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Abstract: Real-time prediction of the state of complex systems is vital for integrity management
since it is easier to plan for asset maintenance, reduce risks associated with unplanned downtime
and reduce the cost of maintenance. This study utilized a four-fold cross-validation ensemble
for an Artificial Neural Network (ANN) that used Multi-Layer Perceptron (MLP) in a backward
propagation technique for haul crane prognosis. Big data on components’ degradation states obtained
from the Supervisory Control And Data Acquisition (SCADA) systems were used to implement the
study. After preprocessing the dataset, importance scoring was used to compute the Cumulative
Target-component Percentage-influence (CTP) of the input variables (source components) on the
output variable (the target component) at the 95.5%, 99.3%, 99.9% and 100% levels. The specific
source components responsible for the CTP levels of the target component were later used for the
ANN network training that followed the cross-validation ensemble technique. The cross-validation
ensemble ANN technique was also compared to the classic ANN and other machining learning
algorithms. Finally, the best-trained cross-validation ensemble ANN network, which was obtained at
the 99.9% CTP level, was used for future estimation of the time of failure of the system to enhance
planning for the expected maintenance program that will be required at such times.

Keywords: artificial neural network; data analytics; fault detection and identification; complex
systems; SCADA

1. Introduction

Management of asset integrity is one of the smartest things that organizations should do if
they want to stay competitive in business. As intelligent asset integrity methods have systematically
taken over the traditional asset maintenance management techniques for complex systems [1,2], it is
becoming imperative that operators of these systems get inspections, maintenance and repairs right
if asset performance is to be sustained [3]. Many complex systems have Supervisory Control And
Data Acquisition (SCADA) systems that use sensors for streaming terabytes of data over the years.
These datasets hold useful clues about the state of systems and should be effectively utilized for systems’
prognostic and real-time fault detection and identification [4]. Expert knowledge acquired over years
of asset maintenance management has been viable for fault detection and identification [5], and
systematically following the maintenance routines, stipulated by the original equipment manufacturers,
has undoubtedly helped to reduce downtimes. However, there is still the need for more precision
in maintenance management decisions, because of the difficulties of effective downtime prevention
and operating cost optimization, by the traditional maintenance systems [6]. Since the management
of complex systems has proven to be tricky, they require the efficiency that can be provided by the
real-time information transferring, analysis and decision-making framework that can be achieved
via data analytics. This is the primary goal of this research that aims to make fault identification and
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detection quicker via big data analytics with an Artificial Neural Network (ANN). It is also important
to note that despite the prevalence of SCADA systems and the proliferation of big data, real-time
fault detection and identification has not been implemented successfully in the management of
complex systems, as unplanned maintenance and shutdowns still dominate the integrity management
landscape [7]. This case is most prevalent on complex systems that have hundreds to thousands of
components, sub-systems and systems that have complex operational procedures. This research will
enhance the knowledge of the degradation status of the components of complex systems and identify
the expected time of failures, to improve the implementation of real-time maintenance planning
programs [8], which can result in cost savings with the increased availability of the facilities.

Given the fact that the deterioration patterns enshrined in the degradation of the components and
systems are an indication of the characteristics of the components and systems, it is possible to use
big data analytics to determine the expected future pattern of the facilities’ behavior. This has made
data analytics stand out as an effective maintenance management tool that will aid in the prediction of
the status of assets via intelligent asset integrity management that will greatly impact the integrity
management decisions of ageing assets [9,10], which are more prone to failures [11] than newer ones.
Similarly, the possibility of mitigating against operational risks associated with asset failures and
reducing the cost impacts of unscheduled downtimes in industrial operations will all be a possibility,
if real-time fault detection and identification are achieved [12]. Since integrity management should
address the fitness for the purpose of assets, which depend on the probability of failure at different
lifecycle phases [13–15], understanding the failure intensity of facilities and implementing action plans
that will mitigate them are vital for efficiency; hence the necessity of implementing this study that will
potentially help to optimize the performance of complex systems, by utilizing the historic trend of the
components and systems degradations in prognosis and fault detections.

