is divided into two parts: the first is a list
of mathematical operators and the second is a list of variables. To create new formulae,
crossover and mutation techniques are used to formulate operators and variables indepen-
dently. Cycle after cycle, the SSE falls and the solutions correctness rises. Finally, a fresh
(validation) dataset is used to assess the derived formula’s correctness [14].

2.3. Evolutionary Polynomial Regression EPR

Another application of GA is EPR, which is based on optimizing the number of terms
in the “Traditional Polynomial Regression (TPR).” TPR is a well-known mathematical
regression approach that uses the “Least Squared Error” principle to determine the best
coefficient values of a polynomial function to fit a given dataset. Depending on the issue
setup, the investigated polynomial may have a single or several variables (dataset). The
selected polynomial degree (its maximum power) is determined by the difficulty of the
issue; for basic problems, first-degree polynomial (linear) may be employed; for more
sophisticated situations, second degree (quadratic), third degree (cubic), or higher degrees
may be necessary. The number of polynomial terms dramatically rises as the number of
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variables and polynomial degree rise. For instance, a second-degree polynomial with two
variables has only six terms (X2 + Y2 + XY + X+Y + C), whereas a third-degree polynomial
with three variables has 20 terms, a fourth-degree polynomial with four variables has
70 terms, and so on. It becomes harder to apply and less practical as the number of
polynomial terms rises. Therefore, utilizing the GA approach, EPR technique seeks to
maximize TPR by removing the less significant words and keeping only the most useful
ones. Therefore, the chromosome is comprised of a list of polynomial terms. As a result,
the population (solutions) consists of a collection of polynomials, the SSE is the fitting
criterion and the chromosome is made-up of a list of polynomial terms, the length of which
is determined by the number of terms. The most critical words are eliminated and the less
critical ones accumulate in the survival chromosomes cycle after cycle [14].

2.4. Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a catch-all term for a broad variety of AI methods
that rely on emulating the actions of biological neurons. They all have nodes (cells or
neurons) and connections to connect the nodes, but they differ in the way their neurons
are arranged and how they are connected. One of the earliest and most common ANN
types is the Multi-Layer Perceptron (MLP). It is the kind of regression problem that is most
frequently employed. It is made up of several nodes placed in layers, the first layer being
referred to as the “Input layer” and used to accept input values, and the last layer being
referred to as the “Output layer” and used to provide output values. There are several
“hidden layers” in between the input and output layers that are in charge of forecasting
the outputs based on the inputs. MLP must have at least one hidden layer. Each node in
a layer is linked to every other node in the layer above it and the layer below it, but the
nodes in each layer are not linked to one another. The sigmoid, the hyper-tan, and the
ramp functions, which are responsible for the nonlinear capabilities of the network, are
the most common ones. Each connection has a significance factor called “Weight,” and
each node has a triggering formula, ANN. All inputs must be scaled to a single range
due to the variance in input value ranges; this process is known as “Standardization” if
the input variance is divided by its standard deviation (SD), as well as “Normalization”
if the inputs are scaled between (0 and 1) and “Hyper normalization” if they are scaled
between (−1 to 1). Scaled inputs are transmitted through hidden layers from the input
layer to the output layer. Applying a node’s activation function to the total of its inputs
multiplied by the weights of the related connections yields the node’s output. The outputs
must be descaled to their original resolution after the output layer. Any ANN model must
be trained using a predetermined dataset; during this process, the weight values of the
model’s connections are modified to anticipate the intended outputs from the inputs.

The best values for link weights might be determined using a variety of training
techniques, including Back Propagation (BP), Gradually Reduced Gradient (GRG), and
Genetic Algorithm GA [14].

3. Methodology
3.1. Research Program

The research plan is divided into three phases. Phase 1 involves developing 205 FEM
models for strip footing rested on a bi-layered soil profile, with different configurations to
determine the load corresponding to a settlement equal to 25, 50, 100 and 150 mm besides
the ultimate load and settlement. Phase 2 involves calculating the values of (a and b) factors
for the best fitting hyperbolic curve for the output of each FEM model and form a database
that contains the configurations of each FEM model and the corresponding (a and b) values.
Finlay, Phase 3 applied different AI techniques on the generated database to predict the
(a and b) values using the model configurations. The next section describes in detail each
phase of this research.
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3.1.1. Phase 1: Constitutive FEM Models

A total of 205 2D plain strain PLAXIS models were developed for a strip footing
constructed on a top soil layer with thickness (h) followed by another soil layer with
thickness (H). The footing width was B, as shown in Figure 2. A half model was used due
to symmetry. The model dimensions in the X and Y directions were 10B. This size is large
enough to prevent the effect of boundary fixation on the footing behavior. The soil elements
were modeled using a 15-node element and considered the well-known Mohr–Coulomb’s
constitutive law. The used parameters’ values are shown in Table 2.