To date, effective integrity management, which entails cost minimization through the modeling
of the system’s conditions [16] with different dynamic tools, to maintain reliability [12] has been the
focus of numerous researchers [17,18]. Kan et al. [19] affirmed in the study of the state of prognosis
of non-stationary and non-linear rotating systems that the effectiveness of failure and downtime
prevention centers on data-driven statistical and artificial intelligence technologies. This implies
that the use of different statistical and machine learning procedures such as ANN, Support Vector
Machine (SVM), fuzzy logic, particle filters, the extended Kalman filter, Gaussian process regression,
etc., is fundamental to the understanding of the deterioration trends of components of complex
systems, since the proper utilization of the techniques could lead to actionable knowledge that will
influence maintenance management decisions [20]. Fumeo et al. [21] proposed an online support
vector machine for the prediction of the remaining useful life of train axle bearings and could use
the method to solve some of the problems associated with the streaming and analysis of big data
for complex systems. Similarly, phase editing for vibration signal processing in fault detection of
bearings was used by Barbini et al. [22] to enhance the efficiency of bearing fault detection using big
data. This computationally-efficient procedure used full-band demodulation to obtain results that
outperformed some other damage detection methodologies based on spectral kurtosis and cepstral
pre-whitening. Again, Kumar et al. [23] used the linguistic interval-valued fuzzy reasoning framework
for predicting the remaining useful life of complex systems, by using condition-based monitoring data
and optimized maintenance schedules, whereas Manco et al. [24] used the cluster of outliers in fault
identification of train doors.

Due to the increasing need to reduce the unplanned failures of complex systems such as haul
cranes that are locked into 24 h operations in busy harbors, it is important to have pre-knowledge of
the components’ behaviors, to make room for resources allocation in work planning and maintenance
management decisions. Hence, a framework for integrating ANN-based big data analytics into
real-time fault detection and identification for complex systems will be developed. This will be achieved
using future time prediction of the target component’s behavior, with the source/control components’
degradation information from historic SCADA sensor data. The successful implementation of the
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framework will make maintenance planning, inspection and repairs quicker, and at a reduced cost,
due to the elimination of downtimes arising from unplanned maintenance schedules.

2. Artificial Neural Network Concept

ANN is a machine learning tool that has been widely utilized in engineering, science, health and
finance for predicting the effects of input variables on outputs, by using a weighing system that adjusts
the networks, to reduce the errors to the lowest possible value. There are three main sections in ANN:
the input layer, hidden layer and output layer, which are interconnected. They also have weighted
input elements that are modified as the signals pass through the hidden neurons, which produce their
outputs using the sigmoidal function Equation (1) [25]. The output weight produced by the hidden
neurons (hi), which are connected to the input neurons in adjacent layers and linked to the output
neurons with a weight factor, can be estimated with Equation (2) [26,27].{

XS
i = 1

1 + e−si

si = ∑ ωijXS−1
j

(1)

where XS
i represents the output of node i in layer s, XS−1

j represents the output of node j in layer s − 1
and si represents the weighted sum (ωij) of the inputs to node i.

hi = σ

(
N

∑
j=1

ϑijxj + Thid
i

)
(2)

Here, σ(.) is the activation function; N is the number of input neurons; ϑij is the weights between
input neuron j and hidden neuron i; xj is the input values to the input neurons; and Ti

hid represents the
threshold term of the hidden neuron.

In ANN network training, the weights are adjusted continually, to reduce the difference (ε)
between the desired value and the target value to the bare minimal, per Equation (3) [27].

ε =
1
2

mt

∑
i=1

mo

∑
j=1

(
Yij − Dij

)2 (3)

Here, mt, mo, Yij and Dij represent the number of training samples, the number of output nodes of
the training samples, the output of the training network and the desired value of the target components
(response), respectively.

3. Frameworks for Complex System’s Prognosis

The main aim of intelligent asset integrity management is to enhance real-time fault detection and
identification via forecasting of the future state of the systems, over a given time. The key advantage
of this process is quick service triggering that prevents downtime [1]. Since random failures can be
prevented in complex systems with intelligent condition monitoring, the proper utilization of the big
data (acquired over the periods of intelligent monitoring from SCADA system sensors) is vital for
managing age- and environment-related stresses on the systems [8] following the procedure shown in
Figure 1.
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Figure 1. Framework for intelligent prognosis of complex systems (Note: SCADA, Supervisory Control
And Data Acquisition; CMS, Condition Monitoring Sensor; ANN, Artificial Neural Network; SVM,
Support Vector Machine; GBM, Gradient Boosting Machine; RF, Random Forest; DL, Deep Learning;
GS, Grid Search; GLM, Generalized Linear Model; SMPP, Statistical Matching Performance Pattern).

Owing to the fact that the utilization of components of complex systems results in deterioration,
which is a result of ageing or physical stresses associated with the operations, they generally
degrade [8,28]. The Condition Monitoring Sensors (CMS) attached to the components continuously
send the readings of the state of the components via the SCADA systems and store the data in databases
or clouds as big data. Processing of these data is vital for the prediction of the future state of the
components, which is done by using different models such as ANN, Support Vector Machine (SVM),
Gradient Boosting Machine (GBM), Deep Learning (DL), Random Forest (RF), the Generalized Linear
Model (GLM), Grid Search (GS) and Statistical Matching Performance Pattern (SMPP) [8,25,26,29–33].

Using these models for determining the behavioral patterns of the components and systems,
generally, helps with the prognostic and real-time fault detection and identification by forecasting
future trends. Numerous techniques, such as Autoregressive Integrated Moving Average (ARIMA),
exponential smoothing, autoregressive analysis, fuzzy logic, Auto Regression Moving Average (ARMA)
and Monte Carlo estimation, have been used for the prediction of the future trends of components’
behaviors. This prediction is very vital for integrity management as the planning of inspection,
replacement and repairs will hinge on the forecasted information that has the original pattern of the
systems’ and components’ degradations enshrined in the big data. It is obvious that implementing
the integrity management program will improve the status of the complex systems, but the need for
cost-effective maintenance is the reason why a group maintenance policy [8], which targets components
of the system that are prone to failure within a given timeframe, is necessary. This strategy is an
economic maintenance operation that will not only minimize the cost of maintenance, but will ensure
that the system’s reliability is not compromised [34–36].

4. Fault Detection and Identification with ANN

To model the current system’s status and make the prediction of the future state, historic big data
of the components’ degradation are needed, because the future degradation behavior of the system
will be like the historic pattern. The procedure used for this prediction is shown in Figure 2.
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Figure 2. Integrated process of fault detection and identification with Artificial Neural
Networks (ANNs).

Before using the big data for analysis of the system’s state and real-time fault detection,
pre-processing, which requires the replacement of missing values, removal of incomplete rows and
columns, outliers and extreme values, was done. This process of data cleaning can also involve data
integration, transformation, reduction and discretization, to make the analysis fast and prevent bogus
results [37]. Hence, redundant input variables such as those that were constant were removed, and
missing values were replaced with zeros and by averaging the nearest neighbors’ values of the missing
value cells. The outliers and extreme values were computed by using the values of the first and third
quantiles and the inter-quantile ranges while using an outlier factor of three and an extreme value
factor of six.

This study used importance scoring to establish the influences of the source components
(input data) on the target component’s (output data) behavior. This procedure was meant to determine
actionable data processing size that will have an effective contribution to the behavior of the target
component. Hence, the first step in the predictive analytics was to correlate the readings of the source
components with that of the target component and the cumulative influence of the source components
on the target component recorded. The ANN model training, which estimated the value of the target
component using the combination of the information in Equations (1)–(3), was carried out using the
architecture shown in Figure 3 in a cross-validation ensemble procedure.
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original dataset at separate occasions as the validation dataset and using the remainder as the training 
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Figure 3. ANN architecture used for the model development, Tx1 is the target component (output) and
Tx2, Tx3, . . . , Tx234 represent the source components (inputs) of the system.