Designs 2022, 6, x FOR PEER REVIEW 6 of 15 
 

 

using a predetermined dataset; during this process, the weight values of the model’s con-

nections are modified to anticipate the intended outputs from the inputs. 

The best values for link weights might be determined using a variety of training tech-

niques, including Back Propagation (BP), Gradually Reduced Gradient (GRG), and Ge-

netic Algorithm GA [14]. 

3. Methodology 

3.1. Research Program 

The research plan is divided into three phases. Phase 1 involves developing 205 FEM 

models for strip footing rested on a bi-layered soil profile, with different configurations 

to determine the load corresponding to a settlement equal to 25, 50, 100 and 150 mm be-

sides the ultimate load and settlement. Phase 2 involves calculating the values of (a and 

b) factors for the best fitting hyperbolic curve for the output of each FEM model and form 

a database that contains the configurations of each FEM model and the corresponding (a 

and b) values. Finlay, Phase 3 applied different AI techniques on the generated database 

to predict the (a and b) values using the model configurations. The next section describes 

in detail each phase of this research. 

3.1.1. Phase 1: Constitutive FEM Models 

A total of 205 2D plain strain PLAXIS models were developed for a strip footing con-

structed on a top soil layer with thickness (h) followed by another soil layer with thickness 

(H). The footing width was B, as shown in Figure 2. A half model was used due to sym-

metry. The model dimensions in the X and Y directions were 10B. This size is large enough 

to prevent the effect of boundary fixation on the footing behavior. The soil elements were 

modeled using a 15-node element and considered the well-known Mohr–Coulomb’s con-

stitutive law. The used parameters’ values are shown in Table 2. 

Table 2. Soil parameters used in the FEM models. 

Soil Type Soil Description 
C 

(kN/m2) 

φ 

(°) 

γ 

(kN/m3) 

E 

(MN/m2) 
υ 

S 1 loose Sand 0.0 29 16 9.0 0.350 

S 2 Dense Sand 0.0 38 20 50.0 0.300 

S 3 Soft Clay 25 0.0 14 1.5 0.450 

S 4 Stiff Clay 100 0.0 20 10.0 0.350 

S 5 Soft Silt 25 5 18 6.0 0.400 

S 6 Stiff Silt 100 20 20 30.0 0.330 

Where C, φ, γ′, E, υ are the cohesion, friction angle, effective unit weight, elastic modulus and Pois-

son’s ratio of the soil, respectively. 

 

Figure 2. Typical configurations for the developed FEM models. Figure 2. Typical configurations for the developed FEM models.

Table 2. Soil parameters used in the FEM models.

Soil Type Soil Description C
(kN/m2)

ϕ

(◦)
γ

(kN/m3)
E

(MN/m2) υ

S 1 loose Sand 0.0 29 16 9.0 0.350
S 2 Dense Sand 0.0 38 20 50.0 0.300
S 3 Soft Clay 25 0.0 14 1.5 0.450
S 4 Stiff Clay 100 0.0 20 10.0 0.350
S 5 Soft Silt 25 5 18 6.0 0.400
S 6 Stiff Silt 100 20 20 30.0 0.330

Where C, ϕ, γ′, E, υ are the cohesion, friction angle, effective unit weight, elastic modulus and Poisson’s ratio of
the soil, respectively.

A parametric study was carried out to determine the impact of soil layers, footing
dimension and overburden stress at the foundation depth on a load-settlement curve.
Accordingly, a set of FEM models were developed as follows:

• Top layer (soil type S1 to soil type S6)
• Bottom layer (soil type S1 to soil type S6)
• Width of strip footing (B) (1.0 m to 5.0 m)
• Top layer thickness (h) (0.5 B to 1.0 B)
• Overburden stress (σ′v) (1.0 m to 3.0 m by the top density γ′t)

Values of the previously mentioned factors were randomly selected for each FEM
model of the parametric study. Figure 3 presents a sample for the developed models and
its outputs.
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3.1.2. Phase 2: Evaluate (a and b) Factors, Generate the Database and Conduct
Statistical Analysis