Cross-Validation Ensemble

Since this study aims to make a prediction of the future status of the target component from a
given set of historic data, a four-fold cross-validation ensemble (Figure 4) that used randomization to
pick the validation data from the original dataset was adopted. It can be recalled that this technique has
the advantage of considering all sections of the dataset in the training and validation, thereby giving
room for robust prediction when compared to the classic approach that uses a given fraction of the data
for training and validation. Again, this technique is necessary for reducing variabilities in prediction
results and minimizing the chances of type III error, which results in the wrong hypothesis, due to
erroneous conclusions [38]. By randomly choosing 20%, 40%, 60% and 80% of the original dataset
at separate occasions as the validation dataset and using the remainder as the training dataset, the
ANN models were trained. The networks were built with a Multi-Layer Perceptron (MLP) algorithm
in a backward propagation technique, by applying grid search to determine the best-trained network
amongst different networks having various hidden neurons and learning rates. The varying hidden
neurons (Hn) were computed with the expression in Equation (4), by considering the number of input
variables (ncol) in the datasets, because preliminary analysis showed that the trained networks with the
values obtained from the equation produced high precision results. The learning rates used for the
training of the networks were 0.01, 0.15 and 0.25.

Hn =


2ncol + 1
2ncol + 2
2ncol + 3

(4)
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Figure 4. A randomization based four-fold cross-validation ensemble used for the ANN training and
validation of the dataset.

5. Illustrative Example and Results

The cross-validation ensemble ANN technique described in the previous section was exemplified
by analyzing 100 days of SCADA sensors’ streamed data of 233 source components that were
responsible for the status of one target component (Table 1). This dataset (experimental data), which
belongs to a haul crane, is vital for decision-making on the expected status of the target component in
the future.

Table 1. Descriptive statistics of some of the SCADA data used for the analysis (Std.: Standard
deviation, COV: Coefficient of Variation).

Descript. Tx_1 Tx_3 Tx_18 Tx_37 Tx_94 Tx_160 Tx_197 Tx_216 Tx_232 Tx_234

min 0.0000 1.9998 0.0000 9.6552 0.0000 0.0000 0.0000 0.0000 1.9998 0.0000
max 1.9247 8.1290 912.8352 100.0000 99.9546 1.0000 100.0000 1199.7422 8.1979 912.8352

range 1.9247 6.1292 912.8352 90.3448 99.9546 1.0000 100.0000 1199.7422 6.1981 912.8352
median 0.0269 7.4863 487.3383 40.0000 31.6343 0.0000 13.5617 600.0000 7.6996 487.3383
mean 0.2230 7.4596 362.3406 53.4006 24.4100 0.2227 11.5449 514.5615 7.6864 362.3406
Std. 0.4188 0.2081 308.2417 25.5838 23.5495 0.4069 6.9333 282.3706 0.2626 308.2417

COV 1.8778 0.0279 0.8507 0.4791 0.9647 1.8275 0.6006 0.5488 0.0342 0.8507

The ANN analysis was done at various levels of the Cumulative Target-component
Percentage-influence (CTP)—95.5%, 99.3%, 99.9% and 100%—by using the source components
responsible for the CTP levels for the network training. This was done to estimate the actionable
size of the source components that will provide the best-trained network at reduced time and cost.
It should be noted that the Cumulative Target-component Percentage-influence (CTP) was used to
describe the measured cumulative influence of the source components on the target component. Table 2
summarizes the number of source components responsible for the various levels of target component
behavior after preprocessing the original dataset.

Table 2. Cumulative Target-component Percentage-influence (CTP) and the number of contributing
source components.

CTP Number of Source Components

95.50% 10
99.30% 27
99.90% 46
100% 82
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The aggregates of the ANN results obtained at each of the CTP levels—95.5%, 99.3%, 99.9% and
100%—were found by calculating the averages of the built ANN models—ANN1, ANN2, ANN3 and
ANN4 (Figure 4)—at the levels. After trying between 1000 and 5000 iterations of the ANN training
networks, the best networks from each CTP level was used to compute the Hit Ratio (HR), Miss Ratio
(MR), Mean Square Error (MSE) and the coefficient of determination (R2) of the trained and validation
datasets per Equations (5)–(7) [39]. {

HR = NWF
Ns

MR = 1 − HR
(5)

MSE =
1

Ns

Ns

∑
i=1

(
Tf − Tp

)2
(6)

R2 =

[
∑Ns

i=1

{(
Tf − Tm f

)
∗
(
Tp − Tmp

)}]2

∑Ns
i=1

(
Tf − Tm f

)2
∗ ∑Ns

i=1

(
Tp − Tmp

)2
(7)

Here, NWF is the number of the accurately predicted status of the target component over a given
number of sampling size Ns, Tf is the original sensor reading, Tp is the ANN predicted sensor reading,
Tmp is the mean predicted sensor reading and Tmf is the mean original sensor reading.

Figures 5 and 6 show the validation results of the cross-validation ensemble ANN at the various
CTP levels in comparison to the experimental readings of the target component obtained from the
SCADA streamed dataset. Please note that the results for 80% training and 20% validation were used
to exemplify the nature of the results obtained from the ANN models. The differences in the results
obtained from the ANN models and the experimental results as measured with the Root Mean Square
Error (RMSE) are as follows:

- 80% training and 20% validation {100% CTP: 0.0359, 99.9% CTP: 0.0483, 99.3% CTP: 0.0565 and
95.5% CTP:0.0484}

- 60% training and 40% validation {100% CTP: 0.0419, 99.9% CTP:0.0393, 99.3% CTP:0.0386 and
95.5% CTP:0.050}

- 40% training and 60% validation {100% CTP: 0.044, 99.9% CTP: 0.0365, 99.3% CTP: 0.0391 and
95.5% CTP: 0.0515}

- 20% training and 80% validation {100% CTP: 0.0455, 99.9% CTP: 0.0384, 99.3% CTP: 0.0407 and
95.5% CTP: 0.093}.
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Figure 5. Comparison of the experimental and the cross-validation ensemble ANN predicted target
sensor readings for the 95%, 99.3%, 99.9% and 100% levels of the Cumulative Target-component
Percentage-influence (CTP) of the validation dataset.
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Figure 6. Performance evaluation of the experimental data with the predictions of the cross-validation
ensemble ANN at the 95%, 99.3%, 99.9% and 100% levels of the Cumulative Target-component
Percentage-influence (CTP) of the validation dataset.

The correlation of the cross-validation ensemble ANN predicted target component readings and
the experimental results shown in Figure 6 as determined with Equations (5)–(7) are summarized in
Table 3.

Table 3. Summary of the best-trained networks, R2, Mean Square Error (MSE), Hit Ratio (HR) and Miss
Ratio (MR) for various Cumulative Target-component Percentage-influence (CTP).

TD:VD (%)
Training Dataset (TD) Validation Dataset (VD)

CTP
R2 MSE R2 MSE HR MR

80:20 0.856 0.0254 0.848 0.0277 90.53% 9.47%

95.50%
60:40 0.852 0.0266 0.839 0.0282 90.53% 9.47%
40:60 0.836 0.0301 0.833 0.0289 91.88% 8.12%
20:80 0.87 0.0236 0.862 0.0289 89.87% 10.13%

Average 0.853 0.0264 0.845 0.0284 90.70% 9.30%

80:20 0.886 0.0224 0.878 0.0245 94.59% 5.41%

99.30%
60:40 0.886 0.0211 0.877 0.0227 92.19% 7.81%
40:60 0.884 0.0214 0.881 0.0204 94.86% 5.14%
20:80 0.889 0.0176 0.876 0.0232 93.65% 6.35%