A hyperbolic formula is usually used to describe the load-settlement relation in
geotechnical models such as pile load tests and plate load tests; hence, it is used in this
research to describe the results of the FEM models. The best fitting hyperbolic curve for a
set of results could be determined via only two factors (a and b), as shown in Figure 4.
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Values of the load-settlement factors (a and b) should be selected to minimize the
Sum of Squared Error (SSR) between the FEM results and the corresponding points on the
hyperbolic curve. This task was carried out using a built-in function in Microsoft Excel.
A complete dataset with 205 records was formed to be used by the AI techniques. Each
record includes the following data:

• Cohesion, tangent of friction angle and effective density of top layer (Ct) kN/m2, tan
(ϕt) and (γ′t) kN/m3, respectively.

• Top layer thickness (h) m,
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• Cohesion, tangent of friction angle and effective density of bottom layer (Cb) kN/m2,
tan (ϕb) and (γ′b) kN/m3, respectively.

• Strip footing width (B) m,
• Effective over burden stress at foundation depth (σ′v) kN/m2,
• 1000 × hyperbolic factor (a),
• 1000 × hyperbolic factor (b).

The utilized database was divided into training dataset (150 records) and validation
dataset (55 records). The statistical features of the utilized dataset are shown in Table 3,
while the correlation matrix is presented in Table 4. Figure 5 illustrates the histograms of
both inputs and outcomes.

Table 3. A statistical analysis of the generated database.

Ct tan (ϕt) γ′t h Cb tan (ϕb) γ′b B σ′v 1000a 1000b

kN/m2 - kN/m3 m kN/m2 - kN/m3 m kN/m2 kN/m2 kN/m2

Training set
Min. 0.1 0.0 14.0 0.5 0.1 0.0 14.0 1.0 18.0 0.343 0.086
Max. 100 1 20 5 100 1 20 5 54 6.340 1.880
Avg. 35.6 0.4 18.1 2.1 37.4 0.3 17.8 3.0 35.0 1.850 0.327
SD 46.0 0.3 2.2 1.3 41.2 0.3 2.4 1.6 14.7 1.610 0.272

VAR 1.29 0.87 0.12 0.61 1.10 1.02 0.13 0.54 0.42 0.870 0.832
Validation set

Min. 0.1 0.0 14.0 0.5 0.1 0.0 14.0 1.0 18.0 0.372 0.094
Max. 100 1 20 5 100 1 20 5 54 6.450 1.920
Avg. 40.6 0.3 18.4 1.8 39.5 0.3 17.6 2.7 38.4 1.880 0.347
SD 46.9 0.3 2.0 1.2 39.9 0.3 2.5 1.5 14.5 1.540 0.263

VAR 1.15 0.97 0.11 0.67 1.01 1.18 0.14 0.56 0.38 0.819 0.758

Table 4. Correlation matrix.

Ct tan (ϕt) γ′t h Cb tan (ϕb) γ′b B σ′v 1000a 1000b

Ct 1.00
tan (ϕt) −0.66 1.00
γ′t 0.59 0.05 1.00
h −0.21 0.40 0.07 1.00

Cb 0.06 0.08 0.13 0.04 1.00
tan (ϕb) 0.09 0.02 0.02 0.05 −0.55 1.00
γ′b 0.09 0.08 0.15 0.08 0.43 0.32 1.00
B 0.02 −0.01 −0.01 0.88 0.02 0.01 0.04 1.00
σ′v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

1000a −0.12 −0.50 −0.55 −0.30 −0.20 −0.29 −0.38 −0.07 −0.18 1.00
1000b −0.15 −0.08 −0.30 0.41 −0.19 −0.25 −0.47 0.56 0.01 0.13 1.00
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3.1.3. Phase 3: Predicting (a and b) Values Using AI Techniques

Three different artificial intelligence approaches were implemented to predict the
hyperbolic factors (a and b) of the hyperbolic load-settlement curve of the footing using
the developed dataset. The implemented approaches are Genetic programming (GP).
Evolutionary Polynomial Regression (EPR) and Artificial Neural Network (ANN). The
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developed models predicted the (a and b) values based on geometrical dimensions h, B,
the soil parameters of top layer Ct, tan (ϕt), γ′t, soil parameters of bottom layer Cb, tan
(ϕb), γ′b and overburden stress σ′v. The performance of each model was measured using
the Sum of Squared Errors (SSE).