Average 0.886 0.021 0.878 0.023 93.80% 6.18%

80:20 0.89 0.0192 0.881 0.0216 94.69% 5.31%

99.90%
60:40 0.889 0.021 0.879 0.0216 95.26% 4.74%
40:60 0.887 0.0214 0.881 0.0205 96.18% 3.82%
20:80 0.889 0.0176 0.876 0.0233 94.85% 5.15%

Average 0.889 0.02 0.879 0.022 95.20% 4.76%

80:20 0.881 0.0208 0.873 0.023 94.38% 5.62%

100%
60:40 0.887 0.0201 0.877 0.0212 94.12% 5.88%
40:60 0.879 0.0227 0.877 0.0226 94.59% 5.41%
20:80 0.884 0.0175 0.869 0.0238 94.87% 5.13%

Average 0.883 0.02 0.874 0.023 94.50% 5.51%

It can be inferred from the results (Table 3) that the 99.9% CTP level ANN model (validation
dataset) is the best model for estimating the degradation of the target component, with an average
hit ratio of 95.20%, which is 0.7%, 1.4% and 4.5% better than the hit ratios at the 100%, 99.3% and
95.5% CTP levels, respectively. Similarly, the coefficient of determination (R2) for the 99.9% CTP level
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is also higher than those of the other CTP levels. The higher explanatory power and accuracy of the
prediction at the 99.9% CTP level, compared to the 100% CTP level, could be because of the very low
influences {0.000%–0.0007%} of the input variables that succeeded the 99.9% CTP level have on the
behavior of the target component.

Comparison of Cross-Validation Ensemble ANN with Classic ANN and other Techniques

For comparing the cross-validation ensemble technique of ANN used in this study with the classic
ANN used by other researchers on fault detection and diagnostics of industrial assets [40–42], the
dataset used for this study was subjected to a classic ANN (70% training and 30% validation). Table 4
shows the comparison of both results. Judging from the HR and MR obtained from both techniques
(Table 4), it can be inferred that the cross-validation ensemble technique has obvious advantages over
the classic ANN, due to its ability to make more accurate estimations compared to the classic ANN.

Table 4. Comparison of classic ANN and the cross-validation ensemble technique.

CTP
Classic ANN Dataset (70% Training, 30% Validation) Cross-Validation Ensemble ANN

Hit Ratio (HR) Miss Ratio (MR) Hit Ratio (HR) Miss Ratio (MR)

95.50% 89.45% 10.55% 90.7% 9.3%
99.30% 91.95% 8.05% 93.8% 6.18%
99.90% 94.10% 5.90% 95.2% 4.76%
100% 93.89% 6.11% 94.5% 5.51%

The cross-validation ensemble ANN was also compared with other fault detection techniques
to affirm the robustness of the technique. Table 5 summarizes the methods and the level of accuracy
obtained using them. It can be inferred from this table that cross-validation ensemble ANN with the
prediction accuracy of 95.2% outperformed classic ANN, Evolutionary Programming ANN (EPANN),
fuzzy logic, immune neural network, rough set theory, SVM, bootstrap and Genetic Programming with
K-Nearest Neighbors (GP-KNN), phase editing and cepstral editing, whereas ANN-PSO, ANN-IPSO,
ANN with Evolutionary Particle Swarm Optimization (ANN-EPSO) performed better than the
cross-validation ensemble ANN. To further improve on the Cross-Validation Ensemble Artificial
Neural Network (CVEANN) to enhance the accuracy of the predictions, it may be necessary to increase
the number of validation folds from four to between eight and twelve, as this will make it possible to
consider smaller fractions of the dataset and could improve the prediction accuracy.

Table 5. Comparison of the performance of different fault detection and identification techniques with
Cross-Validation Ensemble ANN (CVEANN).