4. Results and Discussion of the Predictive Models
4.1. Results Presentation
4.1.1. Model (1)—Using (ANN) Technique

A (9:10:2) layout ANN with (Hyper-Tan) activation function was trained using Back
Propagation (BP) technique to predict both (a, b) values. The architecture of the generated
ANN and their connation weights are showed in Figure 6 and Table 5. The average errors
were 16% & 25% and the (R2) values were 0.974 & 0.932. The relations between calculated
and predicted values are illustrated in Figures 7c and 8c.

Designs 2022, 6, x FOR PEER REVIEW 10 of 15 
 

 

developed dataset. The implemented approaches are Genetic programming (GP). Evolu-

tionary Polynomial Regression (EPR) and Artificial Neural Network (ANN). The devel-

oped models predicted the (a and b) values based on geometrical dimensions h, B, the soil 

parameters of top layer Ct, tan (φt), γ′t, soil parameters of bottom layer Cb, tan (φb), γ′b 

and overburden stress σ′v. The performance of each model was measured using the Sum 

of Squared Errors (SSE).  

4. Results and Discussion of the Predictive Models 

4.1. Results Presentation 

4.1.1. Model (1)—Using (ANN) Technique 

A (9:10:2) layout ANN with (Hyper-Tan) activation function was trained using Back 

Propagation (BP) technique to predict both (a, b) values. The architecture of the generated 

ANN and their connation weights are showed in Figure 6 and Table 5. The average errors 

were 16% & 25% and the (R2) values were 0.974 & 0.932. The relations between calculated 

and predicted values are illustrated in Figures 7c and 8c. 

 

Figure 6. The architecture of the generated ANN. 

4.1.2. Model (2)—Using GP Technique 

Two four levels of complexity GP models (31 gene per chromosome) were developed 

to predict (a and b) values of generated database records. This model was developed using 

a population size of 100,000 chromosomes and a survivor size of 25,000 chromosomes and 

250 generations. Equations (3) and (4) present the generated formulas for (a and b), while 

Figures 7a and 8a show their fitness. The average error and (R2) values for his model were 

50%, 0.575 and 49%, 0.572, respectively. 

  

Figure 6. The architecture of the generated ANN.

Table 5. Links’ Weights for the generated ANN.

Hidden
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

In
pu

tL
ay

er

(Bias) −0.96 1.31 −0.01 −1.42 −0.34 0.29 −0.39 0.17 −0.59 −1.54
Ct −0.27 0.63 0.75 −0.07 0.12 0.22 −0.15 −0.41 0.00 −0.1

tan (ϕt) 0.31 0.36 0.41 1.16 0.17 −0.03 −0.45 0 −0.3 −0.36
γ′t −0.74 0.51 −0.16 −0.63 0.00 −0.28 −0.09 0.41 −0.34 −0.49
h 0.15 −0.65 0.23 0.02 −0.04 −0.22 −0.11 0.4 −0.35 −0.15

Cb 0.32 −0.4 0.44 0.33 −0.78 0.00 0.24 −0.06 0.08 −0.37
tan (ϕb) 1.24 −0.94 0.56 0.47 −0.8 −0.32 −0.9 −0.71 −0.49 −0.27
γ′b −0.26 −0.83 0.26 0.61 −1.04 0.32 −1.11 −0.42 0.6 −0.17
B 0.1 0.25 −0.15 0.15 0.37 0.5 0.02 −0.55 0.5 −0.01
σ′v 0.45 0.26 −0.21 −0.26 −0.01 −0.24 −0.6 0.37 0.02 −0.27

Hidden
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 (Bias)

Output 1000a −0.81 −1.33 −0.51 −1.28 −0.16 0.15 0.12 0.09 0.03 0.92 −0.49
1000b 0.33 0.73 −0.07 0.78 0.62 0.04 −0.15 −0.33 0.46 0.06 −0.18
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4.1.2. Model (2)—Using GP Technique

Two four levels of complexity GP models (31 gene per chromosome) were developed
to predict (a and b) values of generated database records. This model was developed using
a population size of 100,000 chromosomes and a survivor size of 25,000 chromosomes and
250 generations. Equations (3) and (4) present the generated formulas for (a and b), while
Figures 7a and 8a show their fitness. The average error and (R2) values for his model were
50%, 0.575 and 49%, 0.572, respectively.

1000a =

−γ′t
11−γ′b − h·tan (ϕb) + 11

7 tan(ϕt)− 7 + γ′t + tan (ϕt)−γ′t
LN(σ′v)

(3)

1000b =
2B(γ′b− h)(8− 0.33γ′b)

γ′t (γ′b + 11)
(4)

4.1.3. Model (3)—Using EPR Technique

A five level EPR model was generated for 9 input variables; the possible combinations
are 792 terms for X5, 330 terms for X4, 120 terms for X3, 36 terms for X2, 8 terms for X1 and
1 term for X0 (total 1287 terms) as follows:

i=2
∑

i=1

j=2
∑

j=1

k=2
∑

k=1

l=2
∑

l=1

m=2
∑

m=1
Xi·Xj·Xk·Xl·Xm

+
i=2
∑

i=1

j=2
∑

j=1

k=2
∑

k=1

l=2
∑

l=1
Xi·Xj·Xk·Xl+

i=2
∑

i=1

j=2
∑

j=1

k=2
∑

k=1
Xi·Xj·Xk +

i=2
∑

i=1

j=2
∑

j=1
Xi·Xj +

i=2
∑

i=1
Xi + C

The most influential seven terms were determined by the GA approach. The developed
mode to predict (a and b) values are presented in Equations (5) and (6), while their fitness
levels are shown in Figures 7b and 8b. The determination factor (R2) and average errors
are 0.896, 35% and 0.888, 32%, in order. The accuracies of developed models are compared
in Table 6.

1000a = 15.50− (22.2 + γ′t) tan(ϕt)γ′b
1.5 γ′t

− γ
′t .γ′b
32.3

− 208 tan (ϕb)2

γ′b
+

12.1

tan (ϕb)3 −
10430
γ′b3 (5)

1000b =
1
12
− B(109 h + γ′t)

4.9 γ′b
− 3.25 tan(ϕb)

γ′t
− B.h.γ′b

14.3
+

102B
γ′b2 + 2.5 B.h (6)

Table 6. Performance of the generated models.

Item Technique Output SSR Avg. Error R2

1000a
GP Equation (3) 178 50 0.575

EPR Equation (5) 87 35 0.896
ANN Figure 6 19 16 0.974

1000b
GP Equation (4) 5.3 49 0.572

EPR Equation (6) 2.3 32 0.888
ANN Figure 6 1.4 25 0.932

4.2. Results Discussion

The aim of this study was to develop predictive models to generate the load-settlement
curve for strip footings. Considering the hyperbolic behavior reduces the problem of pre-
dicting the values of just two parameters, (a and b). As shown in Figure 9, the hyperbolic
curve could be transformed into a straight line by drawing the relation between the set-
tlement, ∆ and the invers of the subgrade reaction, (1/Ks =∆/P). It could be noted that
parameter (b) presents the inverse of the initial subgrade reaction (1/Kso), while parameter
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(a) presents the deterioration rate of the subgrade reaction while increasing the settle-
ment [15].

Designs 2022, 6, x FOR PEER REVIEW 14 of 15 
 

 

 

Figure 9. Hyperbolic factors (a and b). 

In the present study, the load-settlement factors have been predicted using multiple 

numerical databases generated using the FEM-Plaxis 2D of a bi-layered soil bearing a strip 

footing of width B using the novel GP, EPR and ANN intelligent learning techniques. 

Revising the developed Equations (2)–(5) shows that both Ct and Cb are missing, 

which indicates that cohesion has no effect of the load-settlement curve and accordingly 

on the subgrade reaction value. 

Equations (3) and (5) indicated that increasing the effective unit weight of both the 

upper and lower layers increases the initial subgrade reaction (1/b), which means that 

raising the ground water table reduces the Kso. They also showed that increasing the foot 

width (B) reduces Kso, which is logical due to increasing the effective depth. 

Equations (2) and (4) illustrated the complicated relation between the deterioration 

rate in subgrade reaction (a) and the internal friction angles (φt, φb); however, they indi-

cated that increases both of (φt and φb) reduced the deterioration rate. 

The thickness of the top layer at every trial seems to have resisted the settlement 

propagation to the underlying bottom layer and shows the influence of the rigidity of the 

soil in a multilayered arrangement on soil resistance to loading and settlement [16,17]. 