Technique Accuracy Variation from CVEANN Ref

ANN (classic) 95% −0.20% [43]
Artificial Neural Network with Particle Swarm

Optimization (ANN-PSO) 96% 0.80% [43]

Artificial Neural Network with Iterative Particle Swarm
Optimization (ANN-IPSO) 97% 1.80% [43]

Artificial Neural Network with Evolutionary Particle Swarm
Optimization (ANN-EPSO) 98% 2.80% [43]

Evolutionary Programming Artificial Neural Network
(EPANN) 95% −0.20% [44]

Fussy logic 89% −6.20% [45]
Rough set theory 92.11% −3.09% [46]

Support Vector Machine (SVM) 92% −3.20% [47]
Phase editing 79% −16.20% [22]

Cepstral editing 69%, 72% −26.2%, −23.2% [48,49]
Artificial Neural Network with Expert System (ANN-EPS) 90.40% −4.8% [50]
Bootstrap Genetic Programming and K-Nearest Neighbor

(GP-KNN) 92.11% −3.09% [51]
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6. Predicting Future Behavior of the Target Component

The best results of the trained networks were used for the estimation of the future state of the
target component by randomly generating readings from the original dataset (source components).
These readings were subjected to measurement noises that were assumed to cause the readings to
fluctuate randomly between ±2.5%. The summarized results of the average future target sensor
readings at the CTP levels are shown in Figure 7. Since the 99.9% CTP level gave the best estimation of
the validation dataset of the target component, the expected future status of the target component was
computed with the model. The summary of the target sensor behavior in the future 358 h (~15 days)
using the 99.9% CTP level is shown in Table 6. The future readings of the target component (Table 6)
form the basis for decision-making on the time faults are to be expected and the requisite actions to
be taken. Hence, when the target component is expected to have a faulty status that will last for less
than four hours, the maintenance will be expected to be a minor one and could involve replacement of
fuses and resetting of relays. However, when the future time of failure is expected to last for 4–16 h
consecutively, a major maintenance will be planned. This category of maintenance may warrant fault
isolation at the sub-system levels and requires higher specialty of technical personnel in comparison
to minor maintenance operations. Similarly, when the expected future faulty status of the target
component goes above 16 h consecutively, a shutdown maintenance is anticipated, because some
critical components, such as the bearings, shafts, rollers etc., will either need replacement or servicing,
due to deteriorations that could involve deformation, fatigue failure, cracking and corrosion damages.
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Following the explanatory power of the 99.9% CTP level used for the prediction of the future
behavior of the target component, it could be expected that approximately 13% variability in the
expected time of failure and duration of the faulty status of the target component may occur. To this
end, contingency actions could be taken ahead of time to prevent the disruption of operations, by
planning maintenance in advance, shifting workforce to other machinery and stopping operation of
assets that have been predicted to breakdown, which could help to prevent more damages to the
assets and reduce the operating cost. Incorporating this prediction model into an integrated asset
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management architecture will provide a module for automated fault detection and identification,
which will help to improve the integrity of assets.

Table 6. Expected future status of the target component, the date and time the fault is expected, the
duration of the fault and the requisite maintenance action required for the source components.

Date/Time (Start) Date/Time (End) Duration
(h)

System
Status

Required
Maintenance

Duration
(h)