5. Conclusions 

The fact that most available structural design software are using the subgrade reac-

tion concept to model the soil-structure interaction is the motive to develop more accurate 

predictive models to determine the value of the subgrade reaction, since all the available 

closed form equations are valid only for single uniform layer within the elastic zone. On 

the other hand, this study aims to predict the full load-settlement curve of a strip footing 

constructed on a bi-layered profile by implementing three AI approaches: GP, EPR and 

ANN. These approaches were implemented for a developed database of 205 records, each 

record including soil parameters of the top layer (Ct), tan (φt), (γ′t), the bottom layer (Cb), 

tan (φb), (γ′b), geometrical dimensions (h), (B) and over burden stress (σ′v) in addition to 

the corresponding (a and b) hyperbolic factors. The utilized dataset was developed using 

the well-known Plaxis software. The outcomes of the study could be summarized as fol-

lows: 

• The developed formulas using the GP technique showed a limited accuracy of 50%. 

All input factors were utilized, except the cohesion of both top and bottom soils (Ct), 

(Cb). 

• EPR technique generated two seven term polynomials out of 1287 possible terms. 

The accuracy is better than the GP models (65%). In addition, all input factors except 

the overburden pressure (σ′v) and the cohesion of both the top and bottom soils (Ct), 

(Cb) were generated. 

• Finally, ANN technique presents the best accuracy of 80% and used all the input fac-

tors. The relative importance of each factor is indicated by the size of the blocks in 

Figure 5, and, accordingly, all factors have almost the same effect on the load-settle-

ment curve except (B), tan (φt) and tan (φb), which have a slightly higher effect. 

Figure 9. Hyperbolic factors (a and b).

In the present study, the load-settlement factors have been predicted using multiple
numerical databases generated using the FEM-Plaxis 2D of a bi-layered soil bearing a strip
footing of width B using the novel GP, EPR and ANN intelligent learning techniques.

Revising the developed Equations (2)–(5) shows that both Ct and Cb are missing,
which indicates that cohesion has no effect of the load-settlement curve and accordingly on
the subgrade reaction value.

Equations (3) and (5) indicated that increasing the effective unit weight of both the
upper and lower layers increases the initial subgrade reaction (1/b), which means that
raising the ground water table reduces the Kso. They also showed that increasing the foot
width (B) reduces Kso, which is logical due to increasing the effective depth.

Equations (2) and (4) illustrated the complicated relation between the deterioration rate
in subgrade reaction (a) and the internal friction angles (ϕt, ϕb); however, they indicated
that increases both of (ϕt and ϕb) reduced the deterioration rate.

The thickness of the top layer at every trial seems to have resisted the settlement
propagation to the underlying bottom layer and shows the influence of the rigidity of the
soil in a multilayered arrangement on soil resistance to loading and settlement [16,17].

5. Conclusions

The fact that most available structural design software are using the subgrade reaction
concept to model the soil-structure interaction is the motive to develop more accurate
predictive models to determine the value of the subgrade reaction, since all the available
closed form equations are valid only for single uniform layer within the elastic zone. On
the other hand, this study aims to predict the full load-settlement curve of a strip footing
constructed on a bi-layered profile by implementing three AI approaches: GP, EPR and
ANN. These approaches were implemented for a developed database of 205 records, each
record including soil parameters of the top layer (Ct), tan (ϕt), (γ′t), the bottom layer (Cb),
tan (ϕb), (γ′b), geometrical dimensions (h), (B) and over burden stress (σ′v) in addition
to the corresponding (a and b) hyperbolic factors. The utilized dataset was developed
using the well-known Plaxis software. The outcomes of the study could be summarized
as follows:

• The developed formulas using the GP technique showed a limited accuracy of 50%. All
input factors were utilized, except the cohesion of both top and bottom soils (Ct), (Cb).

• EPR technique generated two seven term polynomials out of 1287 possible terms. The
accuracy is better than the GP models (65%). In addition, all input factors except the
overburden pressure (σ′v) and the cohesion of both the top and bottom soils (Ct), (Cb)
were generated.

• Finally, ANN technique presents the best accuracy of 80% and used all the input factors.
The relative importance of each factor is indicated by the size of the blocks in Figure 5,
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and, accordingly, all factors have almost the same effect on the load-settlement curve
except (B), tan (ϕt) and tan (ϕb), which have a slightly higher effect.

According to previous points, the following are concluded:

• Both GP and EPR could not capture the influence of soil cohesion on the load-
settlement curve, which gives the advantage to the ANN model.

• The developed GP model is not recommended because of its limited accuracy.
• Although the ANN model showed the best accuracy and utilised all input factors, its

model is too complicated to be manually handled.
• The developed EPR model could be used for manual calculations, while the ANN

model is suitable for computerized calculations
• The developed models should be used within the factor values considered in the study.

The prediction accuracy must be verified beyond this range.
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