System
Status

Required
Maintenance

16 May 2016 9:30 16 May 2016 1:30 4.00 faulty minor 0.5–4.5 faulty minor
16 May 2016 14:00 16 May 2016 17:30 3.50 working 5–8.5 working
16 May 2016 18:00 16 May 2016 18:00 0.50 faulty minor 9 faulty minor
16 May 2016 18:30 16 May 2016 18:30 0.50 working 9.5 working
16 May 2016 19:00 16 May 2016 19:00 0.50 faulty minor 10 faulty minor
16 May 2016 19:30 16 May 2016 19:30 0.50 working 10.5 working
16 May 2016 20:00 16 May 2016 20:00 0.50 faulty minor 11 faulty minor
16 May 2016 20:30 16 May 2016 21:00 1.00 working 11.5–12 working
16 May 2016 21:30 16 May 2016 22:00 1.00 faulty minor 12.5–13 faulty minor
16 May 2016 22:30 16 May 2016 23:30 1.50 working 13.5–14.5 working
17 May 2016 0:00 17 May 2016 1:00 1.00 faulty minor 15–16 faulty minor
17 May 2016 1:30 17 May 2016 1:30 0.50 working 16.5 working
17 May 2016 2:00 17 May 2016 2:30 1.00 faulty minor 17–17.5 faulty minor
17 May 2016 3:00 17 May 2016 3:00 0.50 working 18 working
17 May 2016 3:30 17 May 2016 4:00 1.00 faulty minor 18.5–19 faulty minor
17 May 2016 4:30 17 May 2016 4:30 0.50 working 19.5 working
17 May 2016 5:00 17 May 2016 13:30 8.50 faulty major 20–28.5 faulty major
17 May 2016 14:00 17 May 2016 14:00 0.50 working 29 working
17 May 2016 14:30 17 May 2016 15:00 1.00 faulty minor 29.5–30 faulty minor
17 May 2016 15:30 17 May 2016 15:30 0.50 working 30.5 working
17 May 2016 16:00 20 May 2016 15:00 71.00 faulty shutdown 31–102 faulty shutdown
20 May 2016 15:30 20 May 2016 16:00 1.00 working 102.5–103 working
20 May 2016 16:30 20 May 2016 17:00 1.00 faulty minor 103.5–104 faulty minor
20 May 2016 17:30 20 May 2016 18:30 1.50 working 104.5–105.5 working
20 May 2016 21:00 20 May 2016 23:30 3.50 faulty minor 108–110.5 faulty minor
21 May 2016 0:00 23 May 2016 3:30 51.50 working 111–162.5 working
23 May 2016 4:00 23 May 2016 4:00 0.50 faulty minor 163 faulty minor
23 May 2016 4:30 31 May 2016 7:00 194.50 working 163.5–358 working

7. Conclusions

The implementation of intelligent asset integrity management has been made easier by big data
of components’ degradations obtained over the years of service of the facilities. The utilization of these
assets’ condition monitoring indicators for decision making on the future status of the components
of the assets has made it possible to have real-time fault detection, identification and cost-effective
maintenance management. This study has utilized cross-validation ensemble ANN for a predictive
analytic study that aimed at estimating the future status of a target component that was influenced
by the source components in a complex system of a haul crane. A four-fold randomized selection of
the population of the original dataset was done using 20% training and 80% validation, 40% training
and 60% validation, 60% training and 40% validation and 80% training and 20% validation at different
moments of the ANN modeling. The study implemented importance scoring to determine the influence
of the source components on the output component and used the number of source components that
contributed to 95.5%, 99.3%, 99.9% and 100% of the target component behavior to carry out the ANN
network trainings at different instances. After comparing the validation results at the Cumulative
Target-component Percentage-influence (CTP) levels of 95.5%, 99.3%, 99.9% and 100%, it was observed
that the 99.9% CTP level with the coefficient of determination (R2) of 0.879, hit ratio of 95.2% and
miss ratio of 4.76% was the best network for making the prediction of the status of the haul crane
components used as a case study in this work.

The study also compared the cross-validation ensemble ANN technique with the best prediction
accuracy (99.9% CTP level) with the classical ANN and other machine learning tools that have
been employed in the literature to predict the faults of complex systems. It was observed that the
technique used in this study could more accurately predict the system’s behavior than classic ANN,
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EPANN, fuzzy logic, immune neural network, rough set theory, SVM, GP-KNN, phase editing and
cepstral editing. On the other hand, the ANN-PSO, ANN-IPSO and ANNEPSO techniques predicted
the system’s performance more accurately than the cross-validation ensemble ANN employed in
this study.

Finally, the 99.9% CTP level cross-validation ensemble ANN was used to predict the future state of
the target component of the haul crane, and the results were used to envisage the expected time of the
system breakdown and the type of maintenance that will be probable. It is expected that future studies
on the complex systems will focus on using 8–12-fold cross-validation ensemble ANN with particle
swarm optimization and evolution-based modifications to improve the accuracy of the predictions.
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